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ABSTRACT: The concept of the marine ecological community has recently experienced renewed
attention, mainly owing to a shift in conservation policies from targeting single and specific objec-
tives (e.g. species) towards more integrated approaches. Despite the value of communities as dis-
tinct entities, e.g. for conservation purposes, there is still an ongoing debate on the nature of spe-
cies associations. They are seen either as communities, cohesive units of non-randomly associated
and interacting members, or as assemblages, groups of species that are randomly associated. We
investigated such dualism using fuzzy logic applied to a large dataset in the German Bight (south-
eastern North Sea). Fuzzy logic provides the flexibility needed to describe complex patterns of
natural systems. Assigning objects to more than one class, it enables the depiction of transitions,
avoiding the rigid division into communities or assemblages. Therefore we identified areas with
either structured or random species associations and mapped boundaries between communities or
assemblages in this more natural way. We then described the impact of the chosen sampling
design on the community identification. Four communities, their core areas and probability of
occurrence were identified in the German Bight: AMPHIURA-FILIFORMIS, BATHYPOREIA-TELLINA,
GONIADELLA-SPISULA, and PHORONIS. They were assessed by estimating overlap and compactness
and supported by analysis of beta-diversity. Overall, 62 % of the study area was characterized by
high species turnover and instability. These areas are very relevant for conservation issues, but
become undetectable when studies choose sampling designs with little information or at small
spatial scales.
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INTRODUCTION

The classic approach towards spatial ecological
patterns is the community concept as introduced by
Mobius (1877), who was the first to designate benthic
species associations as biocoenoses, which are char-
acterized by 'typical’ species. However, in ecological
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theory there is an ongoing debate about the nature of
species associations. One school of thought holds the
view that species associations represent communi-
ties, i.e. entities highly structured by interactions and
dependencies between the participating species
(e.g. Paine 1980, Richardson 1980, Gotelli & McCabe
2002, Chase & Leibold 2003). The opposite position
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sees assemblages, i.e. species associated by random
processes, with interactions playing a minor role
(Whittaker 1952, Mills 1969, McCann et al. 1998,
Berlow 1999). There is empirical evidence in support
of both views. However, much of the corresponding
research may suffer from methodological shortcom-
ings. Many studies have been carried out on com-
paratively small, local scales and thus may have cap-
tured just a part of the association's regional species
pool (Somerfield et al. 2009). Studies at scales below
the spatial extent of the association may yield a
biased or compromised view of the nature of the
association (Ricklefs 2008). Accordingly, there is an
increasing need for regional, large-scale approaches.

Consequently, most statistical methods used for
community classifications are based on the simplified
community concept, i.e. highly structured units
based on functionality, phylogenetic similarity, spe-
cies characteristics or species—environment interac-
tions (e.g. Picard et al. 2012, Jackson et al. 2012, Dun-
stan et al. 2013, Leaper et al. 2014) which all aim at
classifying samples according to their similarity in a
multidimensional space (Dunn 1974, Pakhira et al.
2005, Everitt et al. 2011). Thus, traditional clustering
methods (e.g. hierarchical clustering, k-means, parti-
tion around medoids) only provide hard classifica-
tion —that is, classes with discrete and sharp bound-
aries. In marine science, defining boundaries is a
widely recognized problem that stems from supply
side ecology theory (Lewin 1986), e.g. in fields such
as habitat, sediment and biotope mapping. Quite
often, sharp boundaries are preferred, as maps are
easier to read and thus more useful for stakeholders.
But in nature, sharp ecological boundaries only occur
in very specific (and rare) cases. Often we deal either
with gradual transitions (i.e. ecotones) or with areas
that are difficult to assign to one class because a little
bit of everything is occurring (e.g. mixed sediments).
The identification of boundaries may depend on how
classes are defined, on the method used for achieving
the classification and on the act of classifying (which
is organizing objects into classes that are limited by
sharp boundaries per definition). This prevents pro-
per description of systems shaped by gradual varia-
tion from cluster to cluster and leads to a loss of
important ecological information by the setting of
inappropriate and artificial boundaries (Burrough et
al. 2000). In contrast, fuzzy clustering (Zadeh 1965,
Bezdek 1974, Kaufman & Rousseeuw 2008, Everitt et
al. 2011) allows for partial truth rather than the con-
cept of true/false, which makes this concept more
suitable to test for uncertainty in the community con-
cept which is typical of natural systems.

