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Abstract About 50 Gt of carbon is fixed photosynthetically by surface ocean phytoplankton communities
every year. Part of this organic matter is reprocessed within the plankton community to form aggregates
which eventually sink and export carbon into the deep ocean. The fraction of organic matter leaving the
surface ocean is partly dependent on aggregate sinking velocity which accelerates with increasing aggregate
size and density, where the latter is controlled by ballast load and aggregate porosity. In May 2011, we
moored nine 25m deep mesocosms in a Norwegian fjord to assess on a daily basis how plankton community
structure affects material properties and sinking velocities of aggregates (Ø 80–400μm) collected in the
mesocosms’ sediment traps. We noted that sinking velocity was not necessarily accelerated by opal ballast
during diatom blooms, which could be due to relatively high porosity of these rather fresh aggregates.
Furthermore, estimated aggregate porosity (Pestimated) decreased as the picoautotroph (0.2–2μm) fraction of
the phytoplankton biomass increased. Thus, picoautotroph-dominated communities may be indicative for
food webs promoting a high degree of aggregate repackaging with potential for accelerated sinking. Blooms
of the coccolithophore Emiliania huxleyi revealed that cell concentrations of ~1500 cells/mL accelerate
sinking by about 35–40%, which we estimate (by one-dimensional modeling) to elevate organic matter
transfer efficiency through the mesopelagic from 14 to 24%. Our results indicate that sinking velocities are
influenced by the complex interplay between the availability of ballast minerals and aggregate packaging;
both of which are controlled by plankton community structure.

1. Introduction

Phytoplankton fixes approximately 50 Gt of carbon in the euphotic zone of the oceans every year [Longhurst
et al., 1995; Field et al., 1998]. Most of this organic carbon is remineralized in the surface ocean. However,
5–12Gt C escape remineralization and are exported out of the surface (100m), either as dissolved organic
carbon (DOC) trapped in downwelling water currents, as particulate organic carbon (POC) sinking due to
gravity, or transported downward by vertically migrating zooplankton [Hansell and Carlson, 2001; Turner,
2002; Honjo et al., 2008; Steinberg et al., 2008; Henson et al., 2011; Siegel et al., 2014]. A large fraction of the
POC and DOC is biologically remineralized during its descent through subsurface water and released as
dissolved inorganic carbon (DIC). That way, DIC is transported from surface to depth against a concentration
gradient in a series of biologically mediated processes—the reason why this has been termed the biological
pump [Volk and Hoffert, 1985]. A shutdown of the biological pump would lead to a significant accumulation
of DIC in the surface ocean paralleled by a roughly 60–70% increase of current atmospheric CO2 concentra-
tions within a 1000 year equilibration time [Maier-Reimer et al., 1996]. This highlights the outstanding impor-
tance of the biological pump for the global carbon cycle and climate.

The fraction of surface-originating POC that reaches the deep ocean depends on the balance between
particle remineralization rates and sinking velocities. A fast-sinking particle made of relatively refractory
POC will experience little remineralization during its descent from the euphotic zone (~0–200m) through
the mesopelagic (200–1000m) into the deep ocean (below 1000m). Conversely, a slowly sinking particle
made of labile and easily disintegrating POC would never reach that far. Remineralization rates are controlled
by bacterial activity and mesozooplankton feeding as well as particle fragmentation rates [Kiørboe, 2001;
Giering et al., 2014]. Sinking velocity is determined by the viscosity of seawater, particle size, shape, and excess
density [Stokes, 1850; McNown and Malaika, 1950; Smayda, 1970], where the latter depends primarily on
porosity of the particle and the amount of ballast mineral attached to it [Alldredge and Gotschalk, 1988].

BACH ET AL. SINKING VELOCITY OF MARINE AGGREGATES 1145

PUBLICATIONS
Global Biogeochemical Cycles

RESEARCH ARTICLE
10.1002/2016GB005372

Key Points:
• Aggregate sinking speeds are
controlled by processes in the
plankton community

• Plankton communities can affect
sinking speed by altering aggregate
porosity and ballasting

• Emiliania huxleyi blooms of
1500 cells/mL increase organic matter
transfer efficiency from 14 to 24%

Supporting Information:
• Supporting Information

Correspondence to:
L. T. Bach,
lbach@geomar.de

Citation:
Bach, L. T., T. Boxhammer, A. Larsen,
N. Hildebrandt, K. G. Schulz, and
U. Riebesell (2016), Influence of
plankton community structure on the
sinking velocity of marine aggregates,
Global Biogeochem. Cycles, 30,
1145–1165, doi:10.1002/
2016GB005372.

Received 5 JAN 2016
Accepted 6 JUL 2016
Accepted article online 9 JUL 2016
Published online 13 AUG 2016

©2016. American Geophysical Union.
All Rights Reserved.

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-9224
http://dx.doi.org/10.1002/2016GB005372
http://dx.doi.org/10.1002/2016GB005372
http://dx.doi.org/10.1002/2016GB005372
http://dx.doi.org/10.1002/2016GB005372
http://dx.doi.org/10.1002/2016GB005372
mailto:lbach@geomar.de


Opal, CaCO3, and lithogenic minerals are ballast materials formed in or deposited onto the oceans’ surface
layer. Opal is formed by diatoms, silicoflagellates, and radiolarians, while CaCO3 is mainly formed by cocco-
lithophores, calcifying dinoflagellates, foraminifera, and pteropods. Lithogenic minerals are usually of terrige-
nous origin and transported into the oceans via dust events or river input. Ballast minerals are important
components in particle export as they may slow down remineralization of associated POC [Hedges and
Oades, 1997] and increase particle excess density, thereby accelerating sinking velocity [e.g., Passow and
De La Rocha, 2006; Honjo et al., 2008; Ploug et al., 2008]. These mechanisms were used to explain the ballast
ratio hypothesis [Armstrong et al., 2009], which originates from the observation that globally averaged POC:
ballast mineral ratios are high and variable in the euphotic zone but converge to relatively narrow and stable
values in the deep [Armstrong et al., 2002]. The ballast ratio hypothesis suggests that ballast minerals, in par-
ticular relatively dense CaCO3, strongly support deep ocean POC sequestration since most organic material
reaching below 2000m is associated with them [Francois et al., 2002; Klaas and Archer, 2002].

