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Abstract. Proxy records from climate archives provide evi-
dence about past climate changes, but the recorded signal is
affected by non-climate-related effects as well as time uncer-
tainty. As proxy-based climate reconstructions are frequently
used to test climate models and to quantitatively infer past
climate, we need to improve our understanding of the proxy
record signal content as well as the uncertainties involved.

In this study, we empirically estimate signal-to-noise ratios
(SNRs) of temperature proxy records used in global com-
pilations of the middle to late Holocene (last 6000 years).
This is achieved through a comparison of the correlation of
proxy time series from nearby sites of three compilations and
model time series extracted at the proxy sites from two tran-
sient climate model simulations: a Holocene simulation of
the ECHAM5/MPI-OM model and the Holocene part of the
TraCE-21ka simulation.

In all comparisons, we found the mean correlations of the
proxy time series on centennial to millennial timescales to
be low (R < 0.2), even for nearby sites, which resulted in
low SNR estimates. The estimated SNRs depend on the as-
sumed time uncertainty of the proxy records, the timescale
analysed, and the model simulation used. Using the spatial
correlation structure of the ECHAM5/MPI-OM simulation,
the estimated SNRs on centennial timescales ranged from
0.05 – assuming no time uncertainty – to 0.5 for a time uncer-
tainty of 400 years. On millennial timescales, the estimated
SNRs were generally higher. Use of the TraCE-21ka correla-
tion structure generally resulted in lower SNR estimates than
for ECHAM5/MPI-OM.

As the number of available high-resolution proxy records
continues to grow, a more detailed analysis of the sig-

nal content of specific proxy types should become feasi-
ble in the near future. The estimated low signal content of
Holocene temperature compilations should caution against
over-interpretation of these multi-proxy and multisite synthe-
ses until further studies are able to facilitate a better charac-
terisation of the signal content in paleoclimate records.

1 Introduction

Improving our understanding of the climate system and its
variability requires knowledge about the climate of the pre-
instrumental period. Proxy records from different climate
archives are available for determining past climate condi-
tions (e.g. Bartlein et al., 2011; Huguet et al., 2006; Johnsen
et al., 2001; Li et al., 2006; Luckman et al., 1997). How-
ever, as with any observational estimate, paleoclimate prox-
ies are affected by uncertainties (e.g. Breitenbach et al., 2012;
Lohmann et al., 2013).

The signal that can be retrieved from paleoclimate archive
records depends on various temporal (seasonal recording,
dating), geological (mixing, transport, sorting), biological
(lifetime of organisms, habitat depth, bioturbation), and
chemical (preservation and dissolution) processes (e.g. Bard,
2001; Berger and Heath, 1968; Goreau, 1980; Leduc et al.,
2010; Lohmann et al., 2013; Mollenhauer et al., 2003; Ohk-
ouchi et al., 2002; Rehfeld et al., 2016; Rosell-Melé and
Prahl, 2013; Schneider et al., 2010; Telford et al., 2004; van
Sebille et al., 2015).

Therefore, the proxy variations not only contain the cli-
mate signal of interest (e.g. annual mean temperature), but
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also other climatic influences as well as non-climate variabil-
ity. This poses a challenge to the interpretation of proxy sig-
nals, especially in systematic model–data comparisons and
quantitative data synthesis efforts. Different approaches have
been proposed in an effort to alleviate this problem and im-
prove analyses:

i. obtain a better statistical or mechanistic understanding
of how and what a proxy actually records (e.g. Fisher
et al., 1985; Grauel et al., 2013; Ho and Laepple, 2016;
Münch et al., 2016, 2017; Richey et al., 2011; Rosén et
al., 2003; Thirumalai et al., 2013);

ii. modelling of the proxy signal (e.g. Dee et al., 2011,
2015; Dolman and Laepple, 2018; Evans et al., 2013;
Roche et al., 2018); and

iii. detailed, expertise-driven analyses of single sites (e.g.
Stebich et al., 2015).

In this study, we use a comparison of proxy records and
model simulations to improve the characterisation of proxy
uncertainties through empirical estimates of the signal-to-
noise ratio (SNR) in temperature-related proxies. At present,
studies on SNRs in proxies are rare and mainly focus on the
instrumental period (e.g. Mann et al., 2007, 2008; Smerdon,
2012; Münch and Laepple, 2018). In contrast, the present
study focusses on the pre-instrumental Holocene period,
which has received considerable attention in the community
(e.g. Bakker et al., 2017; Gajewski, 2015; Mangerud and
Svendsen, 2018; Marcott et al., 2013; Mischel et al., 2017;
Moossen et al., 2015; Sejrup et al., 2016; Thibodeau et al.,
2018; Wanner et al., 2015; Zhang et al., 2017). In particu-
lar, we focus on estimating SNRs in temperature-sensitive
proxy records to improve analyses of Holocene temperature
evolution and variability. A better understanding of Holocene
proxy time series SNRs will lead to improved and more reli-
able interpretation of proxy records in multi-proxy and mul-
tisite data compilations and should raise awareness of the
need for careful and critical evaluations of paleoclimate re-
constructions.

2 Data

This study builds on existing compilations of recali-
brated high-resolution Holocene temperature-sensitive proxy
records to facilitate intercomparison of multiple time series.
The analysis is based on three proxy datasets and two model
simulations to test the robustness of our results and the sen-
sitivity to the choice of a particular climate model.

2.1 Proxy records

We focus on globally distributed multi-archive and multi-
proxy compilations of the Holocene temperature evolution
from a wide variety of locations (Fig. 1a–c, Tables 1 and S1–
S3 in the Supplement), namely the following.

1. M13. This compilation of Marcott et al. (2013) was
originally used to reconstruct the global and regional
temperature evolution of the past 11.3 kyr.

