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ATMOSPHERIC AND OCEANIC CONTROLS
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STEADY STATE SOLUBILITY FOR DIFFERENT RESIDENCE
TIMES
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(Baker and Croot, 2010)

predictions of solubility assuming a constant product (residence time
* mixed layer depth) for different processes determining

solubilization
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WHAT CAN KINETICS DO?

idealized model for release
of iron from dissolvalble
dust:

fast release, followed by a
small reversible loss to
particle surfaces

predicts intial rise of dFe
above final equilibrium

0 L L L L L L L

1im190[d] 12 14 16 18 20
but is that final equilibrium ever reached?

depends (amongst others) on the residence time of particles in the
surface mixed layer!

aim of the talk: what can we say about timescales from a bit of
modelling/calculations?
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THE FIRST OCEANIC LAYER

Particle density

M microLAYER
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Beep water
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(Wurl et al, 2017)
yes, the microlayer is a region of extremes:

high concentration of organics, strong UV radiation,...
but: how long do particles stay there?
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RESIDENCE TIME IN THE yLAYER

How long do particles stay within the
player?

Residence time estimates:

Chester (2003): 1-15 hours

Ebling and Landing (2017): 1-4 minutes
after dust deposition event

has to be seen in relation to timescales for
(Warl et al, 2017) (organic-assisted) dissolution; but seems
short
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BELOW THE pLAYER: THE MIXED LAYER

mixed by shear-induced
turbulence and internal

i wave breaking on

Radiation

time-scales of a day or so
(Denman and Gargett,
1983)

species with longer
timescales (e.g. particle
concentrations) get
homogenized

species with short
life-times (photochemical

(Jayne Doucette, WHOI) Speci'es, e.g- Oz_ ) have
gradients within ML
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RESIDENCE TIME OF PARTICLES: SIZE DISTRIBUTION
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a fine and a coarse mode

120F@) ] mass is determined by the coarse
waon mode

Surface Area
@
3
FATORTINT ! T

Volume

o [\

o N
0.01 0.10 1.00 10.00
Diameter (um)
(Mahowald et al, 2013)
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RESIDENCE TIME OF PARTICLES: SIZE DISTRIBUTION

Norm. volume size distr. (d V. /d In D,)

Norm. number size distr. (d N/d In D,)
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For a typical 3-modal dust
size-distribution

surface area is both detemined by
a fine and a coarse mode

mass is determined by the coarse
mode
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RESIDENCE TIME OF PARTICLES: STOKES LAW

sinking speed of fine-mode
particles: < 0.1 m/d

sinking speed of coarse mode
particles (3 um): =~ 2m/d

sinking speed [m/d]

at these speeds, residence time in
ML would be months

10°
particle diameter m]

but: particles aggregate,

increasing their sinking rate!
sinking speed of spherical quartz particles,

calculated from v = % @
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PARTICLE DYNAMICS
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aggregation processes (Jackson and Burd

2015)

typical marine aggregate (Iversen, pers.

comm.)

dust brings in mostly pmeter-sized particles

these hardly sink on their own

sinking dominated by larger, mixed organic/inorganic aggregates
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MODEL SETUP

global biogeochemical model REcoM including the iron cycle (Hauck
et al. 2013, Volker and Tagliabue 2015)

added model for lithogenic
particles with two size classes
(fine dust and faster-sinking

dust deposition l :":'-Z aggregates)

S dsouson P qgadratlc aggregatlon.and linear

particles disaggregation of particles

icl . . . .
Pl lithogenic particles included as
additional scavenging agents for
dissolved iron
sinkinz [ sinking | scavenging proportional to

particle concentration

rate equal for organic and
lithogenic particles
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RESIDENCE TIME OF PARTICLES: MODEL RESULTS

5 10 20 50 100 200 500 1000

average residence time of lithogenic particles (days) in upper 100m,
calculated from model taking aggregation into account
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DUST FE DISSOLUTION KINETICS

s Slope (diss.rate) = be
= 04 0.086 + 0.004 nM-Fe.d! 0.15.
< [ ]
QL o3 0.10
° .
< 02 0.05

0113 | stope (diss.rate) = 000

00 1.23 £ 0.09 nM-Fe.d’ 0.0 0.1 0.2

[ 1 2 3 4 5 6
Time (day)
(Wagener et al, 2008)

e linear increase of DFe with two different slopes; two different
pools? e but time-scale short compared to sinking loss e increase in
dFe covaries with ligand /DOC concentrations in seawater, in
contrast to Fishwick et al. 2014 e Wagener: linear increase insufficient
for a mechanistic description. is that so?
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CAN WE UNDERSTAND WAGENER ET AL. RATES?

