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Microstructures from deep ice cores reflect the
dynamic conditions of the drill location as well
as the thermodynamic history of the drill site and
catchment area in great detail. Ice core parameters
(crystal lattice-preferred orientation (LPO), grain size,
grain shape), mesostructures (visual stratigraphy) as
well as borehole deformation were measured in a
deep ice core drilled at Kohnen Station, Dronning
Maud Land (DML), Antarctica. These observations
are used to characterize the local dynamic setting
and its rheological as well as microstructural effects
at the EDML ice core drilling site (European Project
for Ice Coring in Antarctica in DML). The results
suggest a division of the core into five distinct sections,
interpreted as the effects of changing deformation
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boundary conditions from triaxial deformation with horizontal extension to bedrock-parallel
shear. Region 1 (uppermost approx. 450 m depth) with still small macroscopic strain is
dominated by compression of bubbles and strong strain and recrystallization localization.
Region 2 (approx. 450–1700 m depth) shows a girdle-type LPO with the girdle plane being
perpendicular to grain elongations, which indicates triaxial deformation with dominating
horizontal extension. In this region (approx. 1000 m depth), the first subtle traces of shear
deformation are observed in the shape-preferred orientation (SPO) by inclination of the grain
elongation. Region 3 (approx. 1700–2030 m depth) represents a transitional regime between
triaxial deformation and dominance of shear, which becomes apparent in the progression of
the girdle to a single maximum LPO and increasing obliqueness of grain elongations. The fully
developed single maximum LPO in region 4 (approx. 2030–2385 m depth) is an indicator of
shear dominance. Region 5 (below approx. 2385 m depth) is marked by signs of strong shear,
such as strong SPO values of grain elongation and strong kink folding of visual layers. The
details of structural observations are compared with results from a numerical ice sheet model
(PISM, isotropic) for comparison of strain rate trends predicted from the large-scale geometry
of the ice sheet and borehole logging data. This comparison confirms the segmentation into
these depth regions and in turn provides a wider view of the ice sheet.

This article is part of the themed issue ‘Microdynamics of ice’.

1. Introduction
Variations in net mass transport of ice towards the ocean lead to variations in ice flux and
eventually sea-level variations. Ice sheets possess the highest potential to cause drastic changes
within the global water cycle owing to their large water reservoir. This horizontal movement of
ice is expressed in the surface velocities measured locally with ground-based GPS surveys [1]
or by remote sensing techniques on larger scales [2]. The observed surface velocities, however,
result from a superposition of several components: (i) basal sliding owing to a temperate base of
the ice, (ii) possible deformation of the bed material (sediments, glacial till), and (iii) the internal
deformation of the material ice itself. While the former two components play an important role
at the margins of the polar ice sheets, especially in fast-flowing outlet glaciers or ice streams, the
internal deformation of ice is the main component in the interior of Antarctica and Greenland.
In the upper part of the ice column, vertical thinning is the dominating process. The major
ice deformation component in the geographically horizontal direction, that is, the direction
towards the ocean, is shearing on horizontal planes owing to friction at the interface between
ice and bedrock. This horizontal shearing becomes the dominant deformation component
with depth. The balance between the different components of ice deformation contributing
to horizontal transport is difficult to determine as the available data originate mainly from
surface observations. As a first approximation, the Dansgard–Johnsen [3] assumption is often
considered, which assumes a constant vertical strain rate in the upper two-thirds of the ice
column, which then decreases linearly to no vertical deformation at the frozen bed. Thus, in
general, in the lower third, the shear deformation is more or less the dominant process. This holds
for the most typical and common locations in an ice sheet, therefore excluding extraordinary
sites such as domes. Especially in areas with low ice flow velocities, this estimation appears
to be a good approximation, reconfirmed by the simulated evolution of vertical strain rate
profiles in up-to-date models. With respect to improved implementation of the crystalline lattice-
preferred orientation (LPO) anisotropy effects in flow models [4–13], the exact identification
and reconstruction of the relation between vertical compression and horizontal shear and its
development with depth are required. An anisotropic description can lead to substantial feedback
effects in terms of effective viscosity with respect to the principal deformation directions.

 on January 3, 2017http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


3

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A375:20150347

.........................................................

The contributions of vertical compression in the upper part and horizontal shear in the lower
part of the ice sheet can be estimated, using information obtained from ice coring. Ice cores and
their boreholes provide us with local insights into dynamical processes below the surface. The
evolution of c-axis distributions (LPO) with depth is an indicator of the changing dominance of
the deformation modes [14]. Thus, c-axis distributions measured from ice core samples directly
represent the mechanical contribution to microdynamic processes. This information can be
complemented by grain topology (size and shape) data also to represent the recrystallization
(thermodynamic) contribution [15]. Grain size and grain shape are structural parameters that
can be evaluated in order to support conclusions made from the LPO measurements with respect
to deformation modes. Such characteristic grain size and shape microstructures are well known
and also used as shear-sense indicators, e.g. as ‘oblique foliation’ in mylonitic rocks [16, p. 128].
Mylonites are rocks found in shear zones which experienced large ductile strain rate, but under
colder homologous temperatures (T/Tm) than ice. Owing to the high homologous temperature
for natural ice in general (T/Tm � 0.7) and the slow creep flow in most deep ice coring sites, such
effects of deformation modes are very moderate and difficult to discern, because recrystallization
strongly overprints deformation effects and masks typical deformation microstructures [17–20].
Furthermore, deformation mechanisms, such as small-scale folding initiated by grain kinking,
provide new insights into the microdynamic processes with consequences for mesoscale [21] and
possibly also macroscale structures [22]. The meso- to macroscale impact of changing deformation
regimes with different deformation modes and mechanisms with depth can be monitored by
repeatedly logging the borehole geometry after certain time intervals, which also reveals the
onset of shear deformation dominance with depth. Comparison of the described observations
with strain rate components predicted by a flow model can illuminate possible misconceptions in
our understanding of large-scale ice flow.

The aim of this contribution is to revisit the idea of deformation modes at the EDML site from
meso- and microstructural data [23] in combination with new observational data, which became
available recently. We combine these with strain rate estimates provided by a large-scale three-
dimensional flow model, and thus consider also a broader ambient flow field than the purely
one-dimensional Dansgard–Johnsen [3] assumption. This combination provides us with a solid
understanding of shear versus compressive deformation for the EDML ice core location.

(a) Introduction—EDML ice core
The European Project for Ice Coring in Antarctica (EPICA) in the Dronning Maud Land (in short:
EDML) ice core was drilled between 2001 and 2006 at the Kohnen Station, Antarctica (position
79°00′ S, 0°04′ E, elevation 2892 m.a.s.l.) [24,25]. The location is shown in figure 1 and was chosen
because of the relatively high accumulation rate at the drill site, which enabled palaeoclimate
proxy records to be obtained with a high temporal resolution. Furthermore, its location in the
Atlantic sector of Antarctica allows for a comparison with the Greenland ice cores [28]. The core
reached a length of 2774 m, penetrating down to just above the bedrock at 2782 m vertical ice
thickness. The ice surface topography exhibits a slightly divergent flow along an ice ridge with
0.756 m a−1 observed surface velocity [1]. The accumulation rate is 64 kgm−2 a−1 (ice equivalent
7 cm a−1) [29]. The annual average surface temperature (10 m-firn temperature) is −45°C and the
borehole bottom temperature is −3°C. This leads to bed conditions with subglacial water, which
penetrated into the hole during the termination of drilling [24].