Instead of following the traditional community
concept and its spatial distribution, we used the
approach of fuzzy clustering. We believe that a fuzzy
modelling approach is the most flexible and most
suitable approach to classify communities in the most
realistic way without assuming any particular associ-
ation rule or constraint (e.g. environmental). As a
result, we could define community core areas as
those areas in which a community has high probabil-
ity of occurring (e.g. p > 0.8). Thus, our approach
allows for the analysis of core communities and areas
of mixed communities (transition zones and unde-
fined zones) at the same time. We think that this
approach reflects the natural occurrence of associa-
tions in the most realistic way.

As local sampling might impair our analysis of the
distribution of associations (see above, e.g. Ricklefs
2008, Somerfield et al. 2009), we further explored the
effect of different spatial scales and sampling effort
on the corresponding loss of information on species
occurrence. For future analysis, this might enable an
estimate of how much data are generally needed to
fulfil the requirements of a holistic view on the asso-
ciation concept.

In this study, we applied this flexible approach for
the first time to the benthic associations in the Ger-
man Bight, in the North Sea—one of the most inten-
sively studied marine areas of the planet. Here, first
studies on benthos were already carried out at the
beginning of the last century (Petersen 1918, Blegvad
1922, Hagmeier 1925). Small-scale studies are very
numerous (e.g. Armonies 2000, Wieking & Kroncke
2003), with only a few surveys covering the whole
German Bight (e.g. Salzwedel et al. 1985, Rachor &
Nehmer 2003) or even larger areas (e.g. Duineveld et
al. 1991, Heip et al. 1992, Kiinitzer et al. 1992, Heip &
Craeymeersch 1995, Rees et al. 2007). Furthermore,
temporal dynamics (e.g. Kroncke et al. 2011), the
influence of environmental variables (e.g. van Hoey
et al. 2004, Kroncke 2006, Reiss et al. 2010) and
anthropogenic effects (e.g. Rachor 1990, Jennings et
al. 1999, van Dalfsen et al. 2000, Witt et al. 2004) on
the benthos have been studied intensely over recent
decades. Therefore, sound knowledge of benthic
spatial (and temporal) variability is still missing,
although essential for an understanding of ecological
processes as well as for sustainable management and
conservation of benthic systems. Such detailed infor-
mation is required, e.g. in the context of nature pro-
tection policies in Europe (e.g. European Parliament
and Council 2008), the convention on habitat classifi-
cation (e.g. Davies & Moss 2004, HELCOM 2013), the
Habitats Directive (Council of the European Union
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1992), the Marine Strategy Framework Directive
(European Parliament and Council 2008) and the
German Federal Nature Conservation Act (1998). In
fact, agencies and directives use the concept of com-
munity under the assumptions that it can act as a
proxy for biodiversity, and underpin specific func-
tions and ecosystem services, although some of these
assumptions still require scientific support. However,
besides conservation and protection (Gonzalez-
Mirelis et al. 2011), the concepts of community and
assemblages have mainly been devoted to studying
the association's properties (e.g. Guillemot et al.
2011), environmental relationships (e.g. Leaper et al.
2014; Gogina et al. 2016) and assembly rules (e.g.
Spasojevic & Suding 2012, Ricklefs 2015).