¢ FeOOH dissolution rate in
medium at pH=8 in presence
of DFOB (Akafia et al. 2014):
k; =1.2-10"" mol Fe m—2
g1

e estimate specific surface
area sa (in m? kg~! from
equivalent spherical particle

o

2l

IS

Fe release rate (nmol/d)
N w

! radius
o = . e particle concentration in
. Wagener et al. (2008): ¢, =5
mg L1

calculated release rate R = k; - sa - ¢,
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CAN WE UNDERSTAND WAGENER ET AL. RATES II?

0 rate (nmolid)

10%
particle radius (m)

measured fast release ~ calculated release, assuming that dissolved
phase is fresh FeOOH and that ligands are present in excess

if the dust particles have an FeOOH coating that is first dissolved,
then one would expect a linear release of Fe, until the coating is gone
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SHORT-TERM UPTAKE VS. GROWTH

10Oe .g. Short-term Fe uptake rates

distinguish between growth and
short-term iron uptake

Prmax both follow Michaelis-Menten kinetics

—e | wrt. Fe, i.e.
— l/me'F6 PumeL’
| H= Fe+K,, and pP= Fe+K,

but K, ~ 3nM > K,, < 0.05nM

umol Fe mol c'n!

e

*—B—g—t

: o implies that iron input may not directly
@Kp & our lead to a strong reaction in cell numbers,
2 + s 6 7 butnevertheless will lead to an
[Fe immediate increase in Fe uptake

=

o
=)

|

(from a talk by M. Maldonado, 2017)
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TIME-SCALE FOR SHORT-TERM UPTAKE

- e.8. Shortterm Fe uptake rates uptake is described by
= 0 d
5 Enax —Fe=—p-B
e o di "
E : where B is phytoplankton biomass (mol C m~2)
i éxp £ and p is the short-term uptake rate (zmol Fe
R - LS e (mol C)fl hfl)
Inserting
d Fe — PmaxB
—Fe = — .B ~ Fe
dt e K, K,

we obtain an e-folding time-scale for uptake of 7, = K,,/(pmaxB)
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ESTIMATING UPTAKE TIME-SCALE

o1 02 05 1 2 5 10 20 50 100 04 02 05 1 2 5 10 20 50 100

Tup = K,/ (pmaxB) (A7) in april and october

e estimate biomass from satellite Chl, using a C:Chl ratio of 60
mol/mol

o use 'typical’ values pyqx = 4 pmolFe molC'h~! and
K, = 3 ymolFem~3
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MAXIMUM UPTAKE RATES FOR DIFFERENT SPECIES

surface area (um?)

1 10 100 1000 10000
1.6-06 §
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=
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3 y = 9.25E-11x
2 1E10 R?=0.958
<
1E11 4
@ haptophyte
1612 4 N * O diatom
A dinoflaggelate
4a ] y=1.07E-13x W green algae
1E13 R? = 0.881 greenas
(Lis et al, 2014)

what determines maximum uptake rates?

uptake rates per cell scale predictably with cellular surface area
uptake rates for inorganic Fe 3 orders of magnitude higher than for
organically complexed Fe
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SCAVENGING: A COMPLEX PROCESS PARAMETERIZED
SIMPLY

conceptually, scavenging
occurs mostly through a
colloidal intermediate, the
‘colloidal pumping mechanism’

but models usually do not
distinguish between
soluble/colloidal Fe

(Honeyman & Santschi 1989)
first parameterization of scavenging: a constant lifetime ~ 200 yrs.

only later, formulations were made dependent on (biogenic) particle
concentrations, dust mostly ignored

almost every model has a different formulation of scavenging!
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DUST ALSO SCAVENGES DISSOLVED IRON