Numerical flow models with palaeoclimate forcing have been used to determine an
appropriate site for the EDML ice core [30,31] prior to the actual drilling and have also assisted
with the dating and interpretation of the palaeoclimate records of the EDML deep ice core [32].
The first two studies [30,31] present temperature and shear strain rates versus depth for their
proposed drill sites at 73°57′ S, 03°35′ W and 73°59′ S, 00°00′ E, respectively. As both locations
are several hundreds of kilometres away from the EDML site, the given profiles cannot be used
for comparison. Although the study by Huybrechts et al. [32] is to our knowledge the most recent
in-depth flow modelling study for the EDML site, as they apply a higher-order flow model nested
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Figure 1. Map of the EDML ice divide area with input and output information of the ice flow model. The divide line is shown
in blue [26]. White isolines and arrows are the magnitudes and directions of surface velocities, respectively, calculated by
the model. The resulting streamlines seeded at the eastern margin of the domain are shown as solid red lines, whereas the
streamline passing the grid location next to the EDML site (the location of the presented strain rates) is shown as the dashed
red line. The blue to brown colour code represents the bedrock topographywhile black isolines show the surface elevation; both
from the Bedmap2 dataset [27]. The square grid is the model grid with 10 km spacing.

in a large-scale model under palaeoclimatic forcing, unfortunately we cannot compare the results,
because neither strain rate nor temperature versus depth profiles are reported.

2. Methods

(a) Fabric analysis
The C-axis distribution data (LPO/fabrics; figure 2) are derived from thin sections measured
with an automated fabric analyser system of the Australian Russell-Head type [33] that applies
polarized light microscopy, where the thin section is placed between systematically varying
crossed polarizers [34]. We mainly used the G20 system, measuring approximately 150 vertical
and horizontal thin sections in depth intervals of about 50 m (dataset: [35]). For cross- and quality
checks, we also applied the improved G50 system for 60 additional vertical thin sections, with
partly bag-continuous sampling (dataset: [36]). A few examples of the in total approximately
210 crystal LPO measurements are displayed for illustrative reasons in figure 2 and figure 3b
as classical pole figures. These so-called Schmidt diagrams show the natural variability among
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54 m n = 521 144 m n = 523 255 m n = 510 355 m n = 515

456 m n = 343 555 m n = 243 655 m n = 525 754 m n = 224

854 m n = 515 952 m n = 305 1053 m n = 587 1152 m n = 275

1255 m n = 496 1364 m n = 482 1454 m n = 174 1555 m n = 298

1655 m n = 501 1758 m n = 358 1845 m n = 350 1955 m n = 430

2035 m n = 253 2045 m n = 285 2155 m n = 321 2265 m n = 177

2354 m n = 104 2375 m n = 124 2455 m n = 450 2556 m n = 317

Figure 2. Examples of stereographic projections of the lattice-preferred orientation (LPO). Classical glaciological projection
into the geographical horizontal plane (the drill-core axis is at the centre of the circle in each diagram). Pole figures show
the classical Schmidt diagram. Gridlines illustrate measurements on vertical thin sections (rotated for this display), whereas
diagrams without gridlines originate from horizontal thin sections. Numbers on the left of each diagram give sample depth; on
the right of each diagram are the number of c-axes (one per grain) plotted. Please note that changes in the orientation of the
girdles are related to orientationmismatch between core pieces (drill runs), and not to a sudden change in stress/flow direction.

at least 100 measured grains per section. Additionally, as a more continuous display of all
thin section data, we calculated eigenvalues of the second-order orientation tensor of the
c-axis distributions [37,38], which portray the distribution as an enveloping ellipsoid with the
eigenvalues being its three principal axes (figure 4b, dataset: [39,40]). This method is well
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(b)

(a)

Figure 3. (a) Example of a microstructure mapping picture (1553.0 m depth) and the resulting grain boundary network
obtained by image segmentation. Left-hand picture shows strong black lines which are grain boundaries revealed by
sublimation etching. (b) Example of an AVA (Achsensverteilungsanalyse) picture (1056.0 m depth) for LPO measurements
(automatic fabric analyser) and the resulting grain boundary network obtained by image segmentation via edge finding.
Left-hand picture, false-colour code; see wheel legend.

suited to quantify a three-dimensional unimodal or girdle distribution of orientation data. The
breadth of the distribution is described by the absolute magnitude of the eigenvalues, that is, it
describes how many grains are aligned with the preferred direction. Additionally, the Woodcock
parameter is given (figure 4b; [41]), which lies in the interval [0,1] for girdle LPOs and [1,∞] for
unimodal LPOs.

(b) Grain size and shape characteristics by light-microscopy microstructure mapping
in plain and polarized light

In addition to the LPO investigations, further microstructural data such as grain size evolution
and shape-preferred orientations (SPOs) gave insight into, and in turn can influence, the
deformation conditions and related processes (e.g. [16,42]). The grain size and shape evolution
along this core were examined, using approximately 300 vertical and horizontal thick and thin
sections (10 m interval). Owing to the preferred sublimation along the grain boundaries, they
develop etch grooves on sublimation-polished surfaces that are visible in plain light illumination
[43]. These grooves can then be mapped on microphotographs, revealing the grain boundary
network. The grain boundary networks were extracted, using fully automatic image analysis,
and evaluated for structural parameters of the grains wherever possible ([44], figure 3a), with
manual corrections when necessary. The data from vertical sections were complemented by grain
structural parameters derived from photographs taken between crossed polarizers for horizontal
sections (during the fabric analysis procedure). Here, semi-automatic image analysis with edge
detection segmented the image into grain boundary networks (figure 3b).

From the grain boundary networks, we obtained the two-dimensional grain size, e.g. as areas
by pixel counting of individual grains (figure 4d) and shape parameters (SPOs). The magnitudes
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Figure 4. Compilation of ice core micro- and mesostructure data with borehole and modelling data. Shaded regions denote
regions of deformation modes explained in the text. (a) Borehole data and modelled temperatures. (b) LPO data given in
eigenvalues of the second-order orientation distribution tensor (red, blue, green) and Woodcock parameter. (c) Derivatives
of the selected strain rate tensor components derived from the shallow ice approximation model PISM. (d) Grain size data
from the microstructure map and δ18O values (‰ standard mean ocean water) from stable water-isotope measurements
for palaeotemperature reconstruction (grey). Dataset: doi:10.1594/PANGAEA.754444 down to 2416 m depth. Below 2416 m
depth unpublished data (H Meyer and H Oerter 2016, personal communication). (e) Grain elongation given as the aspect
ratio of the short and long axis of a fitted ellipse. Mean and standard deviation (s.d.) per 10 cm section of microstructure
maps. (f ) Grain elongation directions given as the mean angle of the long axis of the fitted ellipse with the horizontal
direction (0°). Corrections, assuming measured dip at 1696 m depth being maximum, lead to lower bound inclinations. Actual
three-dimensional inclinations can be higher.
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(b) grain elongation directions
      circular histogram

(c) LPO
      pole figure

vertical horizontal
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(a) visual
stratigraphy
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Figure 5. (a) Visual stratigraphy line scanner images, selected. (b) Distributions of grain elongations given as circular
histograms (rose diagrams) measured in sections vertically (right) and horizontally (left) cut from the ice core. Radial axes give
the frequency in%with a fixed axis range (7% for horizontal sections, 10% for vertical sections). For vertical sections, directions
0° and 180° are along the core axis. For horizontal sections, azimuthal orientation corresponds to those in LPO pole figures. (c)
Selected LPO stereographic projections for direct comparison.