In the present study, we firstly aimed at describing
the spatial distribution of benthic species associa-
tions. Regardless of community and assemblage con-
cepts, we drew maps of both types of associations.
Simulating different experimental designs, we sec-
ondly aimed at evaluating which sampling design
was more likely to detect one association type or the
other.

MATERIALS AND METHODS

To aid the explanation of the logic
we pursued, we provide the workflow
of the steps we followed in Fig. 1. To
achieve the first aim (Fig. 1A), we clas-
sified the samples into groups accord-
ing to their species composition. Those
groups were the species associations.
Thus, samples had a probability of
belonging to each association. This
allowed the determination of whether
samples belonged exclusively to one
association or to more than one. The
probability of belonging to more than
one association was used to calculate
an index of equitability. This was used
to map transitional zones and zones
with random species associations.
Samples exclusively belonging to one
association made the spatial distri- Fien
bution of communities. Communities ERReTElor
were named according to their char-
acteristic species and mapped in terms
of their probability of occurring.

To achieve the second aim (Fig. 1B),
we bootstrapped the dataset in 2
ways: (1) keeping the amount of infor-

equitability

distribution of

1st aim: mapping of species association types

mation constant, increasing the distance among sam-
ples and (2) keeping the distance between samples
constant and reducing the amount of information.
Each bootstrap resulted in a subsample that was sub-
mitted to fuzzy clustering, and results were evalu-
ated in terms of the distribution of the probability of
samples belonging to each association.

Methods used to achieve those aims are further
detailed in the workflow in Fig. 2. Fig. 2A shows the
steps followed to prepare the dataset, and Fig. 2B,C
outlines the steps followed to achieve the first and
second aims.

Data preparation

The primary database for this study comprised
infaunal grab samples collected at 1146 stations,
mostly within the German Exclusive Economic Zone
(EEZ) between 2000 and 2013 (Fig. 3). These samples
were taken during various surveys carried out by the
following organisations: Bundesamt fiir Naturschutz,
Landesamt fir Landwirtschaft Umwelt und landliche
Raume, Bundesministerium fiir Umwelt Naturschutz

data base

classification
with fuzzy-
logic

clusters subset subset
criterion 1 criterion 2

bootstrap

characteristic
species

4

confusion index

2nd aim: evaluation of sampling designs

distribution of
structured
association

Fig. 1. Workflow outlining the logic followed to address the aims of the pres-
ent study. Blue rectangles (A and B) represent the 2 different aims. Grey
rhombi: conducted analyses; grey rectangles: results
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Fig. 2. Workflow outlining the methods followed by the present study showing

3 main groups of analyses that were achieved. (A) Steps followed to prepare

the data; (B) steps followed to identify the associations; and (C) steps followed
to evaluate the sampling design
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Bau und Reaktorsicherheit, Arbeits-
gemeinschaft Bund/Lander-Messpro-
gramm fir die Meeresumwelt, Main-
stream Renewable Energy, TenneT
Offshore GmbH, Energienet dk, and
Institut fiir Angewandte Okosystem-
forschung GmbH. Samples were
collected and processed according to a
standard protocol, i.e. 3 van Veen grab
samples of 0.1 m? per station, sieved
through a 1 mm mesh. The sampling
method allowed retrieving data on soft
bottom macrofauna. No information on
hard bottom fauna is currently avail-
able, as hard substrates constitute only
1% of the German EEZ area (Laurer et
al. 2012).

As shown in Fig. 2A, animals were
identified to the lowest taxonomic level
possible, and abundance was stan-
dardized to number of individuals m™2
station™!. Taxonomic nomenclature
was harmonized among surveys using
the World Register of Marine Species
(WoRMS; Boxshall et al. 2014).

For the purpose of the present study,
to reduce the potential bias induced by
such non-homogeneous distributions,
we averaged species abundance ac-
cording to the stratification of sampling
designs adopted by different data
sources onto a grid with 2 x 2 km? cells.
Rare species (<3 % relative abundance
at each station) were excluded from
the analysis following Mirza & Gray
(1981). The 3% threshold was chosen
to remove no more than the 70% of
rare species from the dataset (Gray &
Elliott 2009).