Recently, however, the ballast ratio hypothesis has been called into question. Passow and De La Rocha
[2006] and Boyd and Trull [2007] noted that globally averaged correlations between ballast materials and
POC may not be found on regional scales or along the course of an entire seasonal cycle. This concern
was confirmed by the analysis of Wilson et al. [2012] and Le Moigne et al. [2014], who found variable regio-
nal correlations between CaCO3 and POC in the deep and in the surface ocean and consequently attributed
the tight global correlation as an artifact of spatial averaging. Francois et al. [2002], Lam and Bishop [2007],
Lam et al. [2011], and Henson et al. [2012a, 2012b] reported that ballast-rich diatom blooms are character-
ized by surprisingly low POC transfer efficiencies into the deep ocean and explained this finding by (1) the
high degree of fluffiness of diatom aggregates and (2) the relatively large proportion of easily degradable
organic carbon compounds within diatom aggregates. In consequence, they suggested that POC transfer
efficiency is not primarily determined by the presence of ballast minerals but by the upper ocean ecosys-
tem structure with those systems producing tightly packed and refractory aggregates having highest trans-
fer efficiencies. It is important to keep in mind, however, that these recent developments do not exclude an
important influence of ballast under all circumstances. Instead, they shift the focus from ballast materials as
primary controlling factor of export toward the state of the pelagic ecosystems being of major relevance for
export flux. Nevertheless, ballast materials may seasonally and/or regionally still be very important [e.g.,
Waite et al., 2005; Honda and Watanabe, 2010; Martin et al., 2011; Smetacek et al., 2012].

In this study we used mesocosms to follow the development of particle sinking velocities over time and con-
nect it to the succession of natural plankton communities in order to evaluate the influence of food web
processes on sinking.

2. Materials and Methods
2.1. Experimental Setup

In May 2011, nine “Kiel Off-Shore Mesocosms for future Ocean Simulations” (M1–M9) were deployed for
5weeks in a Norwegian fjord (Raunefjord; 60.265°N, 5.205°E) close to the city of Bergen. The cylindrical but
initially folded mesocosm bags made of transparent polyurethane foil were mounted in 8m long floating
frames [Riebesell et al., 2013]. After mooring of the flotation frames at the study site, bags were unfolded
by lowering the bottom part to 24m, thereby enclosing the natural plankton community. Bottom and top
of the cylindrical bags were covered with 3mm meshes before extension to exclude patchily distributed
larger plankton (e.g., adult jelly fish) and nekton (e.g., fish). The mesh-covered mesocosms were allowed to
exchange with seawater for 3 days. After this period, scuba divers closed the mesocosms by removing the
bottom mesh and then quickly sealing the wide opening with a 2m long conical sediment trap. The upper
openings of the bags were pulled above the water surface directly after trap attachment, thereby isolating
the enclosed plankton community from the surrounding fjord water. The mesh covering the upper opening
was removed thereafter.

All mesocosms were 25m deep (Figure 1), 2m in diameter, and contained a volume of approximately 75m3.
Sampling started after the mesocosms were closed, and the water column was mixed for 5min by bubbling
with compressed air eliminating a slight salinity stratification [Riebesell et al., 2013]. Salinity was ~32 through-
out the entire water column after mixing and decreased to ~31.9 at the end of the experiment due to dilution
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by rainwater. All mesocosms were left unper-
turbed for the first 4 days of the experiment.
Subsequently, seven of them were enriched
with different amounts of CO2-saturated sea-
water as explained by Riebesell et al. [2013] to
reach initial pCO2 levels of 300, 310 (both
untreated controls), 395, 590, 890, 1165,
1425, 2060, and 3045μatm. The mesocosm
with 300μatm (M2) was discovered to have
an unmendable hole and was thus excluded
from analyses. All mesocosms were enriched
with ~5μmol L�1 NO3

� and ~0.16μmol L�1

PO4
3� in the middle of the experiment

(Julian day 142; 22 May) as described by
Schulz et al. [2013].

2.2. Sampling and Processing of Water
Column Parameters

Phytoplankton, particulate matter, and dis-
solved inorganic nutrient samples were taken
every morning between 09:00 and 11:00 A.M.
with integrating water samplers (Hydro-Bios),
which collect equal amounts of water from
every depth (0–23m). Depth-integrated sam-
ples were stored in 10 L carboys, transported
to land, and kept in the dark at in situ tempera-
ture until subsampling for flow cytometry,
chlorophyll a, biogenic silica (BSi), and inor-
ganic nutrients. Great care was taken to mix
the carboys before every subsampling. The
time between mesocosm sampling and sub-
sampling from the carboys was usually well
below 3 h. Flow cytometry subsamples
(50mL) were stored at in situ temperature for
a maximum of 3 h until analysis with a
FACSCalibur flow cytometer (BD Biosciences).
Phytoplankton enumerations were obtained
from fresh samples based on difference in
chlorophyll autofluorescence and side scatter

with the trigger set on red fluorescence [Larsen et al., 2001]. Light microscopy investigations revealed that
hardly any phytoplankton cells >50μm were present in the samples, making the flow cytometry measure-
ments (covering the size range <100μm) representative for the overall size spectrum. Subsamples for chlor-
ophyll a and BSi were filtered with gentle vacuum (200mbar) on glass fiber filters or cellulose acetate filters,
respectively. Both sample types were stored at �20°C until measurements following Welschmeyer [1994]
(chlorophyll a) or Hansen and Koroleff [1999] (BSi). Nitrate (NO3

�), phosphate (PO4
3�), and silicate (Si(OH)4)

concentrations were determined following Hansen and Koroleff [1999] using a Hitachi U2000 spectrophot-
ometer [Schulz et al., 2013].