of grain elongations given as aspect ratios (figure 4e) and grain elongation directions (figure 4f ) are
calculated from the principal axes of an ellipse fitted to each segmented grain. The distributions
of the directions are shown as circular histograms (‘rose diagrams’) in figure 5b (display method
adopted from [45,46]). Although the drilling process does not allow for an oriented ice core, the
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relative orientation among individual drill runs has been retained by fitting characteristic core
break surfaces during core logging as well as possible and by drawing a continuous ‘top line’
on one side of the core [47]. In the girdle LPO depth range, a change in orientation is identified
from the changing direction of the girdle in the stereographic projections (figure 2). However,
in the brittle zone (approx. 800–1200 m), where orientation loss happened more frequently, it
is less obvious as the data show only a weak girdle pattern in this depth region. The grain
elongation direction data reveal possible inclinations from the horizontal and vertical sections
(figure 5b, §3c). The raw data of inclination measurements from the elongation directions from
vertical sections reflect a jump between 1655 and 1758 m (cf. figure 2) owing to a loss in azimuthal
orientation of the core during logging, which was caused by a break between 1686 and 1696 m.
This jump corresponds to a core rotation of about 40° (cf. figure 2) and significantly masks
the signal in the raw measurements of elongation directions. A second recognizable azimuthal
loss shows less rotation (10–20°) between 1955 and 2035 m depth, but with higher ambiguity
owing to the strongly developed single maximum LPO. The rotational symmetry of the single
maximum distribution does not allow a reliable reconstruction of the likely true inclination.
However, the effect on grain elongation inclination data is minor. It may however contribute
to the increasing variability in this depth range. The 40° jump between 1686 and 1696 m was
corrected in the grain elongation inclinations by means of trigonometry, assuming that the
steeper inclination at 1696 m is the true dip of the three-dimensional elongation plane. Thus,
the data shown here represent a lower bound of the actual inclination. The correction assumes
a maximum dip, which is however unknown. Furthermore, only absolute values are given, as the
dip direction leading to clockwise or anticlockwise inclination depends on the core and sampling
orientation.

(c) Visual stratigraphy line scanning
Visual stratigraphic layering was recorded continuously along the core with a line scanner (LS)
developed at the Alfred Wegener Institute in Bremerhaven, Germany, and the Niels Bohr Institute
at the University of Copenhagen, Denmark [48,49].

Typical LS samples are 1 m ice slabs that have been cut lengthwise from the EDML core,
with their upper and lower surfaces polished with a hand-held microtome blade. Oblique dark-
field, indirect illumination of each slab is scanned along the core axis by a digital line-scan
camera. The line-scan camera can capture only the light that has been scattered by inclusions
in the ice matrix, such as microscopic particles or air bubbles, because ice itself is transparent.
Thus, the degree of brightness recorded by the camera is proportional to the concentration of
inclusions in the sample, in such a manner that a clear piece of ice, free of inclusions, appears dark
(figure 5a).

Images recorded with the LS system reveal the visual stratigraphy of an ice core in great detail
(1 pix = 0.1 mm) because of the high resolution and sensitivity of the digital line-scan camera.
Strata as thin as 1 mm can be easily detected with this method. Any small change in the optical
properties of the ice matrix, usually caused by a change in the mean size or concentration of
inclusions, gives rise to a new horizon.

(d) Borehole logging
During the EDML drilling campaign, the borehole was logged at several stages of drilling
progress. The logging system continuously recorded the tilt of the borehole with respect to
the vertical (inclination) as well as the heading of the borehole with respect to magnetic north
(azimuth) by means of a compass [50]. Additionally, the diameter of the borehole was measured.
Here, we use the change of the borehole course (inclination and azimuth; figure 4a) owing to the
local ice deformation between two measurements (January 2004 and November 2005) to estimate
the strain regime at the EDML site. Changes in diameter of the borehole, which do occur, are not
evaluated in this study.
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(e) Strain rate estimations from the ice flowmodel
To derive a velocity–depth profile at the EDML site, we used the parallel ice sheet model (PISM v
0.6.1) [51–53].

The deformation of polycrystalline ice is modelled, using the Nye generalization [54] of the
Glen–Steinemann power-law rheology [55,56]. The effective viscosity, which connects the strain
rate tensor with the deviatoric part of the Cauchy stress tensor, depends on strain rate, pressure,
temperature and water content [57,58], where the last two quantities are diagnostically calculated
from the enthalpy field. The enthalpy scheme used in PISM is fully described in Aschwanden
et al. [59], to which the interested reader is referred.

At each time step of a PISM simulation, the geometry, temperature, water content and basal
strength of the ice sheet are included into momentum balance equations to determine the velocity
of the flowing ice.

Instead of solving the full set of Stokes equations for the momentum balance, PISM solves,
in parallel, two different shallow approximations: (i) the non-sliding shallow ice approximation
(SIA [60]), which describes ice as flowing by shear in planes parallel to the geoid, and (ii) the
shallow shelf approximation (SSA [61]), which describes a membrane-type flow of floating ice,
or of grounded ice which is sliding over a weak base. The ice flow velocity of the grounded ice
is computed with a hybrid scheme based on a weighted superposition of both shallow solutions
(SIA + SSA), where the SSA solution acts as a sliding law (see [62] for details). The computed
three-dimensional velocity field thus contains horizontal longitudinal (membrane) stresses from
the SSA solution as well as vertical shear stresses from the SIA solution.

The present-day state of the Antarctic ice sheet was computed based on the present-day
geometry Bedmap2 [27], and varying datasets for present-day boundary conditions such as:
surface temperature [63–65], surface mass balance [65–67] and geothermal heat flux [68,69] and
the update from Purucker [70] based on the method of Fox Maule et al. [69]. The original dataset
of Fox Maule et al. [69] has been capped at a value of 0.07 W m−2 according to the SeaRISE-
Antarctica recommendations [71]. Using all combinations of the boundary conditions above, with
the restriction that RACMO2.3/ANT [65] data for surface skin temperature and accumulation
rate are used together for consistency, we have set up an ensemble of 15 different simulations.
We have chosen the combination RACMO2.3/ANT surface forcing together with the Shapiro
& Ritzwoller [68] heat flux as our reference simulation. Other combinations have been applied
to estimate the sensitivity of the model to varying forcing data. We have chosen the same set
of parameters within the PISM model that have been used for the ice sheet modelling project
SeaRISE Antarctica (see ‘Potsdam’ model in [72]), where the model was forced with constant
present-day climate. Although surface temperatures and accumulation rates have changed over
time in the palaeoclimate context, we prescribe the constant present-day climate in order to avoid
a complete recalibration of the model that would be far beyond the scope of this study. As the
temperature field near the base—where most of the deformation takes place—is mainly controlled
by the geothermal heat flux, we expect to have a reasonable uncertainty estimate owing to our
ensemble set-up.

Each simulation was conducted in a series of subsequent grid refinements (all based on the
initial 1 km present-day geometry) using 40, 20 and 10 km horizontal resolution and 41, 81 and
101 vertical layers, respectively. We used the flux correction method provided by PISM in addition
to a prescribed (present-day) calving front position to result in an ice sheet that is close to the
observed present-day geometry. After initialization (1 a), a short relaxation period (100 a) and a
purely thermal spin-up with the geometry held fixed (200 k years) on the 40 km grid using only
the non-sliding SIA, the model ran for 100 k years, 20 k years and 4 k years on the 40, 20 and 10 km
grid, respectively, in the hybrid (SIA + SSA) mode. The individual boundary conditions that have
been chosen for one ensemble member were held constant over time, thus forming a present-day
climate equilibrium model realization.