Community identification
Fuzzy clustering
We used fuzzy clustering for commu-

nity classification. In particular, we
applied the ‘fanny’ method (Kaufman

Fig. 3. Study area in the German Bight,

southeastern North Sea; points indicate sta-

tions. Data courtesy of organisations listed
in the text. Grey line: German EEZ



Fiorentino et al.: Fuzzy clustering classification of marine communities 21

& Rousseeuw 2008), in which the algorithm first allo-
cates the samples randomly into a set of a priori given
clusters and uses their attribute values to calculate an
objective function. This is repeated iteratively until
the function is minimized and a stable solution is
found (details on how to minimize the objective are
described by Kaufman & Rousseeuw 2008, chapter 4,
sections 4 and 5). The method only depends on the
similarity between samples and is robust to outliers
and non-spherical clusters (Kaufman & Rousseeuw
2008, Everitt et al. 2011). Furthermore, it reduces the
bias introduced by zero-inflation because it uses an
association measure (Clarke et al. 2006, Legendre &
Legendre 2012). The minimized objective function
allows for calculating the membership distribution of
the samples. Sample membership may be interpreted
as the distance of each sample to each cluster cen-
troid. It describes the affinity of objects to each clus-
ter and enables estimation of the uncertainty of an
object's assignment (Pouw & Kwiatkowska 2013). In
ecological terms, this procedure reproduces a spe-
cies' feature of being related to more than one group
of species (Jackson et al. 2010). The sample’s mem-
bership distribution depends on the membership
exponent, which sets the clustering degree of fuzzi-
ness. A membership exponent value close to 1 indi-
cates hard clustering, whereas values tending to +o
indicate complete fuzziness (Kaufman & Rousseeuw
2008). Fuzzy clustering was performed on Bray-Cur-
tis distance (Clarke & Warwick 2001) of fourth-root
transformed data to prevent very abundant species
from masking the responses of those with low abun-
dances (Clarke & Warwick 2001). Clusters were
assigned to communities named according to charac-
teristic species (see below for details) sensu Rachor et
al. (2007). For visualization purposes, we interpolated
the membership values to each cluster at each sam-
pling station by means of kriging (Matheron 1963).
We selected the best method among ordinary krig-
ing, universal kriging or co-kriging according to the
lowest root mean square error.

The following formulas detail the dependency (~)
of the target membership from the independent vari-
ables (x, y and d) used by kriging. Membership in
clusters 1 to 4 is indicated by M;, M, Mj; and My;
water depth is abbreviated d and coordinates as x
and y: M;~x+y; My~ 1; M3~ x>+ y2 + X y+ X+ ¥,
M,~d

Bathymetry was retrieved from the General Bathy-
metric Chart of the Oceans (www.gebco.net; the
GEBCO_2014 SID Grid, version 20141103). Overlay-
ing the 4 maps of cluster memberships we assigned
each 1 x 1 km? cell to the cluster with highest mem-

bership; that is, turning the fuzzy classification into a
hard one.