Zooplankton samples were collected with an Apstein net (55μmmesh size, 0.17m net opening) on a weekly
basis. The maximum sampling depth was 23m to prevent any contact of the net with the sediment
trap. Sampling was restricted to four net hauls per mesocosm and week in order to avoid overfishing.
Zooplankton were transported to the lab in less than an hour, where it was preserved with
hexamethylenetetramine-buffered formalin (4% (v/v)) for counting and taxonomic analyses with a
stereomicroscope.

Figure 1. Schematic drawing of the KOSMOS system [Riebesell
et al., 2013]. The video by Boxhammer et al. [2015] gives an
impression on the plankton community enclosed in these
mesocosms.
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2.3. Sampling and Processing of Sediment Trap Material

The bottom of the mesocosms had the conical shape of a sediment trap (Figure 1). Sinking material collected
in the traps was pumped daily between 08:00 and 09:00 A.M. through a 25m long (10mm inner diameter)
silicon tube under low vacuum into a glass bottle at the surface [Boxhammer et al., 2016]. The bulk of the
sediment trap material (>97%) was used to determine the amount and composition of particulate matter,
while small subsamples were used for zooplankton counting and particle sinking velocity measurements
(see below).

Bulk samples were concentrated by centrifugation. Resulting pellets were freeze-dried, weighed, and ground
to fine powder as described by Boxhammer et al. [2016]. The powder was used for POC, total particulate car-
bon (TPC), and BSi measurements. Before analysis, POC samples were soaked with 50μL of 1 molar HCl to
remove all CaCO3. TPC and POC samples were subsequently analyzed on a C/N elemental analyzer
(Hekatech). Particulate inorganic carbon (PIC) was calculated from the difference of TPC and POC. The
amount of sediment trap BSi was measured photometrically according to Hansen and Koroleff [1999].

Results from PIC, POC, and BSi analyses were used to estimate the relative contribution of each of these
constituents to the material weight of the collected aggregates excluding water. Therefore, we assumed
(1) material weights (weightmaterial) of 1.06, 2.1, and 2.7 g cm�3 for POM, BSi, and PIC, respectively
[Sarmiento and Gruber, 2006] and (2) that no components other than these three contributed to the weight
of the collected material. Assumption 2 is reasonable because there was no significant source of lithogenic
ballast materials inside a mesocosm, and all lithogenic particles present at the beginning of the experiment
should sink out during the first days (see section 4.2.1). Accordingly, the contribution of biogenic materials to
the total material weight (weightfraction) is calculated as

weightfraction ¼ b � weightmaterial

1:06 � POC þ 2:1 � BSi þ 2:7 � PIC
(1)

where b is either POM, BSi, or PIC and weightmaterial is their respective densities.

Zooplankton samples (10mL) were transferred into glass vials and preserved with hexamethylenetetramine-
buffered formalin (4% (v/v)). Samples from two consecutive days but from the same mesocosm were then
pooled and subsequently analyzed with a stereomicroscope.

Samples for sinking velocity measurements were carefully sieved (300μm) to exclude very large gelatinous
zooplankton, which can (when present) clog the settling column [Bach et al., 2012a]. Samples were diluted
with filtered (0.2μm) seawater (salinity ~33.7) to keep particle concentrations low enough to avoid
particle-particle interactions in the settling column, which are known to accelerate sinking velocities [Bach
et al., 2012a]. This preparation procedure had little effect on fecal pellet integrity, and we also did not observe
that pellets were retained on the sieve [Bach et al., 2012a]. Fluffy aggregates, however, did most likely not
maintain their original size during sampling preparation. Instead, they continuously disintegrated and reag-
gregated so that their size, density, and porosity measured in the settling column are potentially different
than they were when they were sinking in situ. The methodological uncertainties will be outlined in
section 2.5, and limitations will be further discussed in section 4.2.2.

2.4. Particle Sinking Velocity and Size Measurements

Sinking velocities of the sediment trap samples weremeasured directly after preparation for ~20min with the
FlowCam method described in Bach et al. [2012a]. This camera-based method allows parallel measurements
of sinking velocity, equivalent spherical diameter (ESD), and shape of each particle sinking through the set-
tling chamber. Turbulence within the settling column induced by convection was suppressed by operating
the system in a temperature-controlled room (10°C) and constantly ventilating the settling chamber [Bach
et al., 2012a]. The size of the settling column is relatively small (400mm long× 10mm wide × 3mm deep)
due to technical restrictions of the camera. This also limits the size of aggregates that can be reasonably
investigated to a maximum of 400μm, because significantly larger aggregates would experience too pro-
nounced wall effects. Sinking aggregates were divided in four size classes according to their ESD to facilitate
data evaluation and discussion. Size classes were 80–130μm, 120–180μm, 170–260μm, and 240–400μm.
The slight overlap between them was necessary to avoid exclusion of aggregates with an ESD exactly on
the border of two size classes [Bach et al., 2012a].
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2.5. Aggregate Density and Porosity Calculations

Aggregate density (ρaggregate) was calculated from measured sinking velocity (Umeasured) and ESD using
Stokes’ law:

ρaggregate ¼
Umeasured�μseawater

2
9�g� ESD

2

� �2 þ ρseawater (2)

where g is the Earth’s gravitational acceleration, ESD is the equivalent spherical diameter of the aggregate,
μseawater is the viscosity of seawater, and ρseawater is the density of seawater. The μseawater and ρseawater were
calculated from known salinity and temperature with the equations provided by Sharqawy et al. [2010].