All components of the strain rate tensor as well as the effective strain rate De (figure 4c)
and the three principal strain rates, D1, D2 and D3 (eigenvalues of the strain rate tensor,

 on January 3, 2017http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


11

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A375:20150347

.........................................................

figure 4c), have been derived from the simulated velocity field diagnostically on the
PISM grid.

3. Results and data

(a) Lattice-preferred orientation
The c-axis distributions show a typical evolution with depth for a drill site located on an ice
divide: a broad distribution represented by all three eigenvalues around one-third (figure 4b)
appears uniform in the pole figure display (figure 2) and is almost constant in the upper
450 m. Below this, LPO develops continuously into a vertical great-circle girdle distribution
by narrowing of the girdle towards three distinct eigenvalues (in the following referred to
as e1, e2, e3) down to 1650 m depth. In a transitional region (approx. 1700–2030 m), the LPO
evolves towards an elongated single maximum well defined by the inflection point of the
e2-trend (figure 4b): above approximately 1650 m e2 grows; below 1650 m e2 decreases. Although
increasing strictly monotonically with depth in the upper two-thirds of the core, also the e1-trend
shows a change in slope at approximately 1650 m depth. The gradual evolution of the single
maximum is generated by a gradual concentration of c-axes within the girdle, observable in panel
5 of figure 2 and a slight re-widening of the central part of the girdle in the pole figure (see also
figure 2). This is confirmed by the Woodcock parameter (figure 4b), which rises at this depth level
towards unimodal distributions. This is followed by a collapse of e3 and e2 into a single maximum
at approximately 2030 m depth (figures 2 and 4c). In a narrow layer (from 2345 to 2395 m depth),
the LPOs become highly diversified with tendencies of single maximum to girdle and back to
single maximum distributions represented by a wide range of values in e3 and e2 (0–0.5) and in e1
(0.5–0.9) (figure 4b). This is the lower half of the Eemian (marine isotope stage 5.5 (MIS5.5)) layer,
characterized by lower δ18O values (figure 4d), which indicates higher precipitation temperatures
than derived from the overlying ice of the last glacial period. Statistical evaluation is difficult, as
the Eemian ice exhibits the largest grain sizes observed in the EDML core, except for the basal
layer (figure 4d).

Systematic offsets of the eigenvalues e2 and e1 between vertical and horizontal sections
(figure 4b, e.g. in region 2) are due to the ambiguity of measurement of c-axes lying close to the
observation plane. Data at the periphery of a pole figure (projection onto a thin section plane) are
of low quality and thus partly excluded from the population in display and LPO data processing,
leading to the described bias. The automatic fabric analysers used here calculate the extinction
angle, where no light gets through the system, by fitting the light amplitude values for each
step of the polarizers to a sinusoid curve [73,74]. The low-quality effect of c-axes in a plane
normal to the observation axes is caused by the G20 instrument often being unable to resolve the
quadrant pair of the azimuth of these orientations. The G20 used a rotating prism to realize three
viewing axes and images are taken from three directions. This includes a fourfold symmetry of the
extinction angles for the viewing directions. The automatic fabric analyser software philosophy
excludes any possibly false information, thus any ambiguous data values are not included. The
G50 instrument uses a quarter-wave (λ/4) plate to determine the azimuth, so that fast/slow
directions by adding or subtracting λ/4 resolve the azimuth symmetry of the quadrants (defined
by the crossed polarizers; for further details on crystal orientation and interference effects, see for
example [75]). Comparison measurements verified this effect.

(b) Grain size
The grain size generally increases with depth (0.3–2000 mm2), but is strongly affected by the
impurity content of ice from different climatic stages (figure 4d). Over the first 700 m, the grain
size increases and decreases again with depth until reaching the last glacial maximum (LGM)
ice (MIS2, approx. 1000 m), which is identified by the most depleted stable water isotope values
(figure 4d [28,76]; H Meyer and H Oerter 2016, personal communication: stable oxygen isotopes
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of deep ice core EDML (deeper than 2416 m)). Correlation coefficients for grain size and δ18O
confirm the correlation on this large scale with 0.65 for depths below 700 m and 0.79 for depths
below 900 m depth. Below, the mean grain size increases again down to a depth of approximately
1700 m, followed by a steep size decrease down to approximately 1750 m (MIS4). Below this,
grains increase again down to approximately 2300 m (Eem, MIS5.5), but show a higher variability
within samples than in all stages above. A sharp decrease down to the smallest measured grain
size values is observed just below the MIS5.5 ice (approx. 2400 m), followed by a sudden increase
(approx. 25 times) to grains of similar or larger size than the section size in the deepest basal
ice layers. Further doubling to tripling of grain size occurs in this basal layer estimated from the
deepest three samples measured (‘square’ symbol and separate bottom axis in figure 4d).

The above-described trend in grain size can be observed fully automatically as well as
by manually correcting segmentation of images (excluding the three basal samples). Both
methods give diverging results at various levels with the manually corrected segmentation giving
approximately 10% smaller values in most depth levels (figure 4d). Thus, the fully automatic
segmentation may not capture all (slightly weaker) grain boundaries. These weaker boundaries,
in principle, are an indication for newly formed grain boundaries developing from subgrain
boundaries during dynamic recrystallization ([77]; §4.1 in [78]). This seems to occur along the
whole EDML ice core [79]. However, a deeper analysis of these mechanisms, e.g. to decipher
the actual processes of grain boundary formation, is only possible in combination with high-
resolution full-crystal orientation measurements [80–82], and lies beyond the scope of this work.

(c) Grain shapes
A visualization of SPO given as grain elongations in the vertical and horizontal sections is shown
in figure 5b,c as circular histograms (also called ‘rose diagrams’), which show the magnitude and
direction of elongation. Statistical evaluation (figure 4e,f ) is not possible for horizontal sections
owing to few samples. In general, only moderate mean aspect ratios up to 1.8 are observed
(figure 4e). Large standard deviations in all samples indicate that only a few grains are actually
elongated, whereas many exhibit an equi-dimensional habitus. However, for vertical sections,
we observe clear trends in the mean values: first, increasing elongations from 1 to 1.5 down to
1100 m depth, followed by a decrease down to approximately 1700 m depth. Between 1700 and
2200 m, aspect ratios remain stable at small average elongations of approximately 1.2, with an
increased variability observed among samples below approximately 2050 m depth. Low values
approach approximately 1 and indicate equi-dimensional grain shapes on average. Most intensely
elongated grains in the EDML ice core are observed at a sudden transition of aspect ratio from
1.1 to 1.7, located between 2356 and 2393 m depth. Below approximately 2575 m depth range
statistical analysis is not reliable owing to the very large grain size.

Grain elongation directions, defined as angles of the long axis of a fitted ellipse with
the horizontal, show large variations within individual sections (figure 8; s.d. in figure 4f ).
Statistical analysis, however, reveals elongation of grains in the horizontal direction (0°) down to
approximately 1000 m depth. This is remarkable as between 500 and 1200 m the relative azimuthal
core orientation was lost repeatedly in the brittle zone. The geographical azimuthal (N–E, S–W)
orientation of the drill core controls the actual observed angle of inclined features. Three-
dimensional-sectioning effects of orientations of lines or planes, e.g. during sample preparation as
in this study or in geological outcrops, are well known in structural geology [83]. These sectioning
effects lead to minimum bound measurements of angles, and isolated single measurements
cannot prove horizontal orientation. Repeated sectioning of samples down to approximately
1000 m depth all showing on average 0° angles thus reveal a truly horizontal-preferred elongation
direction. On average, grain elongation directions start to incline slightly from the horizontal to a
few degrees down to approximately 1700 m. This has to be considered as a lower bound owing to
the three-dimensional cutting effect of inclined objects. The inclination of grains progressively
increases to about 10° at a depth of approximately 2030 m. Elongation directions appear to
stabilize below this.
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Comparison of the vertical girdle LPO presented in the standard glaciological stereographic
projections into the horizontal (figure 5c) with grain elongations in horizontal sections (figure 5b,
right column) shows that the mean orientation of the girdle plane, that is, the average
plane containing all c-axes, and the orientation of the grain elongations in the horizontal are
perpendicular to each other.