Clustering evaluation

Clustering was evaluated by estimating cluster
compactness and separation (Wu & Yang 2005).
These features were assessed using the normalized
Dunn's partition coefficient (Dunn 1974), the silhou-
ette averaged width (Kaufman & Rousseeuw 2008)
and by visual examination of the principal coordinate
ordination plot run on Bray-Curtis distance of species
abundance (Borcard et al. 2011, Everitt et al. 2011).
The normalized Dunn's partition coefficient (Dunn
1974) estimates the degree of fuzziness: it ranges
from O (= total fuzziness), to 1 (= completely distinct
clusters). The silhouette averaged width (Kaufman &
Rousseeuw 2008) is the averaged ratio of the separa-
tion of each object from its cluster to the heterogene-
ity of the cluster. The closer the silhouette averaged
width is to 1, the better the object was classified
(Kaufman & Rousseeuw 2008, Everitt et al. 2011). For
a more robust validation, we permuted the samples
(i.e. resampled data without replacement) 1000 times
and let the ‘fanny’ algorithm re-calculate the mem-
bership distribution and associated Dunn's partition
coefficient and silhouette averaged width. We com-
pared results among different partitions, letting the
number of clusters vary between 2 and 10. Finally,
we investigated the optimal clustering solution by
statistically testing for differences of beta-diversity
distribution within and between clusters (Anderson
et al. 2006). We tested the null hypothesis that beta
diversity did not change across the different clusters
by using a test of homogeneity of variance (Anderson
et al. 2006) on the 'Jaccard’ association measure (Jac-
card 1900) of species presence—absence data.

Characteristic species

For the optimal clustering solution, we identified
characteristic species of clusters. We used a multi-
criteria approach in which for the i species we calcu-
lated fidelity in abundance FA ;, numerical dominance
ND;, presence P;, and fidelity in presence FP; as:

AiC’ 1\”31‘= AiC’ 'Piz })iC , FPjZ P'I
A; A Nst,. Nst;
where A, is the abundance of the i™" species within
the c'® cluster, A, is the abundance of the i'" species
in the dataset, A, is the abundance of all species

FA; = (1)
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within the c'" cluster, P, is the presence of the i'" spe-
cies in the c™ cluster, Nst, is the number of stations in
the c™ cluster and Nst; is the number of stations in the
dataset where the i'" species was present.

A species was accepted as characteristic if at least
3 of these indices exceeded a given threshold value
(FA>0.5,ND>0.01, p> 0.6, FP > 0.5) as described by
Salzwedel et al. (1985) and Rachor et al. (2007). We
named communities according to the nomenclature
provided by Salzwedel et al. (1985) and Rachor et al.
(2007). We used the same names where characteristic
species in our list matched those provided by
Salzwedel et al. (1985) and Rachor et al. (2007). Com-
munity names are written in uppercase and not italic
to differentiate their names from species names.

Cluster overlap

Interpolated memberships to clusters were used to
calculate the Pielou (1975) equitability index at each
1 x 1 km? cell. This provided estimates of the degree
of overlap among clusters in a scale from 0 (no over-
lap) to 1 (all communities share same probability of
occurring). For each cluster separately, we investi-
gated the variation of beta diversity according to the
degree of equitability. We tested the null hypothesis
that beta diversity did not change across different
degrees of equitability. A test of homogeneity of vari-
ance (Anderson et al. 2006) on the Jaccard associa-
tion measure (Jaccard 1900) of species presence—
absence data was used. To extract the data required
to test each cluster, we selected those stations with
membership to the selected cluster higher than 0.1.
Furthermore, we explored whether the degree of
equitability was related to a significant increase or
decrease of the number of taxa within 4 taxonomic
ranks: species, genus, family and order.

Evaluation of sampling designs

In order to explore the effects of (1) distance
between samples and (2) amount of information (i.e.
number of stations) on the clustering results, we
selected subsets of the main dataset in 2 ways. We
either let the minimum distance among sampling sta-
tions change (minimum distance = 2, 3, 5, 6, 10 and
12 km), keeping the amount of information constant
(number of stations = 110), or we let the amount of
stations change (number of stations = 832, 600, 330,
250, 150, 110), regardless of the distance among sam-
pling stations. For this subset, the stations were

selected to be equal in number in case of confused
design, that is, when stations would be selected by
letting the distance change without keeping the
number of stations constant (i.e. d > 2, 3, 5, 6, 10 and
12 km would generate sets with 832, 600, 330, 250,
150, 110 stations, respectively).