The application of Stokes’ law for calculations of ρaggregate is appropriate when particles are equiaxial and sink
in a laminar flow regime. Laminar flowwas established in our measurements since investigated particles sank
sufficiently slow and were relatively small so that their Reynolds numbers always remained far below the
critical threshold of 0.5 [McNown and Malaika, 1950]. Aggregate shape was random but the aspect ratio
(i.e., length/width) of the majority of aggregates was above 0.8, also indicating a higher abundance of debris
relative to fecal pellets. We therefore consider particle shape and orientation while sinking to be of relatively
small influence since shape only becomes an important factor when width deviates considerably from length
[McNown and Malaika, 1950].

We propagated assumed imprecision of 5% in Umeasured, 2% in ESD, 0.1% in ρseawater, and μseawater in equa-
tion (2) to assess the statistical error in ρaggregate. This analysis suggests an error of around 0.0012 g cm�3 in
ρaggregate, which is small compared to absolute ρaggregate values. However, in the context of sinking velocity, it
is necessary to consider changes in excess density (i.e., ρaggregate� ρseawater). For the latter, we estimated a
statistical error of ~0.0016 g cm�3 based on the abovementioned individual imprecisions in ρaggregate and
ρseawater. This resulted in a relative error (i.e., 0.0016 g cm�3 divided by absolute excess density) between 6
and 40%, which increased with decreasing ρaggregate.

Porosity is the fraction of an aggregate not occupied by solid matter [Alldredge and Gotschalk, 1988].
Assuming that the investigated aggregate had no porosity, then its theoretical density (ρtheo) would be

ρtheo ¼ 1:06� fracPOC þ 2:1� fracBSi þ 2:7� fracPIC (3)

where fracPOC, fracBSi, and fracPIC are the relative contribution of each of the three materials to the total
weight (equation (1)). An aggregate with a theoretical density between 1.06 (pure POC) and 2.7 g cm�3 (pure
CaCO3) will then have to be “diluted” with seawater (ρseawater 1.025 g cm

�3) to such a degree that ρtheo plus
ρseawater equals ρaggregate or

ρaggregate ¼ ρtheo þ u�ρseawater
u þ 1

(4)

where u is the dilution factor. Solving equation (4) for u yields

u ¼ ρtheo � ρaggregate
ρaggregate � ρseawater

(5)

Porosity estimates (Pestimated) were subsequently calculated as

Pestimated ¼ 1� 1
uþ 1

(6)

Potential imprecisions in density variables will also be reflected in the precision of Pestimated. We estimated a
statistical imprecision of ~40 g cm�3 in ρtheo based on assumed imprecisions of 5% in the theoretical density
of POC [Bach et al., 2012a], as well as 2% in fracPOC, fracBSi, and fracPIC, respectively. This, together with the
abovementioned error in ρaggregate and ρseawater lead to a statistical imprecisions between 2 and 30 in the
dilution factor u (Δu). Lower Δu coincided with lower absolute values in u, which explains why the absolute
imprecision in Pestimated is decreasing with increasing Δu. For example, we estimated that Pestimated ranges
between 0.985 and 0.992 when u is 100 and Δu is 30, while it ranges between 0.909 and 0.933 when u is
12 and Δu is 2 (equation (6)). This analysis indicates that the imprecision in Pestimated is generally smaller than
the changes observed in the course of the study, although it can be in the same range in some occasions
(as exemplified in the second case described in the previous sentence). Aggregate fragmentation and
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reassembly through sample treatment before measurements (see section 2.3) was another potential source
of error in ρaggregate and hence Pestimated. This aspect will be addressed in section 4.2.2.

A critical assumption for the accuracy of the porosity calculation is the equality of chemical composition in all
aggregate size classes. Deviations could for instance arise from large numbers of mesozooplankton in the
traps, which may bind an increased fraction of the POC in a particular size class. Mesozooplankton, however,
was far less visible than phytodetritus, which strongly dominated the sediment trap material until the end of
this investigation (appearance of sediment trap material shown in Figure S1 in the supporting information).
Although we cannot entirely rule out the possibility of systematic changes in composition with size, there are
three lines of evidence indicating that this was rather not the case: (1) large aggregates are composed of
smaller aggregate building blocks [Kiørboe, 2001; Burd and Jackson, 2009] so that variability in chemical
composition should average out unless the aggregate is composed of a single component [Alldredge,
1998]; (2) sinking velocity and ρaggregate showed very similar trends in all four size classes, suggesting that
particle properties do not systematically change with size (section 3.2); and (3) while filming the sinking
particles with the microscope camera (FlowCam), we noted that the aggregate matrix appeared fairly homo-
genous among the size classes (Figure S1).

2.6. Assessment of Transfer Efficiency

Transfer efficiency is defined as the ratio of sequestration flux to export flux, where the former is the amount
of sinkingmatter reaching the bottom of themesopelagic zone (i.e., 1000m) and the latter the amount reach-
ing the bottom of the euphotic zone (see Sanders et al. [2014] for definitions). Sinking velocities of surface
ocean aggregates as determined in this study cannot be used directly to derive transfer efficiencies. We
therefore formulated a simple one-dimensional carbon flux model in order to test whether the magnitude
of change in measured sinking velocities could affect transfer efficiency.