(d) Visual stratigraphy
The visual stratigraphy in the uppermost 950 m is generally horizontal, straight and faint
(figure 5a). The last feature results from the fact that air bubbles in this zone are by far the
largest and most efficient light scatterers, so that the visual stratigraphy is dominated by depth
variations in the number and size of air bubbles. The ice core in this zone appears so bright under
the LS that the recorded images seem partially washed out, with a faint stratigraphy. Within
the bubble–hydrate transition zone (BHT zone, 800–1200 m [84]), stratigraphic variations in the
number and size of air bubbles gradually increase with depth. Below the BHT zone, all bubbles
have transformed into air hydrates, which have a refractive index more similar to that of ice
and are consequently inefficient light scatterers. Therefore, the ice stratigraphy below 1200 m
is defined by variations in the concentration of micro-inclusions (e.g. salt or dust particles). In
sufficiently high concentrations, micro-inclusions can scatter the incident light and make the ice
seem opaque, forming strata of light-grey appearance of millimetres to decimetres thickness,
called cloudy bands [85,86]. Owing to their intensity and frequency, cloudy bands are the main
stratigraphic feature of deep (bubble-free) polar ice.

From the lower part of the BHT zone at approximately 950 m depth down to around 1600 m
depth, the EDML stratigraphy remains undisturbed and horizontal (figure 5a). Just a few cloudy
bands occasionally show minimal undulations with amplitudes not larger than a couple of
millimetres. Below 1700 m depth, these undulations gradually increase in intensity and frequency,
to such an extent that below 1700 m depth microscale folds develop and some flimsy cloudy
bands become slightly inclined or disrupted (figure 5a). However, it is only beneath 2050 m
depth that well-defined mesoscale folds (with amplitudes up to a few centimetres) and sloped
strata (inclined up to 15° from the horizontal) become dominant (figure 5a). Further down, the
intensity of such disturbances increases notably: cloudy bands appear ragged and fuzzy at diverse
inclinations, sometimes up to 30° with respect to the horizontal.

Below 2200 m depth, the strong layer mixing and low concentration of micro-inclusions make
cloudy bands too faint and disrupted to be identified. Notwithstanding, at 2386 m, cloudy bands
suddenly reappear neatly parallel, horizontal and well defined again. Faria et al. [15,78,86] have
pointed out that this striking stratigraphy change accurately coincides with a sharp increase in
impurity content that marks the transition from the last interglacial (MIS5.5) to the penultimate
glacial period (MIS6), approximately 130 000 years ago (figure 4d). It coincides with conspicuous
changes in ice microstructure, e.g. an abrupt reduction in grain size (5 mm to less than 1 mm) and
an increase in grain elongation (aspect ratios 1.2–1.7), within a depth interval of less than 10 m
(figure 4d,e).

Drastic variations in intensity, inclination and folding of cloudy bands are recognized below
2400 m depth. Intense cloudy bands inclined up to 45°, kink folding, multiple z-fold and other
serious stratigraphy disturbances become frequent. As a general trend, the intensity of the cloudy
bands gradually reduces with depth until they completely disappear below 2600 m, where the
temperature rises above −7°C and the average grain size increases dramatically (figure 4d).

(e) Borehole data
The measured borehole inclination and azimuth were smoothed, using a Butterworth low-pass
filter to eliminate the influence of movements of the cable and erratic movements of the logger
owing to unevenness of the borehole walls. The logger depth is taken as the paid out cable
length. This set of three coordinates (inclination, azimuth, depth) was then transformed into
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three-dimensional Cartesian coordinates x, y, z of the borehole track by integrating the data along
the path. Owing to the integration, the possible error in the borehole track increases with depth.
The data presented in this study were recorded in January 2004 and November 2005. Both logs
reached a depth of approximately 2550 m, which is still about 200 m above the bedrock. Later,
re-logging data could not be included here owing to a failure of the azimuthal measurement,
preventing the calculation of the shape of the borehole. However, these latter data would not
have included the lower approximately 200 m, because the intrusion of subglacial water made the
lowermost part of the borehole inaccessible. As the water rose faster than it could be removed,
this also caused the end of the drilling [24,25].

The calculated borehole displacement and the inclination of the hole are displayed in
figure 4a. The gradient of the borehole displacement is largest below approximately 2050 m depth
(figure 4a), indicating the depth where shear becomes dominant. Above, the displacement is
fluctuating around approximately 0.5 m, which is partly owing to the rather high noise of these
measurements compared with the small displacement signal owing to the slow deformation. The
absolute total displacement is in accordance with the measured surface velocity (0.756 m a−1 [1])
at the site over 2 years, lacking any evidence of significant basal slip below the EDML drilling site
despite the occurrence of subglacial water.

(f) Strain rate estimates from the model
The simulated temperature–depth profile extracted from the PISM grid at the grid location next
to the EDML site (approx. 1.5 km away) is shown in figure 4a. Comparison with the measured
borehole temperature (same figure 4a) reveals a distinct difference, as modelled temperatures
are always higher (approx. 5°C, maximum) than the observations. In the lowest part of the
borehole, temperature observations are missing, but observed water at the ice–bed interface
indicates temperate ice conditions. Thus, the simulated basal temperature of approximately
−1.4°C (pressure corrected) underestimates the temperature at the base. The overall curvature
of the simulated temperature–depth profile is smaller (more linear) than the observation, most
likely indicating that the model underestimates the downward advection of cold ice from the
surface. Assuming that the zeroth-ordered stress terms from the momentum balance equations
are still the largest contributions to the effective stress at the EDML site, we expect the model to
overestimate the deformation of ice, mostly in the ice column except for the basal zone.

The magnitude of the horizontal surface velocity obtained by the model is approximately
1.4 m a−1, and is thus twice the observed value (0.756 m a−1 [1]), but still within the same order
of magnitude. As the base is cold in the model, this surface velocity originates from internal
deformation only. The simulated velocity has a stronger northern component than reported in
Wesche et al. [1]. This corresponds well with the local surface slope from the gridded Bedmap2
dataset ([27], see surface contours in figure 1).

Figure 4c shows the derived effective strain rate with depth that is approximately constant
down to approximately 1700 m depth. The effective strain rate increases between approximately
1700 and approximately 2400 m owing to the increasing influence of shear strain with another
significant gain below 2000 m depth, and increases further with a higher gradient below
approximately 2400 m. The derived first principal strain rate D1 (with D1 > D2 > D3) is always
positive (tensile) along the depth profile and increases towards the base up to approximately
420 × 10−5 a−1 (figure 6). The third principal strain rate D3 is always negative (compressive)
along the depth profile with the minimum of approximately −412 × 10−5 a−1 at the base. This
component mostly compensates D1 (D1 + D2 + D3 = 0, incompressibility condition for ice). The
second principal strain rate D2 is one magnitude smaller than D1 or D3 and reaches the maximum
(14 × 10−5 a−1) at approximately 2400 m depth. Although relatively small, the differences between
D1 and D3 towards the bed result in the slightly positive (tensile) component D2. D2 increases
at approximately 1700 m depth evolving from compressional towards tensile and crosses the
compressional/tensile border at approximately 2020 m depth, further intensifying its tensile
nature. With depth, D2, decreases towards zero again. Additionally, the vertical gradients of the
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Figure 6. Modelled temperature (pressure corrected), the principal components D1, D2, D3 of the strain rate tensor and the
effective strain rate from 15 model runs with varying surface and basal boundary conditions. Our reference simulation is shown
as filled red circles, whereas all other simulations are presented as highly overlapping lines with randomly chosen colours. The
annotated horizontal dashed lines indicate the selected depth levels for the eigenvectors shown in figure 7. The vertical dashed
line in the D2 panel is placed at zero strain rate and indicates the transition between compressive and tensile conditions.

strongest principal strain rates D1 and D3 are shown in figure 4c to highlight the onset of the
evolution of changing deformation at approximately 1700 m depth.