CONCLUSIONS
[}
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(Wagener et al. 2010)

dissolved iron decreases after dust addition in mesocosms;
dust can act as dFe sink

1.0 15 35

is that important in the open ocean, where often biogenic particles
dominate?

needs understanding & modelling of particle dynamics!
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MODELED SOURCES /SINKS OF DFE

N

dFe source from dust

om dust
-

i
T | —

8) ithogenic scavenging

:‘,},«l" !:L,

‘

sources and sinks of dissolved Fe
from Ye and Volker, 2017

under the Saharan dust plume,
dust scavenging similar to dust
release (assumes constant
solubility, though)

in the deep ocean, lithogenic
particles act as scavengers
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COMBINED RESIDENCE TIME OF DFE

10 residence time (stock/total loss
rate in years) of dissolved iron

1 varies by several orders of
magnitude

' affected by scavenging on
dust/biological particles and
o biological uptake

distribution of residence time
ot agrees quite well with data-based
estimates (Usher et al. 2013)

0.001

i i ' i i
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HOWEVER:

Table 2. A Summary of the Magnitude of the Fe Sources, the Total and Average Fe Inventories, and the Residence Time of Fe Across the FeMIP Models

Fe Sources (Gmolyr ')

Fe Inventory Average Fe Residence
Model Dust Sediment Hydrothermal Rivers Total (x10"" mol) (nmolesL™") Time (years)
BEC 219 84.6 177 034 1245 10.1 0.74 8.1
BFM 14 0 0 0.06 14 88 065 626.3
BLING 33 91 [ 0 124 53 037 424
COBALT 325 155 0 0 1825 6.8 0.50 37
GENIE 18 o o 0 18 101 048 560.0
MEDUSA1 27 ] [ 0 27 6.3 046 2320
MEDUSA2 34 28 0 0 6.8 4.8 035 699
MITecco 35 104 0 0 107.5 88 065 82
MITigsm 14 194 0 0 195.4 9.0 066 4.6
PISCES1 327 266 n3 a5 710 8.1 0.59 15
PISCES2 327 266 13 5 71.0 1.2 081 157
REcoM g 06 o o 43 125 073 2916
TOPAZ 13.8 748 0 0 886 6.8 0.50 76
Mean 66.9 83 0.58 1447
Standard deviation 67.1 23 0.14 1758

different biogeochemical models for Fe have orders of magnitude

different Fe sources
nevertheless, mean dFe concentrations are similar
why? because scavenging is used for tuning

questions predictive capability of models for other climate states
— progress in the description of scavenging is badly needed!
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precipitation of Fe can be
described as a three step
process:

nucleation — crystal growth —
formation of sinking flocs

kinetic measurements (Rose
and Waite, 2003, Pham et al,
2006, Rose and Waite, 2007):
rate law for loss of Fe(OH);
monomers:

d
aFe’ = —ks - Fe' - Fer
with ks ~ 210" M~!s™!

— timescale for loss after 1 nM
addition of Fe: 50 s!

KINETIC DESCRIPTION OF THE BASIC PROCESSES

monomer
polycation .v
colloidal
primary
aggreg;ted particle ¥
secondary, *
floc particle % /

(Rose, 2013)
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:
TWO BUTS:

MONOMER

|

OLIGOMER POLYMER
COLLOIDAL PARTICULATE
DISSOLVED NON-DISSOLVED
increasing size ~
Ll
(Rose and Waite, 2007)

but I: still a disconnect between the different process descriptions:
rate law for loss of Fe(OH); monomers:

d
aFe' = —ks - Fe' - Fer

only describes the very first step

can we use scaling arguments to go to a set of soluble/colloidal
formation rate laws, a la Smoluchovsky?

but II: what to do with organic colloids, etc?
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SOME CONCLUSIONS

@ models start to resolve lithogenic particle residence times
@ both aggregation and disaggregation important

@ iron release: not hopeless to bridge measurements with
fundamental understanding; also measure surface properties!

@ biological uptake timescales comparable to particle residence
times

@ some progress in the description of scavenging, but urgent need
for more process description, keeping models honest
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