Key assumptions for the one-dimensional model are (1) the depth of the euphotic zone is 100m and particles
passing this depth enter the export pathway, (2) lateral POC inputs or losses below the euphotic zone are bal-
ancing each other, and (3) particle remineralization (kremin (day

�1)) during sinking is parameterized as a func-
tion of temperature (T in °C) according to Schmittner et al. [2008]:

kremin ¼ 0:048 � 1:066T zð Þ (7)

where z is the depth in meters. This equation accounts for a doubling of enzymatic activity for a 10° increase
of temperature (Q10 kinetics). For T(z) we used the average profile at 61.5°N between 16 and 17°W from July
2013 downloaded from the world ocean atlas data set (https://www.nodc.noaa.gov/OC5/indprod.html),
which is an open ocean region but approximately the same latitude as our study site. (4) Model sinking velo-
city (md�1) is parameterized as

Umodel ¼ 0:04z þ 25 (8)

The stepwise increase in Umodel is explained with a loss of the organic carbon content in aggregates [Berelson,
2002]. Note that this parameterization was adopted from the University of Victoria model [Schmittner et al.,
2008], but the sinking velocity at the surface was changed from 7md�1 [as in Schmittner et al., 2008] to
25md�1 in order to receive a transfer efficiency of ~14% between 100 and 1000m depth in the control
run, which corresponds to a Martin b of about 0.85 [Martin et al., 1987]. This value is around the average flux
attenuation among different ocean basins [Berelson, 2001]. (5) The POC fraction which is remineralized on
every depth interval depends on the balance between remineralization rates and sinking velocities. With
these assumptions we can formulate the one-dimensional carbon flux model as

POC zð Þ ¼ POC z � 1ð Þ � POC z � 1ð Þ � kremin

Umodel
� z � z � 1ð Þ½ �

� �
(9)

where z� 1 is the depth interval above the calculated depth.

The sinking velocity term (Umodel; equation (8)) was then multiplied with a stepwise increasing factor in order
to simulate an acceleration of aggregate sinking speed over the entire water column. The corresponding
increase of transfer efficiency of POM (in percent) between the bottom of the euphotic zone (here 100m)
and 1000m was calculated for each multiplication step as

Transfer efficiency ¼ POM1000

POM100
(10)
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2.7. Data Analysis

The change of organic matter ballast-
ing, aggregate sinking velocities, size,
ρaggregate, and Pestimated over time were
analyzed by means of time series analy-
sis. Therefore, we averaged the daily
response in the respective parameters
over all eight mesocosms. Calculation of
the daily average smoothed the data
and facilitated the detection of trends.

Based on the trends observed in the
averaged aggregate parameters we split
the whole data set into three distinct
phases: phase I = Julian days 128–142,
phase II = Julian days 143–152, and phase
III = Julian days 153–157. We subse-
quently tested for each time series para-
meter whether there is a significant
trend (decrease or increase with time) in
the respective phase by means of linear
regression analysis using R (R Project for
Statistical Computing). Results of these
analyses are summarized in Table S1 in
the supporting information. Please note
that we stopped our analysis on Julian
day 157, although the study lasted until
day 163 because sinking velocity, the
core parameter in the present study,
was only measured until day 157.

Temporal developments in zooplankton
abundance have not been analyzed with
the time series approach because of
low sampling frequency. The temporal
development in phytoplankton abun-
dance, chlorophyll a, and BSi was so
obvious that a time series analysis was
not necessary.

3. Results
3.1. Plankton Community Structure

The mesocosms were closed during a postbloom period with rather low chlorophyll a and nutrient concen-
trations but relatively high numbers of mesozooplankton. After closing the mesocosms the water column
was gently mixed by air bubbling in order to eliminate the salinity stratification. This procedure lifted nutri-
ents from deeper mesocosm water layers to the brighter top, thereby stimulating photoautotroph growth
in phase I (Figure 2A). The increase in chlorophyll a was paralleled by decreasing nutrient concentrations
(Figures 2B–2D) and primarily due to growth of picoeukaryotes (0.2–2μm), two groups of nanophytoplank-
ton (NANO I (2–6μm) and NANO II (6–20μm)), and cryptophytes (2–20μm; Figure 3). The two NANO groups
were most likely the diatoms species Arcocellulus sp. and Thalassiosira sp. (R. Bermudez-Monsalve personal
communications), which explains the increase in BSi (Figure 2E). Abundances of the coccolithophore
Emiliania huxleyi (5–10μm) and Synechococcus (0.6–1.6μm) remained low at the beginning (Figure 3).

Copepod abundance was highest at the beginning of the experiment and ranged from ~12.9 (M1) to 15.3
(M7) individuals L�1. Roughly half of the animals were nauplius larvae (between 44 and 58%), but they

Figure 2. Temporal development of (A) chlorophyll a, (B) BSi, (C) NO3
�,

(D) PO4
3�, and (E) Si(OH)4 concentrations. Julian day 127 was the 7th of

May. The vertical grey lines separate the three phases. NO3
� and PO4

3�

were added on day 142.
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developed to copepodites and adults during the first phytoplankton bloom (Figures 4A and 4C). Most of the
copepods (generally more than 95%) belonged to the genera Oithona, Temora, Pseudocalanus, and Calanus
throughout the entire experiment [Hildebrandt, 2014]. The loss of nauplii from the water column through
sedimentation was low but higher at the beginning than at any other time of the experiment (Figure 4B).
This contrasted the loss rates of copepodites and adults, which were generally on a higher level but lowest
at the beginning (Figure 4D). Metazoan calcifiers such as pteropods, other gastropod larvae, and bivalve
larvae (called mollusks in the following) were initially relatively abundant but quite constantly decreased
during the entire experiment. Mollusk loss through sedimentation seemed to be higher at the beginning
and toward the end of the experiment, although loss rates were difficult to quantify as there were large
fluctuations between samplings (Figure 4F). Appendicularians, represented by the species Oikopleura dioica,
were initially present in low numbers, and we observed an elevated loss through sedimentation at the
beginning of the study (Figures 4G and 4H).