The three-dimensional orientations of strain rate eigenvectors are presented in figure 7. In
shallow depths, the orientation of D3 (compressive, blue) is vertical, D1 (tensile, red) is orientated
perpendicular to the ridge, and D2 lies parallel to the ridge (figure 7a). Down to approximately
1000 m depth, the overall deformation can thus be described as a classical extensional regime as
expected on ice divides: extension normal to the ridge, almost no deformation, that is, very small
D2 (figure 6) along the ridge and vertical compression (triaxial deformation). At approximately
1000 m depth, the direction of D3 (compressive, blue) and D2 begin to tilt by rotation around the
D1 direction perpendicular to the ridge (figure 7b). At approximately 1700 m depth, D2 starts to
increase (figure 6, central panel), whereas its orientation continues to rotate within the ridge plane
around direction of D1. This D2 increase describes a development from compressive towards
tensile nature of this eigenvector. With this, the overall deformation mode changes from a classical
divide (extensional) regime towards the basal regime (simple shear). This is also visible in the
increasing obliqueness of D3 away from the vertical (figure 7b versus c) and a further decreasing
value of D2 (figure 6). At approximately 2030 m depth, the D2 value reaches zero per year (figure 6,
central panel), which can be described as a confinement in this direction and thus indicates
almost ideal simple shear in the non-coaxial plane strain. However, this situation only holds
for a very thin depth layer, as it is caused by a transition back to triaxial deformation (general
shear) with increasing D2 towards positive, thus tensile, values (figure 6). D3 (compressive) is
now approximately 45° inclined (figure 7c). At approximately 2360 m depth, D1 (tensile) finally
rotates away from the direction perpendicular to the ridge. D1 (tensile) rotates quickly between
approximately 2370 and 2380 m depth (figure 7d) to a NW–SE orientation. Below this D1 (tensile)
and D3 (compressive) the axes are both approximately 45° with the basal bedrock plane (figure 7e)
and D2 is now tensile, though still very small. This describes the situation as expected for bed
parallel shear.

4. Discussion
The described microstructural parameters from LPO measurements, grain size and elongation
distributions as well as the mesostructural characteristics from layering in the visual stratigraphy
record can be interrelated in five depth regions along the EDML core. We combine these results
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with borehole logging observations and strain rate evolution with depth provided by numerical
ice sheet modelling (PISM) from the surrounding macroscopic geometries and balances. The
combined evaluation of these data shows that the structural observations can be interpreted as the
effects of the transition from vertical compression with transverse extension to horizontal shear.
The depth horizons are indicated as grey regions in figure 4. It is worth noting that the boundaries
of these regions should not be understood as sharp borders in all cases. Thus, depth indications
do slightly deviate, because with this multi-parameter approach slightly different reaction times
of the deformation and recrystallization processes forming the observed responses may lead to
slightly deviating characteristic depths.

By the chosen model spin-up, we ensure that the ice sheet geometry corresponds to the
current state. This is essential for realistic strain rates at the borehole location, as the main
drivers for ice flow are local ice thickness and surface slope. However, our model set-up results
in a temperature versus depth profile that deviates from the observation. Nevertheless, to the
best of our knowledge, no Antarctic-wide modelling study and free evolving geometry with
palaeoclimate forcing has shown to result in realistic present-day geometry as well as realistic
temperature–depth profiles as observed at ice core locations. This is the subject of ongoing
research (e.g. ice sheet model intercomparison project (ISMIP6) [87]).
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The first panel of our central figure (figure 4a) shows the temperature derived from the
modelling results in comparison with the temperatures measured in the borehole. The reasons for
the difference between modelled and measured temperatures are threefold. First, the present-day
climate forcing does not include variations in accumulation rates or surface temperatures over
time. Second, the relatively smooth bedrock topography on the 10 km model grid may hinder the
model to generate realistic horizontal flux divergence that influences the amount of downward
advection at the EDML location. Last, without the flux correction method applied to the surface
mass balance the resulting ice thickness tends to be too large at the EDML site (approx. 200 m,
figure 2d in [72]). The correction for this (a reduced surface mass balance) causes a reduction in
vertical advection which affects the shape of the temperature profile.

Although the simulated temperatures deviate from the observations, they better represent the
reality than the parametrized temperature depth profile used in Seddik et al. [11], where the
temperature is assumed to be constant (approx. −43°C) down to two-thirds of the ice column
and to increase linearly below that down to bed (pressure melting point). Furthermore, Seddik
et al. [11] prescribe the depth of the onset of significant shear deformation by (i) prescribing a
Dansgard–Johnsen-type profile for longitudinal strain rates and (ii) the prescribed temperature
profile that allows relevant shear deformation only below two-thirds of the column. Bargmann
et al. [12] followed a similar approach, but implemented the measured borehole temperatures
into their one-dimensional model. However, the main aim of Bargman et al. [12] and Seddik et al.
[11] was to model the evolution of the ice LPO, whereas we use an isotropic model to confirm
our interpretation of the observational data by considering the full three-dimensional flow field
influenced by the surrounding bedrock and surface topography.

(a) Region 1 (approx. uppermost 450 m)
In the upper part of the ice core, the still small strain rates do not suffice to align the c-axes,
which are observed to have an almost random distribution, and to produce SPO of grains. This
missing SPO with the long axis of grain elongation directions pointing to various directions in
shallow depths has been similarly reported for the Dome Fuji and Dome C ice cores [45,46,88].
Deformation of the air–ice composite material in this depth range is facilitated by the compression
of bubbles. This agrees well with the expected depth for the dissociation pressure of air–clathrate
hydrate at EDML and the observation of the first clathrates [89]. The compression of bubbles leads
to a linear relation of bubble size with depth [90]. At first inspection, most points of the ice matrix
seem to show only subtle traces of deformation (figure 4b,d,e,f ), but higher-resolution analyses
reveal that highly localized recovery and recrystallization occur already in these shallow depths
[77,81,91]. This indicates that deformation is inhomogeneous on the microscale, especially close to
air bubbles (§3c and appendix B in [78]), as predicted also by microstructural modelling [92]. Flow
model calculations yield low macroscopic strain rates (figure 4c), which is in accordance with the
average small change with depth of borehole displacement down to 2000 m depth. The rather
large wiggling of the borehole data in this upper depth range could in principle be attributed
to changing rheology or temperature; however, the borehole displacement data are rather noisy
as expected owing to the small surface velocity. With repeated borehole logging after 10 years,
we expect more robust data with a better noise–signal relation.