2. LH14. Uk37 and Mg/Ca proxy data were compiled in
the extended dataset of Laepple and Huybers (2014a)
that was used to reconstruct regional temperature vari-
ability and builds on the compilation of Leduc et
al. (2010).

3. R18. This is the Holocene part of the compilation of Re-
hfeld et al. (2018), which was originally used to com-
pare glacial and Holocene temperature variability.

The datasets mostly originated from marine sediment cores
and the proxy types include Uk37, planktonic foraminifera
Mg/Ca, TEX86, terrestrial bio-indicators (fossil pollen mod-
ern analogue technique, fossil chironomid transfer function),
ice-core stable isotopes (δ18O, δ2H), and several others. As
the early Holocene was influenced by deglaciation follow-
ing the Last Glacial Maximum (e.g. Kaplan and Wolfe,
2006), we restricted the time series to the last 6 kyr (6 kyr BP
to present day; BP denotes years before 1950). We only
analysed time series containing climate information on at
least centennial to millennial timescales (i.e. a mean inter-
observation time step of 1t < 500 years). Due to the limited
number of available high-resolution time series, the datasets
overlap (Table 1) to some degree and are thus not indepen-
dent.

2.2 Climate model simulations

We analysed surface air temperature data from simulations of
two coupled atmosphere–ocean general circulation models:
a 6 kyr transient Holocene simulation from ECHAM5/MPI-
OM (henceforth abbreviated as MPI6k) (Fischer and Jung-
claus, 2011) and the TraCE-21ka (T21k) (Liu et al., 2009)
simulation from the CCSM3 model, both of which have been
used frequently in recent studies (e.g. Gregoire et al., 2016;
Heinemann et al., 2009; Koldunov et al., 2010; Lu et al.,
2018; Matei et al., 2012; May, 2008; Müller and Roeckner,
2008; Pausata and Löfverström, 2015; Werner et al., 2016).
For the present study, annual means of temperatures from
both model simulations were extracted at the nearest grid box
related to the proxy record locations of M13, LH14, and R18.
Our choice of annual means is consistent with the standard
interpretation of these multi-proxy datasets to represent an-
nual mean temperatures (Marcott et al., 2013). This interpre-
tation is a pragmatic choice motivated by the lack of accurate
information about the proxy- and location-specific seasonal-
ity across all records forming such a multi-proxy dataset.

MPI6k (Fischer and Jungclaus, 2011) is a 6 kyr tran-
sient run using ECHAM5/MPI-OM (Jungclaus et al., 2006),
which consists of the atmosphere component ECHAM5
(Roeckner et al., 2003), the ocean component MPI-OM
(Marsland et al., 2003), and the land surface model JSBACH
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Figure 1. Overview of proxy and model datasets. Site locations of the proxy compilations used in this study. (a) M13: Marcott et al. (2013),
(b) LH14: Laepple and Huybers (2014a), and (c) R18: Rehfeld et al. (2018). Proxy types are indicated by symbols and the mean inter-
observation time step by colours. Correlation decay length of (d) the T21k and (e) the MPI6k simulations estimated on timescales larger than
400 years with included trend, and (f) reanalysis data from 1871 to 1950 estimated from annual data. The spatial correlation decay length
is generally higher for T21k than for MPI6k. For a comparison of the model and reanalysis correlation structure on the same timescale, see
Fig. S1 in the Supplement.

(Raddatz et al., 2007) with a dynamic vegetation module
(Brovkin et al., 2009). The model outputs atmospheric vari-
ables on a regular longitude–latitude model grid with 96 by
48 horizontal grid boxes (T31 resolution corresponding to
3.75◦ in latitude and longitude). The simulation is forced
only orbitally with greenhouse gas concentrations set to pre-
industrial values. We extracted annual mean surface temper-
atures at an elevation of 2 m from this model (model variable
temp2).

The TraCE-21ka dataset (Liu et al., 2009) is originated
from a simulation of the transient climate between 22 kyr BP
and 1990 CE and based on a fully coupled CCSM3 with

an atmospheric resolution of T31_gx3 (96 by 48 horizon-
tal grid corresponding to 3.75◦ in latitude and longitude).
Transient forcing factors in the time period analysed here
(last 6 kyr BP) are changes in the orbitally driven insolation,
greenhouse gas concentrations, and the meltwater fluxes for
the Southern Hemisphere in the period earlier than 5 kyr BP.

Our analysis is independent of the absolute changes and
only relies on the simulated spatial correlation structure. For
the timescales analysed and the proxy positions of our com-
pilations, this correlation structure is not sensitive to the par-
ticular choice of temperature variable (sea surface tempera-
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Table 1. Numbers of records and their overlap in the proxy compilations used in this study. The total number of time series is separated
by proxy type for each proxy compilation (upper part). Tmill refers to the number of time series with a mean inter-observation time step of
1t < 500 years, and Tcent counts time series with 1t < 200 years. The overlap is shown for each pair and for all compilations (lower part).

Sum of Uk37 Mg/Ca TEX86 Terrestrial Ice-core stable other
records bio-indicator isotopes

M13 – Tmill 70 28 19 4 8 5 6
M13 – Tcent 49 18 14 1 8 4 4

LH14 – Tmill 31 21 10 – – – –
LH14 – Tcent 31 21 10 – – – –

R18 – Tmill 88 27 19 4 11 18 9
R18 – Tcent 81 26 17 2 10 18 8

M13∩LH14 20 13 7 – – – –
M13∩R18 45 16 14 3 6 4 2
LH14∩R18 22 16 6 – – – –
M13∩LH14∩R18 19 13 6 – – – –

ture versus surface temperature or near-surface air tempera-
ture) in either model.