There were many combinations of stations that
would have satisfied each condition. Therefore, we
performed the fuzzy clustering on 500 possible com-
binations of stations for each condition and let the
algorithm run with the previously selected optimal
number of clusters. For each combination, the mem-
bership values were used to calculate the degree of
confusion (CI) as defined by Burrough et al. (1997):

Cl= Mmax-1 (2)
Hmax

where Wy and Hyax_1 are the maximum and second
largest membership values given for the same pixel.
The index ranges from 0 (lowest confusion) to 1
(highest confusion). This allowed calculating a confu-
sion index distribution for each condition. We tested
the null hypothesis that the confusion index did not
change across the different conditions.

All analyses were conducted using R v.3.2.3 (R De-
velopment Core Team 2015); the R script as well as all
georeferenced maps and graphs are available in the
Supplements at www.int-res.com/articles/suppl/mb584
p017_supp/. Fuzzy clustering was performed using
the function 'Fanny’ as described by Kaufman & Rous-
seeuw (2008) and implemented in R package ‘cluster’
(Maechler et al. 2015). Package ‘gstat’ (Pebesma
2004) was used for interpolation of the communities’
distributions and ‘vegan' for analysis of beta-diversity
(Oksanen et al. 2015). Maps used the WGS84 (EPGS
4326) projection. On the maps, the coastline was pro-
vided by Global Self-consistent Hierarchical High-
resolution Geography (version 2.3.4 Jan 1, 2015;
https://www.ngdc.noaa.gov/mgg/shorelines/gshhs.
html; Wessel & Smith 1996), and the grey line indi-
cates the border of the German EEZ.

RESULTS
Communities in the German Bight

Our analysis identified 4 core benthic communities
in the southern North Sea: The AMPHIURA-FILIFORMIS
community, which occupies areas towards the cen-
tral North Sea and along the borders of the paleo
Elbe river valley (Fig. 4A); the BATHYPOREIA-TELLINA
community, which is situated mostly on sand banks
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(Fig. 4B); the GONIADELLA-SPISULA community
(Fig. 4C) in shallower areas and the PHORONIS com-
munity on the fringe of the Sylt Outer Reef (Fig. 4D).
Georeferenced raster data for each community are
available in Supplement 3.

Clustering evaluation

The normalized Dunn's partition coefficient
(Fig. 5A) and the silhouette averaged width (Fig. 5B)
similarly revealed that the classification with 4 clus-
ters had the lowest degree of fuzziness (0.764 =
0.024) and the highest compactness (0.17 + 0.01).

55.5
55.0
54.5
54.0

53.5

56.5

Latitude (DD)

56.0

55.5

55.0

54.5

54.0

53.5

Beta diversity analysis showed significant differ-
ences both between and within groups (see Table S1
in Supplement 1). Since beta-diversity provides an
estimate of species turnover, the detection of signifi-
cant differences between groups supports the claim
that communities differ in their species composition
(Fig. 6).

Differences within groups (Fig. 6) were mostly
driven by the PHORONIS and GONIADELLA-SPISULA
communities, which displayed the shortest and high-
est distances to the centroid respectively (Fig. 6).

Principal coordinate ordination plots confirmed
these findings (see Fig. S1 in Supplement 1). In fact,
visual examination of sample distribution and the

Longitude (DD)

Fig. 4. Probability of occurrence of the 4 groups: (A) AMPHIURA-FILIFORMIS, (B) BATHYPOREIA-TELLINA, (C) GONIADELLA-SPISULA,
and (D) PHORONIS. Maps were created by interpolation of probability of occurrence estimated with fuzzy clustering
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Fig. 6. Boxplot of beta diversity distance from stations to

group centroids. AMPHIURA-FILIFORMIS, BATHYPOREIA-TELLINA,

GONIADELLA-SPISULA, and PHORONIS is on the x-axis indicated
by letters from ‘a’ to 'd’ respectively

related cluster hulls showed that a 4-cluster arrange-
ment provided the least overlap and the highest com-
pactness (Fig. S1). Hard classification of the commu-
nities’ distributions is provided in Fig. S2A. A
comparison with previous hard classification of com-
munity distributions (Fig. S2B, modified from Rachor
& Nehmer 2003) provided a further evaluation.