Under these conditions, grain boundary migration dominates the microstructure evolution
and masks the deformation habitus of grains [18,19]. This has been observed with respect to the
appearance of triple junctions [17] as well as grain boundary irregularities [77]. Identification
of deformation kinematics by the available data is therefore not possible in this depth region.
A statistical analysis of bubble shape or distribution would be possible but challenging owing
to the high variability. First experiences, e.g. with micro-computer tomography measurements,
show that the statistical problem is significantly larger with bubble observations [93] than with
the microstructural observation shown in this study. It can be speculated that compression owing
to overburden pressure of newly accumulating snow prevails, but the observed bubbles are of
round shape in the vertical and horizontal sections. The reason for the bubble behaviour is that
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evaporation–precipitation equilibrium processes inside air bubbles act much faster [94] than the
slow strain rate deformation and thus cannot notably change the bubble shape.

In this depth range, the overall deformation yields a classical extension regime as expected on
ice divides: extension normal to the ridge, almost no deformation along the ridge and vertical
compression (triaxial deformation; figures 6 and 7a).

(b) Region 2 (approx. 450–1700 m depth)
The progressive evolution of a vertical girdle LPO (figure 4b) and simultaneous strengthening of
grain elongation perpendicular to the LPO girdle (figure 5b,c) and along the horizontal plane
suggest the dominance of a horizontal extension as described before by Lipenkov et al. [95].
Grain elongation directions are parallel to the horizontal, although the azimuthal orientation of
the core was repeatedly lost in the brittle zone, leading to a random sample cutting direction.
This indicates true horizontal elongation down to approximately 1000 m depth and thus triaxial
deformation with one dominating extensional component.

Flow model calculations predict that at approximately 1000 m depth the compressive direction
(D3) starts to incline away from the vertical (figure 7b), which is indeed reflected in the SPO as
the dip of grain elongation becomes inclined from the horizontal to several degrees (figure 4f ),
whereas the borehole was inclined by only approximately 1.5° throughout this region and
below down to approximately 1700 m depth (see borehole inclination in red in figure 4a). The
microstructure develops aspects of ‘oblique foliation’, typical for shear zones in quartzite rocks
[16]. This is caused by the principal deformation axes leaving the geographical vertical–horizontal
orientation towards an inclined one, and can be interpreted as a first effect of a small shear
component becoming relevant. The effects of this are still subtle, and only visible in the grain
shape, without any influence on the visual stratigraphy, which remains intact (figure 5a).

In this region the grain size also decreases with the changing type of ice (Holocene to glacial),
which has also been described for most other deep ice cores [85,95,96].

(c) Region 3 (approx. 1700–2030 m depth)
The successive evolution from the vertical girdle LPO towards a vertical single maximum LPO
(figures 2 and 4c) indicates a transition from dominating triaxial deformation towards horizontal
shear. Flow model calculations show that D2 starts to increase (figure 6) at approximately
1700 m while rotating within the ridge plane. D2 development from compressive towards tensile
(figure 6) and increasing obliqueness of D3 (figure 7b,c) describe the change from the extensional
regime typical at ice divides towards an increasing shear contribution. The transition from
dominating triaxial deformation towards horizontal shear causes an increase in the dipping angle
of grain elongations in vertical sections up to 10°, forming a microstructure close to the ‘oblique
foliation’ observed in figure 8. This angle is well above the observed borehole inclinations, which
also at this depth are less than 2° shortly after coring. This microstructure notably appears more
pronounced in so-called cloudy bands with a higher impurity load. This can be interpreted as an
implication for the higher influence of deformation versus recrystallization on the microstructure,
owing to either strain localization or inhibited grain growth [97]. The further destabilization
of the dominance of triaxial deformation produces millimetre-scale undulations in the visual
stratigraphy, because the principal compression direction becomes inclined towards 45° during
bed-parallel shear deformation. The successive transition depths from triaxial deformation with
horizontal extension and vertical compression to shear deformation suggested by these structural
observations are in accordance with predictions by the flow model. Model predictions show a
decreasing compressive component (D3) at approximately 1700 m depth (cf. vertical derivatives
in figure 4c), whereas the tensile component D1 remains approximately constant. This deviating
evolution of D1 and D3 is clearly represented by the increasing D2, which develops from slightly
compressional towards extensional behaviour in this depth region (figure 6). The low strain rate is
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1 cm

(b)(a) (c)

Figure 8. Example ‘oblique foliation’ characterized by inclined, elongated grains in ice (1785.0–1785.1 m depth). (a) Visual
stratigraphy section. (b) Corresponding sublimation etched surface microstructure map. (c) Resulting segmented grain
boundary network with the approximate inclination of maximum obliqueness sketched (dotted red line) in cloudy bands. Note
that themeasurement data of this obliqueness given infigure 4f average over thewhole 10 cmsection,which results in a smaller
value. (Online version in colour.)

also reflected by the upper part of the borehole (down to approx. 2030 m), as observed in January
2004 being hardly tilted until November 2005.

At the transition from region 3 to region 4 at approximately 2030 m depth, model predictions
suggest plane strain deformation as almost ideal simple shear with D2 being zero per year
(figure 6).

(d) Region 4 (approx. 2030–2385 m depth)
The single maximum LPO along the vertical core axis is fully developed after a sudden final
collapse of the girdle between 2035 and 2045 m. This sudden change in the LPO was also detected
as a clear reflector in radio-echo sounding (RES) data, which is caused by the dependence of the
electromagnetic wave velocity from the crystallographic orientation [98–100]. Grain elongation
direction histograms derived from vertical sections (figure 5b left) show a broad, but distinct
distribution (cone angle of 45°) with a slight tendency towards double/multiple maxima. This can
be interpreted as grains being partly elongated perpendicular to the main compression direction
in shear, thus lining up in the instantaneous stretching direction [16], and grains partly being
further rotated towards the shear plane [18,19]. These multiple maxima in the SPO description
should not be confused with multiple maxima in the LPO. Elongation of grains is caused by
deformation. Nucleation usually serves as an explanation for the multiple maxima of LPO, but
does not induce grain elongation. In this region, the overall deformation changes again to triaxial
deformation (general shear) with increasing D2 (figure 6). The principal compressive direction
(D3) is now approximately 45° inclined. The increasing component of bed-parallel shear readily
causes millimetre-scale z-folding by amplifying small undulations, which leads to local tilting of
stratigraphic layers (10–15°). RES reflectors fade out in this depth (‘echo-free zone’) owing to the
loss of layer coherency [101] caused by the intensely disturbing flow characteristic for bed-parallel
shear deformation [102].