3 Method

3.1 Approach and assumptions

SNRs can be estimated by comparing proxy records that ex-
perienced the same or very similar climate signals, e.g. dif-
ferent proxies from the same site or the same proxy from
different sites in close spatial proximity. If a pair of records
contains the same signal, an independent local noise compo-
nent, and no time uncertainty, the SNR is given as R/(1−R),
where R is the correlation between the two time series
(Fisher et al., 1985). Ideally, SNRs would be estimated from
local replicates. This is often difficult, or impossible, due to
the limited availability of replicated datasets. To increase the
number of records and thus improve the robustness of es-
timates, we extended this approach to also include records
from locations that are further apart. This increased spatial
separation between sites requires knowledge of the signal
covariance (as the climate signal will have been slightly dif-
ferent at each location), and we rely on climate models to
provide this information.

The underlying assumptions are thus the following:
(1) when relying on model data, we must assume correctness
of the model-based correlation structure; (2) when using dif-
ferent proxies, we must assume that all proxies recorded the
same temporal (and spatial) variability of the climate signal
(more specifically, annual mean surface temperature); and
(3) we must assume that differences in the spatial correla-
tion structure between models and proxy observations are
due solely to a site-independent additive noise and time un-
certainty. With assumption (2) we discount the seasonality
of proxies in this study but discuss the effects of this strong
assumption in Sect. 5.3.

Based on these assumptions, we can estimate the SNR by
matching the spatial correlation of proxy records and model
time series while accounting for time uncertainty and addi-
tive noise, which can both lead to a deterioration in the spatial
correlation. For example, low correlations among time series
can be caused by both a low time uncertainty in combina-
tion with a high noise level and a high time uncertainty in
combination with a high SNR (low noise level). Due to this
relationship, we quantify SNR estimates as a function of time
uncertainty.

Sites that are very far apart only share a weak climate sig-
nal, which does not represent any constraint on the SNR as
both the climate and proxy correlations will be close to zero.
For our SNR estimate, we therefore only included proxy
pairs with spatial separations of up to 5000 km, which we
found to be a typical decorrelation distance on centennial
timescales in the model simulations as we later show.

As climate variability is a function of timescale, we ex-
pect that both the spatial correlation structure and SNR will
also be timescale dependent. However, the limited number
of records and samples in each record prevents a more thor-
ough timescale-dependent estimate, which could be carried
out using a spectral approach, for instance (Münch and Laep-
ple, 2018). In order to balance accounting for timescale and
estimate robustness, we distinguish between a centennial
timescale Tcent (with a cut-off frequency of 1/400 year and
by removing the linear trend of the time series) and a centen-
nial to millennial timescale Tmill (using a cut-off frequency
of 1/1000 year and including the trend). To estimate Tcent,
we only used records with a mean sampling interval of less
than 200 years, while all records were included for estimat-
ing Tmill.
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3.2 Spatial correlation structure of model vs. reanalysis
data

As our study depends on the model-based correlation struc-
ture, we first analyse this correlation structure at the grid
cell level by fitting an exponential, R = e−x/ld , to the de-
cay of correlations R as a function of site separation x for
timescales larger than 400 years with included trend (Fig. 1d,
e). We further compare the simulated spatial correlation
structure with the spatial correlation structure estimated from
reanalysis data using the same method. For this aim, we anal-
yse the annual mean surface temperature field of the 20C3M
reanalysis (Compo et al., 2006) (Fig. 1f).

Analysing the entire reanalysis period from 1871 to 2011
results in a high estimate of the mean correlation decay
length ld (∼ 9150 km) that is considerably larger than the cor-
relation decay length found in the MPI6k Holocene model
simulation (∼ 2240 km) when analysing the same timescale
(unfiltered annual data) as for the reanalysis data. Reduc-
ing the human influence (i.e. anthropogenic forcing) by
analysing 1871 to 1950 reduces the correlation decay length
and results in a similar estimate (∼ 3020 km) as the annual
estimate from the MPI6k Holocene simulation (Fig. S1 in the
Supplement). This result indicates that the model correlation
decay lengths used in this study are not unrealistically large,
and the larger centennial (Fig. 1) than interannual (Fig. S1)
decay lengths are consistent with the expectation that temper-
ature fields on longer timescales are more spatially coherent
(e.g. Jones et al., 1997; Kim and North, 1991). The general
similarity between the model correlations and the correla-
tions in the reanalysis data also holds when we only compare
the correlation between the proxy sites (Fig. 3), suggesting
that similar conclusions could be also drawn when using the
reanalysis correlation structure instead of the model simula-
tions.

3.3 Processing steps

3.3.1 Estimation of the spatial correlation structure

From the MPI6k and T21k model time series we extracted
annual mean temperatures at grid cells that contain the lo-
cation of the proxy record site. As our aim to derive a time
series from the annual model time series that resembles the
proxy time series in having the same number and ages of
proxy observations, we apply block averaging. To get a data
point for the observation time ti we average all observations
between half the difference to the previous observation time
(ti −1ti/2) and half the difference to the next observation
time (ti +1ti+1/2). We chose to use averages rather than
interpolation because sediment and ice samples, in partic-
ular, often include adjacent depths or have a sample dis-
tance that is smaller than the typical mixing depth in the
sediment (Berger and Heath, 1968) or diffusion length in
ice cores. For each proxy compilation (M13, LH14, R18),
we estimated the timescale-dependent (Tcent, Tmill) correla-

Figure 2. Processing steps for the proxy and model time series.
Blue paths illustrate the analysis of the spatial correlation structure.
Red paths represent the estimation of SNRs of proxy records as a
function of time uncertainty.

tions between all possible proxy record pairs. We further
estimated the timescale-dependent correlations between all
model time series pairs. For this step, the irregularly sam-
pled time series were linearly interpolated onto a regular grid
(1t = 10 years) and subjected to a Gaussian filter with a cut-
off frequency of 1/400 year (Tcent) and linear detrending or,
alternatively, to a Gaussian filter with a cut-off frequency of
1/1000 year (Tmill) and omitting the detrending step. This
approach has been shown to deliver good results for the es-
timation of timescale-dependent correlations in tests using
surrogate data with the sampling properties of Holocene ma-
rine sediment cores (Reschke et al., 2019).