The initial phytoplankton bloom started to decline between Julian days 131 and 132 (Figure 2A) mainly due
to a decreasing abundance of the PICO and NANO II groups (Figures 2C and 2D). The decline of NANO II was
paralleled by decreasing BSi concentrations (Figure 2B), decreasing copepod abundances in the water
column (Figures 4A and 4C), and increasing copepod loss rates through sedimentation (Figure 4D).

The addition of nutrients at the beginning of phase II (Figures 2B–2D) stimulated a second phytoplankton
bloom (Figure 2A), which was primarily mediated by NANO I, NANO II, and cryptophytes, except for M9

Figure 3. Temporal development of major phytoplankton functional types or genera. The vertical grey lines separate the
three phases. NO3

� and PO4
3� were added on day 142.
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and to some extent also M7, where picoeukaryotes and Synechococcus were increasing instead (Figures 3B–3D
and 3F). As in the first bloom, autotrophic growth was paralleled by buildup of biogenic silica (Figure 2B).
Copepod abundances during the second bloom were comparable to those before the nutrient fertilization
(Figures 4A and 4C). Their loss rates through sedimentation, however, decreased by about 50% and stayed at
a low level until Julian day 155 (Figure 4D). Appendicularians were still low in abundance but started to increase
in phase II until the end of the experiment (Figure 4G).

The second bloom started to decline around Julian day 148, but the decline rate varied amongmesocosms. It
was most pronounced in M1 and least pronounced in M9. Copepod and appendicularian abundance varied
considerably among the mesocosms during the bloom decline. Their loss rates through sedimentation were
generally low but increased when chlorophyll a concentrations reached baseline levels around Julian
day 155.

Figure 4. Mesozooplankton development. (A, C, E, G) Measured water column abundances of the major mesozooplankton
types. (B, D, F, H) Loss rates of these types through sedimentation. Note that the last measurement of zooplankton
abundance in the water column was on day 161, which was after sinking velocity measurements ended. The vertical grey
lines separate the three phases. NO3

� and PO4
3� were added on day 142.
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Synechococcus and E. huxleyi strongly increased in abundances in some of the mesocosms toward the end of
the experiment in phase III. Synechococcus was primarily blooming in M9 and M7 (up to 1.7 and
0.5 × 106 cellsmL�1, respectively; Figure 3A), while E. huxleyi thrived most noticeably in M4, M6, and M1
(up to 2800, 1900, and 1400 cellsmL�1, respectively; Figure 3E). The divergence of the plankton composition
between mesocosms seen in Figures 3 and 4 is the result of different CO2 concentrations. This will be
discussed in detail in publications currently in preparation.

3.2. Aggregates Properties and Sinking Velocity

Average sizes of aggregates within the four size classes were 101 (80–130μm), 145 (120–180μm), 205
(170–260μm), and 289μm (240–400μm). Size was comparatively stable and showed little change over time
(Figures 5A–5D), although it must be kept in mind that the particle size distribution in the settling column
potentially deviated from the size distribution inside the mesocosms due to sample preparation
[Boxhammer et al., 2016] (see also section 2.3).

The ρaggregate of the four size classes averaged over thewhole experiment decreasedwith aggregate size from
1.044 (80–130μm), over 1.038 (120–180μm), 1.034 (170–260μm), to 1.031 g cm�3 (240–400μm). The
ρaggregate decrease with size (Figure S2A) was due to the modular or fractal organization of aggregates
[Alldredge and Gotschalk, 1988; Burd and Jackson, 2009]. Development of ρaggregate over time was comparable
among all size classes (Figures 5E–5H). Phase I was characterized by consistently high ρaggregate in the larger
two size classes and initially high but significantly decreasing ρaggregate in the two smaller ones
(Figures 5E–5HandTable S1). Duringphase II ρaggregate suddenlydropped (larger two size classes) or continued
dropping for 3 days (smaller two size classes) before reachingabaseline value, atwhich they remaineduntil the
end of the second phase. The last phase was characterized by a treatment-specific development in ρaggregate
with those mesocosms with higher abundances of the coccolithophore E. huxleyi having higher values.

In the different size classes, Pestimated averaged over the whole experiment was 0.946 (80–130μm), 0.963
(120–180μm), 0.976 (170–260μm), and 0.984 (240–400μm), which is in very good agreement with the results

Figure 5. Temporal development of aggregate properties and ballasting. (A–D) ESD, (E–H) ρaggregate, and (I–L) Pestimated of the aggregates within the four size
classes. (M–P) Contribution of POC, BSi, and PIC to the total weight (excluding seawater) of the material collected in the sediment traps. Y axis labels are shown
on top of each plot. The black line is the mean calculated as the daily average of all mesocosms. The vertical grey lines separate the three phases. NO3

� and PO4
3�

were added on day 142.
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from earlier studies [Alldredge and
Gotschalk, 1988; Lam and Bishop, 2007;
Engel et al., 2009]. The increase of
Pestimated with aggregate size is a
commonly observed feature and due
to the fractal nature of aggregates
[Alldredge and Gotschalk, 1988; Burd
and Jackson, 2009]. Development of
Pestimated over time was similar among
the four size classes. It decreased signif-
icantly throughout phase I (Table S1)
but developed some treatment-
specific differences toward the end of
this phase (Figures 5I–5L). Differences
were most pronounced in M9, which
generated aggregates with lower
Pestimated. The treatment-specific differ-
ences in Pestimated were still present
at the onset of phase II. However,
Pestimated was starting to increase again
in all mesocosms and reached a second
peak shortly after the second peak in
chlorophyll a near the end of phase
II (compare Figures 2A and 5I–5L).
Pestimated decreased during the last
2 days of phase II, but the decline was
treatment specific. It was again most
pronounced in M9 (Figures 5I–5L).