The bottom layer of region 4 (approx. 2365–2385 m depth) is characterized by the lower border
of the Eemian ice (MIS5.5) layer at approximately 2360–2390 m depth (figure 4d). However,
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being approximately 400 m above bedrock, this layer is nearly at the same altitude as the
bedrock heights just downstream of EDML, as depicted in figure 1: the EDML site lies on a
region at approximately 100 m a.s.l. bedrock altitude, whereas the bedrock approximately 50 km
downstream elevates to approximately 500 m a.s.l., so that the ice in this depth flows against
it. This may have an effect upstream as the ice has to flow around this. The abrupt jump to
smaller grain sizes (figure 4d) at this transition is classically explained by impurity influence
on grain size [39,103–106], which is confirmed by the correlation coefficients of grain size with
isotope measurements [107]. Just above the depth of the sudden changes in grain size and shape,
we observe a high variability in the fabric data over short depth intervals. In a layer of less
than 20 m thickness around 2375 m depth, multiple maxima LPO and girdle LPO occur with
strong variations in neighbouring samples. As the ice is of interglacial origin with low impurity
content at this depth, we observe large grain sizes, which in turn raises questions about the
statistical significance of LPO measurements and LPO eigenvalue calculations. However, the
variations in different types of ice (δ18O taken as the ‘proxy’ for ice types) in some layers seem to
allow grain size to increase locally. The difference in these ice types is characterized by varying
impurity concentrations. We use a ‘proxy’ for the ice types however, because picking one impurity
is not meaningful with our current knowledge. This may be due to the combined effects of
several impurities, as suggested by Fitzpatrick et al. [108]. Impurities and their effect on grain
size is often explained by the ‘slowdown’ or ineffectiveness of grain boundary migration by
changing the grain boundary mobility [104,106]. This phenomenon acts on the microstructural
scale (grain and subgrain scale), whereas good correlations are well known on larger scales only
(e.g. our grain size–ice-type ‘proxy’ correlation with δ18O). Direct microstructural evidence on the
microstructural scale, such as impurity accumulation along grain boundaries, is difficult to prove
[109,110]. This effectively changes the deformation–recrystallization balance under increasing
strain rate [18,19,79]. The step in grain elongation magnitude (figure 4e) suggests an increased
influence of deformation on grain topology moving the microstructure from a recrystallization
dominated one towards a deformation microstructure (see a comparison of end members in figure
2 in [19]). Furthermore, although the ice is mainly clear, we see some isolated cloudy bands that
are strongly folded, which is an effect of the very strong shear deformation. The characteristic
deformation microstructure and strong folding of cloudy bands suggest an alternative hypothesis:
localized strain in certain layers. This is in accordance with the macroscopic deformation setting,
which predicts an increased strain rate at that depth by the model (figure 4c) as well as a
qualitative observation of a closing borehole [24]. To assess this hypothesis, further detailed
studies on the processes of ice interacting with impurities are needed.

The boundary zone between regions 4 and 5 at approximately 2380 m depth is to some extent
a remarkable layer with respect to the overall deformation predicted by the model: the principal
tensile direction (D1) has left the direction perpendicular to the ridge and rotates very quickly to
an along-ridge orientation (figure 7d).

(e) Region 5 (greater than approx. 2385 m depth)
The top of region 5 (approx. 2385–2405 m depth) is characterized by its stratigraphy, which
is well defined, ordered and seemingly straight. This is slightly surprising in contrast to the
significantly disturbed layers just above. However, we also observe small but sudden changes
in the layer inclination and flattened z-fold that may suggest that folding has occurred in
the past or on other scales which are difficult to evaluate from ice core information. Possible
changes of the predominant deformation mechanism showing microshear deformation have been
interpreted from striking microstructure observations (slanted brick wall pattern [86,111]). This
is in accordance with the extremely high grain shape values in figures 4e,f and 5b. In spite of the
high in situ temperature (figure 4a) around −10°C, the grain size in the depth range 2385–2450 m
does not increase, possibly owing to the high impurity content and shear rate, but increases to
very large sizes below 2500 m depth.
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Only below approximately 2405 m depth, we observe strong kink folding of the stratigraphic
layers, which is a clear indication for high shear rates in recent times. The single maximum LPO
slightly inclined from the vertical (figure 2) observed in this narrow transition zone and extreme
grain elongations up to aspect ratios of 1.8 (figure 4e) are also indicative for high shear rates.
Shear shows stronger effects on microstructure as under higher strain rates the balance between
deformation-induced and recrystallization-induced effects is changing significantly in favour of
deformation (figure 4c).

The bottom of region 4 as well as the top of region 5 represent a very interesting, but complex,
boundary zone. We want to emphasize the ambiguous depth of this boundary, in the sense that
different parameters differ strongly in the zone between region 4 and region 5: (i) the LPO changes
and shows anomalous behaviour between 2365 and 2380 m depth, (ii) grain shapes elongate
suddenly between 2385 and 2395 m depth, (iii) grain sizes change at the lower Eemian layer
border (2356–2386 m depth) and show (iv) grain growth only from 2520 m depth again, and
stratigraphy shows anomalous straight banding between 2385 and 2405 m depth. The processes
and predominating deformation regimes in this region are not yet understood as they are strongly
punctuated and probably catalysed by strong changes in material properties owing to different
impurity contents in glacial–interglacial–glacial ice layering. Further investigations on impurity
effects on rheology and microstructure are needed.

In the flow model, in region 5, tensile and compressive axes are both at approximately 45° with
respect to the bedrock, with a small tensile component D2 (figure 6), as expected for bed-parallel
simple shear.

At this point, it has to be emphasized again that the slight depth deviations of the region
borders in different parameters are probably owing to slightly different reaction times and
feedback loops of the processes forming the responses by changing the material in the micro-
and mesostructure.

5. Conclusion
Detailed observational data from the ice core micro- and mesostructure can be interpreted to
constrain the main deformation modes (e.g. compression versus shear) along the ice column. We
use an isotropic model to confirm this interpretation by considering the overall three-dimensional
flow field driven by ice sheet geometry. By combining several parameters from SPO and LPO, we
find indications for the deformation and recrystallization processes being active at the EDML
site. We show that it is the balance of both which determines microstructure and possibly flow
behaviour.

Recent microstructural modelling studies [18,19,112] combined deformation by a viscoplastic
full-field approach (taking strong crystal anisotropy into account [113]) with recrystallization
(dynamic and static, continuous and discontinuous [114]). These simulations suggested that the
effect of recrystallization on the LPO should be minor. The model set-ups have been chosen for
comparison with clean and cold polar ice, where, for example, nucleation is supposedly rare.
Notwithstanding, under certain conditions, such as high debris load or high temperatures, effects
of discontinuous recrystallization can occur [115]. Observations of recrystallization effects on
LPOs in ice cores, however, often suffer from poor statistics, because they are limited to the
lowest layers, typically characterized by very large grains ([15] and references therein). As mainly
unimodal or girdle LPO occurs at EDML, i.e. only a narrow layer (bottom layer of region 4) with
multi-maxima LPOs has been observed, we suggest that the LPO at EDML is affected mainly by
deformation, and thus the transition between the regions described above appears most clearly in
the LPO fabric data. In contrast, grain shape data show rather subtle deformation trends, as they
are strongly overprinted by recrystallization. These subtle trends are, however, consistent with
the interpreted deformation modes from LPO.

Impurities can have an impact on the balance between deformation- and recrystallization-
induced changes in grain topology. Impurities are postulated to affect recrystallization, by
slowing down grain boundary migration through pinning or dragging, and deformation itself by
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providing dislocation sources. Polar ice is always at a high homologous temperature (�0.7Tm),
which leads to high recrystallization activity through rotation recrystallization and strain-induced
grain boundary migration recrystallization.

Evaluation of the LPO, grain elongation distributions and visual stratigraphy leads to a
division into five distinct regions along the core. Here the results are interpreted as the effects of
triaxial deformation with horizontal extension changing towards bedrock-parallel shear. This is
in good agreement with modelled strain rate trends as well as borehole deformation observations.

Down to approximately 1000 m depth, triaxial deformation with vertical compression and
horizontal extension clearly dominates. The influence of shear on the grain structure and fabric
starts at approximately 1000 m depth and becomes more prominent between 1700 and 2030 m
depth, intriguingly observable in the smooth transition between girdle and single maximum LPO
and in the borehole geometry. A final collapse of the eigenvalues in a narrow zone between
approximately 2030 and 2050 m depth marks the transition to bed-parallel shear. Shear is the
dominating deformation down to the base, but is interrupted by a narrow layer with changing
conditions, with abnormal LPO leading into a region of high shear activity, with extreme values
in grain shapes.

Owing to relatively small strain rates at the drilling location on the ice divide, only subtle
changes in SPO can be observed at EDML, but we suggest including these analyses in future
ice core studies especially in mechanically more active regions such as the forthcoming East
Greenland ice core project. These analyses can help to assess the share of ice deformation and
basal sliding with respect to transport of ice towards the ocean.
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