The spatial separation between two sites was used to place
the pair into 2000 km sized bins (thus containing separations
of 0–2000, 2000–4000 km, etc.) and averaging the correla-
tions from proxy (or model) site pairs contained within the
same bin. An overview of the processing steps is given in
Fig. 2.

We performed a significance test of the spatial correla-
tion structure based on spatially uncorrelated surrogate time
series with a temporal power-law scaling of β = 1, which
is a typical value for Holocene sediment records (Laepple
and Huybers, 2014a). In a Monte Carlo procedure with 1000
repetitions, we generated annual surrogate records that were
analysed using the same procedure as the true proxy obser-
vations, using the 90 % quantile of the binned correlations of
the surrogate time series as confidence intervals.
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3.3.2 Estimation of the SNRs

The SNR estimate was obtained from a Monte Carlo sim-
ulation with 1000 repetitions. Through block averaging, we
resampled the annual model data at the same resolution as
the corresponding proxy records. We then added time uncer-
tainties (between 0 and 400 years) and noise levels (0.01<
SNR< 100), before estimating the mean correlation using
the interpolation method of Reschke et al. (2019). We es-
timated the SNRs as a function of the time uncertainty by
minimising the absolute difference in the mean correlations
of proxy records and modified model simulations.

We generated the modified model data by separately dis-
torting the time axis and adding noise to the observations
of the resampled model time series. As a simple heuristic
to simulate time uncertainty, we defined four time control
points at 1 year, 2 kyr, 4 kyr, and 6 kyr and randomly shifted
these points by adding a random value from a normal dis-
tribution (mean µ= 0, standard deviation σ = time uncer-
tainty) except for the top (1-year) control point. The new time
axis was then created by linearly interpolating between the
time control points. Noisy observations were generated by
adding normally distributed noise, ε (mean µ= 0 and vari-

ance σ 2
=

σ 2
model, resampled

SNR ), to the resampled model time series.
Figure 2 gives an overview of the processing steps.

4 Results

4.1 Spatial correlation structure and correlation decay
length

The correlation analysis using all proxy types and locations
yielded, unsurprisingly, a general decrease in correlation for
larger spatial separations between proxy sites (Fig. 3). Both
model simulations exhibit statistically significant spatial cor-
relations at both analysed timescales (Tcent and Tmill) and for
most inter-site separation distances. Throughout all datasets
and separation distances, T21k yielded higher correlations
than MPI6k, which is consistent with the generally higher
correlation decay lengths ld for T21k estimated at grid cell
level (Fig. 1d, e).

While for Tcent the correlation of both model simulations
decreases with increasing site separation (Fig. 3a–c), the Tmill
estimate (Fig. 3d–f) shows a more complex pattern that in-
cludes a partial increase in correlation for separation dis-
tances larger than 8000 km. This is likely related to variations
in orbital forcing affecting the temperature trend that is partly
symmetric (effect of obliquity) and antisymmetric (preces-
sion) between the two hemispheres. Especially for MPI6k,
the correlation is weak for separation distances from 4000 to
6000 km.

The spatial correlations obtained from the proxy records
differ systematically from those obtained from model simu-
lation data. The mean correlation for close proxy site pairs
(separation < 5000 km) was 0.004 to 0.014 for Tcent and

0.101 to 0.186 for Tmill and thus lower than for model data
(MPI6k: 0.303 to 0.338 for Tcent, 0.202 to 0.461 for Tmill;
T21k: 0.634 to 0.719 for Tcent, 0.674 to 0.710 for Tmill). For
Tcent, none of the proxy-based correlations are statistically
significant and no clear pattern emerges with regard to sepa-
ration distance. All three datasets yielded a statistically sig-
nificant correlation at Tmill for smaller separation distances,
although visibly decreasing for longer separation distances
(e.g. 6000–8000 km; see Fig. 3d, f).

Comparisons of temperature estimates from different
proxy types face the additional challenge that the actual
recorded variable (e.g. summer atmospheric temperature vs.
mixed-layer winter temperature) may depend on the proxy
type. We therefore also analysed the proxy-specific results
(Fig. 4, Table 2). By performing separate analyses for each
proxy type (instead of analysing all proxies together) we ob-
tained in all three datasets a higher mean correlation on the
Tmill timescale for sites within a 5000 km range. For Tmill,
the proxy-specific mean correlations across all datasets and
proxies are between 0.149 and 0.357 compared to 0.101 to
0.186 when correlating sites across proxy types. For Tcent,
most correlations are indistinguishable from zero and we ob-
served no consistent increase when analysing proxy-specific
correlations (Table 2). Unfortunately, restricting the analysis
to a single proxy type greatly reduces the number of avail-
able proxy pairs at any given distance and thus leads to less
robust correlation estimates and rather large confidence in-
tervals. We therefore only provide results for the most data-
abundant proxy types (Uk37 and Mg/Ca) and one dataset
(LH14) as examples in the main paper (Fig. 4). The remain-
ing data are shown in the Supplement (Figs. S2–S5). For
LH14, both Mg/Ca and Uk37 show a decrease in correlation
with increasing separation distance for both timescales. The
correlations in this proxy-specific analysis are stronger than
the analysis across proxy types (Fig. 3). They are, however,
only statistically significant for Uk37 on Tmill with separa-
tion distances smaller than 5000 km and for a single distance
bin (2000–4000 km) for Mg/Ca.