Characteristic species

The characteristic species of the community areas
are listed in Table 1. As these are almost identical
to those reported by Salzwedel et al. (1985) and
Rachor et al. (2007), we chose similar community

Table 1. Characteristic species for the 4 groups AMPHIURA-FILIFORMIS, BATHYPOREIA-TELLINA, GONIADELLA-SPISULA, and PHORONIS
according to the criteria of Rachor et al. (2007). For group 4, only Phoronis spp. satisfied the given criteria. Groups were named
following Rachor et al. (2007)

Amphictene auricoma
Amphiura filiformis
Corbula gibba
Kurtiella bidentata
Lagis koreni

Nucula nitidosa
Phaxas pellucidus
Pholoe baltica

Echiurus echiurus
Lanice conchilega
Magelona johnstoni

Spiophanes bombyx
Tellina fabula
Urothoe poseidonis

Group 1 Group 2 Group 3 Group 4
(APHIURA-FILIFORMIS) (BATHYPOREIA-TELLINA) (GONIADELLA-SPISULA) (PHORONIS)
Abra nitida Bathyporeia elegans Aonides paucibranchiata Phoronis spp.

Bathyporeia guilliamsoniana

Scoloplos Scoloplos armiger

Branchiostoma lanceolatum
Echinocyamus pusillus
Ophelia borealis

Ophelia limacina

Pisione remota
Protodorvillea kefersteini
Spio filicornis

Spio goniocephala
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names accordingly: AMPHIURA-FILIFORMIS, BATHYPOR-
EIA-TELLINA, GONIADELLA-SPISULA and PHORONIS.

Characteristic species of each community are ex-
clusive to each community. The AMPHIURA-FILIFORMIS
and BATHYPOREIA-TELLINA communities are character-
ized by 9 species, GONIADELLA-SPISULA by 8 species,
and the PHORONIS community is characterized by the
species Phoronis spp. only.

Overlap in communities

We used interpolated memberships to each of the
4 clusters to set up a map of community equitability
(Fig. 7). Equitability ranged between 0 (a location
can be assigned to one community with high proba-
bility) and 1 (a location could be assigned to each of
the 4 communities with equal probability). Georefer-
enced rasters of community equitability are available
in Supplement 3. An equitability threshold value of
0.4 was used to separate areas in which one commu-
nity clearly dominated (blue areas in Fig. 7). Those
areas covered about the 38% of the study area (i.e.
the region actually covered by data), while the
remaining 62 % could be assigned to more than one
community (red areas in Fig. 7). Each community's
species composition changed signifi-

Table S4) and with increasing distance between sta-
tions (Fig. 9b, Table S4). Accordingly, both low
amounts of information and small spatial scale gener-
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Fig. 7. Map of community equitability. Blue shading indi-

cates areas where only one group occurs or dominates over

the other 3 (low equitability); red shading indicates areas

where all defined communities have similar probability of
occurrence (high equitability)
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Experimental design assessment

Degree of equitability

Fig. 8. Boxplot of beta diversity distance from stations to centroids low

The experimental design assess-
ment exercise, with the 12 settings
shown in the examples provided in
Figs. S4 & S5, indicates that the confu-
sion index significantly increased with
increasing number of stations (Fig. 9a,

medium and high equitability. Degrees of equitability are provided for each of
the 4 groups: AMPHIURA-FILIFORMIS, BATHYPOREIA-TELLINA, GONIADELLA-SPISULA,
and PHORONIS. Low: equitability < 0.4; medium: equitability > 0.4 and < 0.6;
high: equitability > 0.6. Lowercase letters above boxes result from 