Aggregate sinking velocities averaged
over the whole experiment were 6.1
(80–130μm), 8.6 (120–180μm), 11.4
(170–260μm), and 15.2 (240–400μm)
md�1, respectively, and increased with
aggregate size (Figure S2B). Changes
in sinking velocity over time are similar
among the four size classes (Figure 6)
reflected in the linear correlation
between sinking velocities of different
size classes (Figure S2C). Its temporal
development mirrored changes in
ρaggregate (see above and compare
Figures 6 and 5E–5H). Thus, all relevant
changes in aggregate sinking velocity
measured in the settling columns were
caused by changes in their density
properties.

3.3. Ballasting of Sediment Trap Material

At the beginning of the experiment roughly 65% of the total sediment material weight were made up by
organic matter, while silica and CaCO3 contributed 25 and 10%, respectively (Figures 5M–5P). The fraction
of silica and CaCO3 decreased steadily until day 140 to ~12 and 7%, respectively. The continuous reduction
of silica ballasting during this period was paralleled by the decline of diatoms and BSi in the water column
(Figures 2B and 5N). The reduction of CaCO3 contribution in phase I was not reflected in a decrease of E.

Figure 6. (A–D) Measured sinking velocities of the four size classes (with
Figure 6D being the smallest). The black line is the mean sinking velocity
calculated as the daily average of all mesocosms. The vertical grey lines
separate the three phases. NO3

� and PO4
3� were added on day 142.
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huxleyi cell abundance (Figures 3E and 5O) but may instead either be attributable to (1) decreasing coccolith
production rate at stable E. huxleyi population size, (2) the dwindling presence of calcifying mollusk larvae
(Figure 4E), or (3) to a declining abundance of bacteria-derived CaCO3 precipitates [Heldal et al., 2012] (see
also section 4.1.1).

Silica contribution to total density started to increase again on day 146, which was 4 days after the nutrient
addition (Figure 5N). The increased share of silica material in the sediment trap of 15–25% shortly after the
peak of the second bloom (Julian day 150) coincides with a decline of water column BSi as well as NANO I
and NANO II abundances (Figures 2B, 3B, and 3D). Silica contribution decreased linearly after day 150 reflect-
ing the decrease of BSi in the water column. Its contribution was 5–13% at the end of the experiment.

CaCO3 contribution to total density generally scaled positively with E. huxleyi abundance for the time after
the nutrient addition until the end of the experiment. Highest E. huxleyi abundance in M4 translated to
28% CaCO3 contribution to weight fraction of sediment trap material at the end of the experiment. In
contrast, CaCO3 was not contributing at all to the material weight in M9 during this phase (Figure 5O), where
E. huxleyi appeared in very low abundances (Figure 3E).

3.4. Relevance of Changes in Sinking Velocity for Particulate Matter Transfer Efficiency

Aggregate sinking velocities changed considerably in the course of the experiment in response to the plank-
ton community succession (Figure 6). We formulated the one-dimensional carbon fluxmodel (equation (9)) in
order to assess whether changes within this scale could be relevant for particulate matter sequestration.
Results of this sensitivity analysis are shown in Figures S3A and S3B. The pattern of particle remineralization
resembled a Martin curve, irrespective of the modeled sinking velocities. Flux attenuation was negatively
correlated with sinking velocities (Figure S3A). Transfer efficiency between 100 and 1000m depth increased
by about 0.25% per 1% increase in modeled sinking velocity (Figure S3B).

4. Discussion

Linking plankton community structure with measurement of export-relevant parameters by means of in situ
mesocosm studies has recently been identified as a research priority [Sanders et al., 2014]. We enclosed a nat-
ural plankton community in a Norwegian fjord and were able to follow its development for more than a
month under close to natural conditions (see video by Boxhammer et al. [2015] to get an impression on
the plankton community). This experiment is the first in a series of several (Swedish coast, 2013; Coast off
the Canary islands, 2014; Norwegian coast, 2015), where sinking velocity measurements with high temporal
resolution [Bach et al., 2012a] were linked with plankton community structure within the mesocosms. We will
therefore not only address the major hypothesis and outcomes of the study (section 4.1) but also discuss
limitations and illustrate potential improvements of the mesocosm approach (section 4.2).

4.1. Influence of the Plankton Community Structure on Aggregate Properties and Sinking Velocities
4.1.1. Was There a Transition from Ballast to Packaging-Dominated Control on Sinking Velocity?
The first phytoplankton bloom was characterized by high BSi concentrations in the water column and a
large copepod population developing from nauplii into adults. Aggregates sank relatively fast during this
period, which appears connected to a large CaCO3 and BSi ballast loading (Figure 5P) rather than low
Pestimated (Figures 5I–5L).

Potential CaCO3-forming organisms present in the mesocosms at this time comprised E. huxleyi (Figure 3E),
metazoan calcifiers (Figures 4E and 4F), and bacteria which can contribute up to ~0.3μmol kg�1 of inorganic
CaCO3 as particles (1–100μm) in Raunefjord [Heldal et al., 2012] through the release of polyamines [Yasumoto
et al., 2014]. We estimated CaCO3 supply by E. huxleyi based on the assumptions that each cell contributed a
total of 2 pmol CaCO3 (1 pmol within the coccosphere plus 1 pmol as detached coccoliths [Balch et al., 1993]).
The presence of 52–185 cellsmL�1 during the first 7 days (Figure 3E) would result in a water column

coccolithCaCO3 standing stock of 0.1–0.37μmol L�1, whereas the corresponding CaCO3 accumulation rate in
the sediment traps ranged from 0.012 to 0.052μmol L�1 d�1 during this period (CaCO3 sedimentation data
not shown). We estimated that 8–37% loss of the coccolithCaCO3 standing stock per day could fully account
for the bulk CaCO3 recovered from the sediment traps during the first 7 days. Such a loss rate could have been
easily compensated by new coccolith production by the E. huxleyi population [Bach et al., 2012b] inside the
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mesocosms. Thus, CaCO3 ballast recovered from the sediment traps during the first 7 days could have poten-
tially been supplied to a large extent by E. huxleyi. The relevance of other CaCO3 sources remains unclear, but
since, for example, metazoan shells were sparse and have a lower carrying capacity for organic matter, they
may not have been particularly efficient ballast materials [Schmidt et al., 2014].