4.2 SNR estimates

The estimated SNRs of proxy records are a function of time
uncertainty because correlations deteriorate due to both time
uncertainty and noise. In general, we found that low (high)
SNRs were related to low (high) time uncertainties (Fig. 5).
In most cases, the estimated signal content for Holocene
temperature-sensitive proxy records was quite low (< 0.5).

By using the spatial correlation structure of MPI6k and
assuming a time uncertainty (1 SD) of 220 years (mean un-
certainty in M13) we obtain an estimated SNR between 0.05
and 0.2 for the Tcent timescale and 0.2 for the M13 and R18
datasets on the Tmill timescale. The LH14 dataset yielded an
SNR of 10 at the Tmill timescale.

For all three proxy compilations (M13, LH14, R18) the
SNRs obtained for mixed proxy types depend on the choice
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Figure 3. Spatial correlation structure of Holocene temperature proxy records and simulated surface temperatures based on three multi-proxy
datasets and related to (a–c) centennial Tcent and (d–f) centennial to millennial timescales Tmill. In each panel, the upper part shows the mean
correlation of the model simulation (for 2000 km sized bins as a function of the separation distance between record pairs) and reanalysis data
(1871–1950) evaluated at the proxy locations (dotted–dashed line) and for the proxy dataset (continuous line). The grey polygon represents
the 90 % quantile of mean correlations of uncorrelated surrogate time series with a power-law scaling of β = 1. The lower parts of the panels
show the number of record pairs used in each estimate. The spatial correlation structure of the model time series is generally higher than that
of proxy records, which are only statistically significant on Tmill at neighbouring sites. The highest correlations are for sites with separation
distances less than 4000–6000 km.

of the model simulation. Using the T21k simulation gener-
ally leads to lower SNR estimates (Tcent: SNRT21k, Tcent <

0.05; Tmill: 0.05< SNRT21k, Tmill < 0.2) than using MPI6k
as the correlation of spatially close (separation< 5000 km)
time series pairs is generally higher in T21k. Interestingly,
the SNRs estimated using T21k are more similar among the
three proxy compilations and thus more consistent than using
MPI6k (Fig. S6).

An analysis of proxy-specific SNRs yielded higher uncer-
tainties due to the relatively small number of record pairs
and potentially caused statistically non-robust estimates for
some proxy types (see Figs. S7–S16 for the complete set
of results and Sect. 5.2 for a sensitivity test of SNR esti-
mates to the number of record pairs). The dependence of
SNR estimates on time uncertainty is very sensitive to how
the proxies are compiled and the type of model simulation.
However, the overview of all proxy-specific SNR estimates
(Fig. 6) suggests some proxy-specific tendencies. On Tcent
ice cores show the highest SNR. Mg/Ca shows a high SNR
for the LH14 dataset but a low SNR in the two other com-

pilations. Uk37 and terrestrial bio-indicators have the lowest
SNR estimate on this timescale. In contrast, analysing the
Tmill timescale that also includes trends in the dataset leads
to different results; Uk37 shows the highest SNRs, whereas
the other proxy types only show a small increase compared
to the Tcent analysis.

5 Discussion

High-resolution temperature-sensitive proxy records for the
Holocene are sparse, irregularly distributed, and from differ-
ent proxy types. Thus, estimating the SNR in such datasets
requires some simplifying assumptions. We assumed that
(1) the spatial correlation of the climate model simulations
was realistic, (2) all proxy types were recording the same cli-
mate variable, and (3) any non-climatic components of the
proxy signal can be fully accounted for through a combi-
nation of time uncertainty and additive noise. As we anal-
ysed large multi-proxy and multisite datasets, in our study
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Table 2. Mean correlations of proxy time series with separation distances < 5000 km for different proxy types. For each dataset, the mean
correlation was estimated for millennial timescales Tmill and proxy time series with a mean inter-observation time step of 1t < 500 years
and related to centennial timescales Tcent for proxy time series with 1t < 200 years. Mixed proxy types contain all combinations of time
series pairs independent of the proxy type. The mean of single proxy types summarises the proxy-type-specific mean correlations weighted
by the number of record pairs of each proxy type. Correlations in brackets are not statistically significant (p = 0.1).

Mixed proxy Mean of single Uk37 Mg/Ca TEX86 Terrestrial Ice-core other
types proxy types bio-indicator stable isotopes

M13 – Tmill 0.101 0.149 0.211 (0.068) (−0.105) (0.095) 0.414 (−0.14)
M13 – Tcent 0.004 −0.009 (−0.003) (−0.006) – (−0.09) (0.244) (−0.388)

LH14 – Tmill 0.12 0.357 0.365 0.304 – – – –
LH14 – Tcent 0.012 0.031 (0.013) 0.151 – – – –

R18 – Tmill 0.184 0.208 0.347 (0.034) (−0.188) 0.17 0.23 (0.107)
R18 – Tcent 0.014 0.009 (−0.017) (−0.024) (0.148) (−0.057) 0.1 (0.05)

we neglected proxy-specific effects such as seasonality in the
recording.

The SNRs we estimated based on these assumptions gen-
erally suggest a low signal content of Holocene temperature
records on centennial timescales (Tcent). We found a higher
signal content on millennial timescales (Tmill), but the re-
sults were rather sensitive to the choice of the proxy compi-
lation and model simulation. We now discuss how different
assumptions would affect the results.

