

EGRIP Steering Committee 2018

First results of the AWI-Polar 6 airborne radio echo sounding survey around EGRIP drill site

S. Franke¹, D. Jansen¹, T. Binder¹, V. Helm¹, D. Steinhage¹, J. Paden², O. Eisen¹ ¹Alfred Wegener Institute Bremerhaven, Germany ²Center for Remote Sensing of Ice Sheets, University of Kansas

AWI UWB Radar Sounding at EastGRIP

Overview

- Airborne radar data acquisition survey in May 2018 with Polar6
- Survey covers an area of 16.000 km² | 7700 km of profiles (12 TB data)
- Parallel and orthogonal to ice flow (ice stream and beyond shear margin)
- Full SAR processing of most of the data

Multichannel Coherent Radar Depth Sounder (MCoRDS)

AWI-UWB Radar System | AWI-UWB

- Measure ice thickness, internal layering and image bed properties
- Power: up to 4kW
- Frequency Range: 150-600 MHz
- Slotted Arras Systems for Wings and Fuselage (8 – 24)

Signal Transmission | AWI-UWB

Example: 2D Sounding Mode

modified from Hale et. al. 2015

HELMHOLTZ

Data Processing | AWI-UWB

Data Products | AWI-UWB

quick-look output

- channels are averaged coherently
- assumption: rerturn signal all nadir
- output is used to find the ice surface location

SAR output

- SAR processing with along-track spatial frequency window using f-k
- migrationchannels are averaged together coherently

Radar Survey May 2018

Configuration:

- Array elements: 8
- Bandwidth: 180 210 MHz
- Flight days: 8

Scientific questions:

- How does a strong velocity gradient influence the layering and the shear margin?
- How did the ice that is being drilled right now evolve along the flow line?
- Bedrock in detail

Bedrock and deformation | parallel to flow

Bedrock and deformation | orthogonal to flow

Bedrock and deformation | uncertainties

Shear margin | North

Shear margin | North

west 1 west 2

Radar Systems Compared

AWI UWB

Mills Cross

20180815_062742_Channel0_0330_SARm.mat (500 files)

Ice Bridge

- 1. Create bedrock model
- 2. Link deformation to ice dynamics
- 3. Compare radar data with core data