5.1 Spatial correlation structure of model simulations

Our SNR estimates critically depend on the model-based
temperature correlation structure as lower spatial tempera-
ture correlations in the models would lead to higher SNR
estimates for the proxies and vice versa. In most regions,
the model simulation MPI6k shows correlation decay lengths
of 1295 to 6030 km (mean decay length: 3995 km), and
the correlation decay length of T21k is generally in the
range of 2130 to 8705 km (mean decay length: 5920 km) for
timescales larger than 400 years with included trend (Fig. 1d,
e). This is higher than previous estimates of correlation de-
cay lengths from instrumental datasets in the range of 1000
to 3000 km (e.g. Hansen and Lebedeff, 1987; Jones et al.,
1997; Madden et al., 1993). However, such a difference is
plausible as an increase with timescale is to be expected.
For example, Jones et al. (1997) found lower correlation
decay lengths related to annual (2100 km) than to decadal
(3800 km) timescales. Indeed, when calculating the corre-
lation decay length for MPI6k on unfiltered annual data, it
is consistent with the decay length from instrumental data
(Jones et al., 1997) as well as from reanalysis data (Fig. S1).

Nevertheless, spatial correlation could be overestimated
in the model simulations for two reasons. Firstly, the spa-
tial correlation of instrumental datasets always includes an-
thropogenic forcing, which strongly increases the correlation
decay length (see Fig. S1 and Jones et al., 1997). This ef-
fect is absent or only weakly present in the 6 kyr time period

of our analysis. Instrumental records from the industrial pe-
riod and pre-industrial model simulations might thus be in
agreement for the wrong reasons. Secondly, the grid cell size
of the models was of the order of several hundred kilome-
tres, whereas the records might be representative of a smaller
spatial area. Hence, it is possible that proxy-based correla-
tions are lower compared to those obtained from the model
due to the former being influenced by subgrid-scale tem-
perature variations. Thirdly, there are several shortcomings
in present climate model simulations potentially causing an
overestimation of the coherency in the two simulations used
in this study. One possibility is that models underestimate
internal climate variability that is generally more localised
than externally forced climate variability (Laepple and Huy-
bers, 2014a). One mechanism could be a too-large effective
horizontal diffusivity in the models that would reduce in-
ternal variability (Laepple and Huybers, 2014b) and cause
larger spatial correlation structures. Further, small-scale fea-
tures and the role of persistent coastal currents might be sup-
pressed by the relatively low, non-eddy-permitting resolution
of the models used in this study.

We also found that T21k yielded higher spatial correla-
tions compared to MPI6k (Fig. 1d, e), which in turn resulted
in lower SNR estimates if relying on this particular model
simulation (Fig. S6). This difference might be related to the
presence of transient greenhouse gas forcing in T21k (Timm
and Timmermann, 2007), although the changes in forcing
were small during the analysed time period.

Thus, the possibility remains that the true temperature
variations are more localised than suggested by the model
simulations. In this case our estimates of the proxy sig-
nal content would be pessimistic. Ultimately, more replicate
proxy records are needed to distinguish between these hy-
potheses.
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Figure 4. Proxy-type-specific (Uk37, Mg/Ca) spatial correlation
structure related to (a) centennial Tcent and (b) centennial to millen-
nial timescales Tmill based on the LH14 dataset. The upper parts of
the panels show mean correlations of 2000 km sized bins as a func-
tion of the separation distance between record pairs in the proxy
dataset (continuous line) and model simulations evaluated at proxy
locations (dotted–dashed line). Polygons represent the 90 % quan-
tiles of mean correlations of uncorrelated surrogate time series with
a power-law scaling of β = 1. The lower parts of the panels show
the number of record pairs used for each estimate. The spatial cor-
relation structure of proxy records is non-significant for individ-
ual proxy types, except for close (separation < 6000 km) sites with
Uk37 temperature records at Tmill.

5.2 Finite number of proxy records

Despite the strong overlap among records, we found our es-
timates of the spatial correlation structure and SNRs to be
sensitive to the choice of proxy compilation (Table 2), which
suggests that the number of records may have been limiting
the robustness of our estimates. To test this, we performed a
sensitivity analysis using a different number (3–50) of sur-
rogate time series; 6 kyr annual surrogate time series were
generated from the sum of a common pseudo climate time se-
ries modelled as a random process that follows a power-law
(β = 1) scaling and a separate non-climate component that
is simulated as uncorrelated white noise. The noise ampli-
tude is chosen to yield SNR= 0.15. Irregular sampling times
were used to mimic the observed sampling times of the M13

records. Surrogate inter-observation time steps were drawn
from a gamma distribution (shape= rate= 2.25) rescaled
with a mean inter-observation time step of 108.56 years (see
also Reschke et al., 2019). The final pseudo proxy time series
were then obtained by block averaging the annual time series
to the irregular sampling times. The SNRs of the surrogate
time series were then calculated following the same method
as the proxy records in the main study and repeated for dif-
ferent sites using a Monte Carlo-based procedure with 2000
repetitions.

We found that the uncertainty of SNR estimates that are
based on a small number of records can be high (Fig. 7). For
a low number of only 15 records (105 correlation pairs), for
instance, the uncertainty range of SNRs (90 % quantiles of
0.08 to 0.26) is higher than the true SNR value of 0.15. Al-
though we used more than 15 sites per compilation in our
analysis (Fig. 7), there were often fewer than 15 time series
per proxy type (Table 1), which might explain the strong scat-
ter in the proxy-type-specific SNR estimates.

To improve the robustness of SNR estimates, it is un-
avoidable to significantly increase the number of records that
are collected not too far apart from one another (distances
< 5000 km). Additionally, a better global coverage of site lo-
cations would likely lead to more robust results. Since we
sampled the models at the locations of the proxy sites, our
results should be independent of the spatial sampling distri-
bution if the models were perfect. In reality, however, spatial
differences and shifts in the simulated correlation structure
are likely and could only be overcome by sampling from a
wide variety of sites from all over the globe.

5.3 Proxy-specific recording of climate variables

All proxy types used in this study have been reported in the
literature as temperature sensitive and are usually calibrated
to the mean annual surface air or surface water temperature.
However, this is a gross oversimplification as the true climate
variable influencing the recorded signal is proxy specific and
generally more complex. For example, signals reconstructed
from marine-organism-based proxies such as Mg/Ca, Uk37,
and TEX86 are affected by the seasonal and depth-specific
preferred habitat of the organism (Ho and Laepple, 2016;
Jonkers and Kucera, 2017; Leduc et al., 2010; Lohmann et
al., 2013; Tierney and Tingley, 2015). As we currently inter-
pret all records from different proxy types as annual mean
surface temperatures, this might influence our results in var-
ious ways. Analysing different proxy types with different
recording preferences likely leads to an underestimation of
the spatial temperature correlations. Indeed, in our study we
found the spatial correlations related to records of the same
proxy type for Tmill to be higher compared to those for all
types (Table 2). To gain a better understanding of proxies
and their effect on the analyses, we suggest using proxy-
specific SNR estimates instead. However, this is currently
hampered by the low number of records in close proximity
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Figure 5. SNRMPI6k estimates of proxy records as a function of time uncertainty related to centennial Tcent and millennial timescales Tmill.
Colour coating and contour lines in each panel show the mismatch between mean correlations of nearby (separation < 5000 km) proxy
records and time series extracted from the MPI6k simulation at proxy locations as a function of time uncertainty (vertical axis) and SNR
(horizontal axis). Areas with the lowest mismatch are represented by the darkest colours and mark suitable combinations of SNRMPI6k
estimates and time uncertainties. The red dots illustrate SNR estimates for a time uncertainty of 220 years.
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Figure 6. Overview of proxy-specific SNR estimates on (a) centennial Tcent and (b) millennial timescales Tmill. The symbols represent
the SNRs estimated from the different proxy compilations using the simulations of MPI6k and T21k. Upper panels show the results for an
assumed time uncertainty of 200 years and lower panels for 400 years. The estimated SNRs depend on the proxy type but are generally
higher on the Tmill than on the Tcent timescale.

to one another (Tables 1 and S4). For many proxy types, this
leads to statistically non-significant correlations and unreli-
able SNR estimates (Figs. S7–S16). Additionally, even for
one proxy type and proxy carrier (e.g. foraminifera) we ex-
pect a site-specific season and depth habitat. Such differences
would reduce the correlation compared to the correlation of
the climate component sampled at any globally fixed season
or depth and would thus bias the SNR estimates low.

Assuming annual mean sea surface temperatures instead
of one specific season or depth also influences the correla-
tion structure derived from the models. Calculating the cor-
relation structure of summer and winter in both models (not
shown) suggests an increase or decrease in the correlation
depending on the choice of the model so that the net effect
on the SNRs is not clear.

Finally, analysing the spatial correlation among records of
the same proxy type can also lead to overly optimistic re-
sults as the correlation among records of the same proxy type
could also stem from spatially correlated proxy-specific non-
climatic components. A case in point would be the dissolu-
tion of foraminiferal shells (Lea, 2003), which could gener-
ate spatially correlated noise as the preferential dissolution of
carbonate depends on the water depth (Brown and Elderfield,
1996; Dekens et al., 2002), the carbonate ion concentration,
and the salinity of the surrounding seawater (Huguet et al.,
2006; Lea, 2003; Spero et al., 1997).

5.4 Time uncertainty and non-climatic components of
the proxy signal

Our SNR estimates depend on the assumed time uncertainty
of the records. While we assumed a mean time uncertainty
of 220 years (as provided in the M13 dataset), the true time
uncertainty for marine records might be considerably higher
due to spatially varying reservoir effects (Ascough et al.,
2005). This would imply that our SNR estimates are con-
servative, especially on centennial timescales. On the other
hand, using one mean uncertainty value will clearly be too
pessimistic for ice-core data that are only subject to much
smaller dating uncertainties. Using more sophisticated mod-
els to account for time uncertainty (e.g. Blaauw, 2010; Block-
ley et al., 2007; Telford et al., 2004) and the proxy- and site-
specific information on the chronologies would allow us to
obtain more precise SNR estimates.

We modelled the transfer function between the tempera-
ture time series and the calibrated proxy records as a com-
bination of time uncertainty and additive temporally uncor-
related noise. Our approach thus neglects other distortions
of the signal and nonadditive parts of noise. Multiplicative
noise can arise from aliasing due to subsampling that leads
to errors that are proportional to short-term climate vari-
ability (Laepple and Huybers, 2013). Variable sedimentation
rates, bioturbation, and/or bioturbation depths varying over
time have a low-pass filtering effect that is similar to irregu-
lar sampling. Proxy archive accumulation processes undergo
temporal changes due to changes in bioturbation depths and
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Figure 7. Sensitivity of the SNR estimates to the number of sites
(and record pairs) based on surrogate time series. The time se-
ries were generated with a predefined SNR= 0.15 (horizontal line).
SNR estimates with standard deviations based on 2000 repetitions
are shown as dots with error bars. The uncertainties in the SNR are
illustrated as polygons showing the 90 % quantiles of the estimates.
The uncertainty of SNR estimates is high when only considering a
small number of sites. Vertical lines show the numbers of selected
sites (and record pairs) contained in each data compilation. This in-
dicates that for single-proxy-type analysis the uncertainties in the
SNR estimates are high.

advection (Mollenhauer et al., 2003) or spatial changes in
ocean currents (van Sebille et al., 2015) that could introduce
additional nonadditive noise in the obtained proxy records.
Finally, even for a single proxy type, the data quality (i.e. the
signal content) is site specific and will depend on the sam-
pling and measurement protocol. For example, the SNR esti-
mates using the LH14 dataset, which is mainly based on very
high-resolution records (mean sample distance< 100 years),
are higher than estimates based on the two larger proxy com-
pilations. Thirumalai et al. (2018) showed that foraminiferal
records based on a large number (70–100) of foraminiferal
tests per sample were consistent between cores collected in
close proximity to one another, leading to much higher cor-
relations compared to our study. As we rely on datasets of
opportunity that consist of proxy records measured by var-
ious labs over a period of 2 decades, it seems conceivable
that a small number of records could be of relatively lower
quality, which would reduce our mean correlation and thus
the SNR estimate. New studies, especially when based on a
careful design (Thirumalai et al., 2018), could help alleviate
this situation.

5.5 Implications and future steps forward

Our results underline the challenge of resolving the small
Holocene climatic variations in current climate archives, but
also challenge the strong spatial coherency of centennial to
millennial temperature variations simulated in current cli-
mate models. On the proxy side a continuation of the work
on understanding the proxy systems is warranted. Exam-
ples are the use of modern monitoring systems, sediment
traps, and culturing studies. Implementing these findings into
ecological models of various complexity (e.g. Jonkers and
Kucera, 2017; Kretschmer et al., 2018) and proxy system
models (e.g. Dolman and Laepple, 2018) is needed to gen-
eralise the knowledge and make it usable in global studies.
Forward modelling of proxy records will allow for estimates
of the signal content, complementing the empirical estimates
provided here. Finally, a better proxy understanding imple-
mented in proxy system models will also allow us to optimise
the sampling (e.g. sampling and replication strategy) and
measurement process (e.g. number of foraminiferal tests). Fi-
nally, although labour intensive, a more frequent generation
and analysis of replicate records would allow us to separate
local, climate, and non-climate variability and thus provide
a key step in understanding proxy and climate variability as
well as the proxy formation process.

Progress in climate modelling is needed to resolve the spa-
tial scales and regions, such as shelf areas and coasts, sam-
pled by the proxies. Due to the increase in computing power,
climate models will be able to perform long (> 1000 years)
and high-resolution, often eddy-permitting model simula-
tions (e.g. Haarsma et al., 2016). Confronting these simu-
lations with (replicated) sediment records, ideally account-
ing for the seasonal and depth habitat of the proxy carriers,
would allow us to better constrain the spatial structures of cli-
mate variability and refine the estimates of the proxy signal
content. If our SNR estimates are realistic, Holocene stud-
ies relying on a small number of records might be associated
with large uncertainties, except if the quality of the analysed
records is considerably higher than the average of the records
analysed here. Holocene stacks relying on a large number
of records such as used in Marcott et al. (2013) would be
robust if the errors are independent across sites. However,
extracting spatio-temporal patterns from such datasets will
be difficult. If our results are actually too pessimistic, e.g.
as the true climate is more regional than simulated by the
model simulation used, this would support the current inter-
pretation of individual Holocene proxy records as a region-
ally representative climate signal. Otherwise, in the case of
too-optimistic SNR estimates, the value of singular Holocene
proxy reconstructions without additional expert knowledge
would be limited and regional stacks might be needed to ex-
tract regional Holocene signals in analogue to the strategy
used by the tree ring community.
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6 Conclusion

In this study, we estimated SNRs of Holocene temperature-
sensitive proxy records by comparing proxy- and model-
based spatial correlations. We found that spatial correlations
between proxy records were significantly lower than those
computed for temperature time series extracted from climate
models. Simply put, the proxy records varied more indepen-
dently from site to site, whereas the model simulations sug-
gested spatially coherent temperature variations. This in turn
led to low SNR estimates in multi-proxy-type analyses if we
assume that the correlation structure that we obtained from
the model simulations is reasonable.

The low SNRs of Holocene proxy records are likely the
result of processes occurring during the formation, preserva-
tion, and measurement of the proxy signal. For the Holocene,
even small uncertainties in the process chain between the cli-
mate signal and the climate reconstruction play an important
role compared to small temperature variations. In addition,
as evidenced by the difference when comparing results be-
tween proxy types and within one proxy type, the proxy-
specific recording of different temporal and spatial parts of
the temperature (for example, summer vs. winter) also affects
the SNR of multi-proxy datasets. Nevertheless, our SNR es-
timates are still relevant for synthesis and model compari-
son efforts (e.g. Marcott et al., 2013) that usually interpret all
proxy records together. While in the ideal case global stacks
based on a large number of records will average out most of
the error contributions, the interpretation of spatio-temporal
patterns will remain uncertain.

The precision of the SNR estimates is strongly dependent
on the number of available proxy records. Due to the small
number of spatially close records of the same proxy type,
the uncertainty in our proxy-type-specific SNR estimates was
very high.

Our SNR estimates implicitly depend on the expected
time uncertainty and on the model choice. However, for
both tested models the multi-proxy-type estimates on cen-
tennial timescales (Tcent) were smaller (SNRMPI6k, Tcent <

0.5; SNRT21k, Tcent < 0.05) than on longer timescales Tmill
(SNRMPI6k, Tmill ≈ 0.2; 0.05< SNRT21k, Tmill < 0.2).

Our results of the low signal content of multi-proxy
and multisite datasets, especially on centennial timescales,
suggest that caution and a critical evaluation are in order
when analysing and interpreting such large datasets. Further-
more, optimising the sampling and measurement procedure
is likely needed to faithfully reconstruct small climate vari-
ations over the Holocene. As the number of high-resolution
proxy records continues to grow, a more detailed analysis
of the signal content of specific proxy types and a model-
independent estimate of the spatial correlation structure of
climate variations will become feasible and enable and im-
prove prospects for the interpretation and reconstruction of
past climate changes.
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