Opal ballast particles were generated by diatoms (mainly Arcocellulus sp. and Thallassiosira sp.), which were
the only silicifiers present in noticeable quantity by this time. Both diatom frustules and E. huxleyi coccoliths
are small (~3–15μm), which allows them to be more homogenously incorporated into an organic aggregate
matrix and serve as efficient ballast particles [Schmidt et al., 2014]. Hence, we assume that relatively fast sink-
ing during the first bloom was primarily due to opal ballasting by diatoms and presumably CaCO3 ballasting
by E. huxleyi.

The contribution of BSi and CaCO3 to the total weight of sediment trap material was rapidly decreasing from
~27% (day 137) to 16% (day 140) after the first bloom. Sinking velocities, however, were not noticeably
affected by the sudden decline in ballasting (Figure 6). The absence of a clear reduction of sinking velocities
can be explained by declining Pestimated (i.e., increasing aggregate compactness), which compensated for the
reduction of BSi and PIC ballasting during this time (Figures 5I–5L). Interestingly, the estimated shift toward
less porous aggregates happened when chlorophyll a reached baseline levels and NO3

� and PO4
3� were

close to (NO3
�) or within (PO4

3�) the detection limits (Figures 2A–2C). Therefore, we speculate that the
decrease in Pestimated could have been caused by a transition in the food web from a diatom-dominated food
web fueled by upwelled nutrients (new production) toward one, which was increasingly dependent on
remineralized nutrients (regenerative production). Presumably, the shift toward regenerative production
may have intensified recycling and led to a more thorough removal of fresh and fluffy components from
the POC standing stock. This hypothesis is supported by observations of higher POC and PON contents in
diatom-derived marine snow compared to aggregates containing more decomposed components
[Alldredge, 1998]. The preferential removal of fluffy components would lead to an accumulation of more den-
sely packed material in the sinking material [Lam et al., 2011]. Additionally, this repackaging may have been
further amplified by copepods feeding on sediment trap material since we counted increasing numbers of
living copepods in the sediment trap samples at the point when chlorophyll a concentrations consolidated
at a temporal minimum after the first bloom (compare Figures 2A and 4D). Organic matter became sparse
in the water column at this time so that more and more copepods may have detected the sediment trap
as an additional food source [Lampitt et al., 1993].
4.1.2. Sinking Velocity Control Through Aggregate Porosity? The Potential Role of Plankton
Community Structure
The addition of nitrate and phosphate to all mesocosms (Figures 2B and 2C) on day 142 initiated a second
phytoplankton bloom. Diatoms were a prominent component in this second bloom (Figure 2B) as there
was still dissolved silicate left in the system (~0.5μmol L�1 on day 142). The loss rate of copepods through
sedimentation declined during bloom buildup, suggesting that the animals were attracted by the fresh food
growing in the water column and relied to a lesser extent on debris collected in the sediment trap.

Sinking velocities responded to these water column processes with a profound decline and reached experi-
ment minima briefly after nutrient addition (Figure 6). To our surprise, these lowest velocities were sustained
throughout the entire diatom bloom between days 142 and 152 even though increasing amounts of BSi
ballast were collected in the sediment traps with a ballasting potential close to that observed during the first
bloom (Figure 5N). The absence of a positive BSi ballast effect on sinking velocities during the diatom bloom
could have three different reasons. First, BSi ballast was not integrated into the aggregate matrix. This is unli-
kely, however, considering that much of it originates from small diatoms (section 3.1), which should have a
high potential to attach to organic matter due to their relatively high scavenging potential [Burd and
Jackson, 2009; Schmidt et al., 2014]. Second, the dominant diatoms coagulated within aggregates actively
downregulated their excess density in order to remain at higher light intensities during nutrient-fertilized
growth as seen for large chain-forming species [Moore and Villareal, 1996]. This explanation is also rather unli-
kely, since large chains were hardly present in our study and decelerated sinking under nutrient-repleted
conditions is a species-dependent, not a universal feature of diatoms [Bienfang et al., 1982]. Third, perhaps
most likely seems to be that high Pestimated (Figures 5I–5L) decelerated sinking velocity and thus overcom-
pensated the positive influence of mineral ballast during that time. This conclusion is also supported by
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our daily inspections of the sediment trap samples, where we noted that the collected material looked like a
fluffy mush rather than a consortium of individual particles.

Comparing the succession of Pestimated during bloom one (phase I) with that of bloom two (phase II + phase III)
reveals a remarkably similar pattern. Pestimated was rather high in both blooms as long as the system was in a
“new production state,” where biomass buildup is fueled by upwelled or added inorganic nutrients. Pestimated

decreased, however, when switching back to a “regenerative state” under low inorganic nutrient concentra-
tions in the aftermath of a bloom (compare Figures 2B and 2C and Figures 5I–5L). These observations are in line
with a growing body of literature that export of aggregates generated during the typical diatom spring bloom is
relatively inefficient due to their high porosity (i.e., low packaging) [Francois et al., 2002; Lam and Bishop, 2007;
Lam et al., 2011; Puigcorbé et al., 2015].

To further explore mechanisms controlling packaging we not only looked at the temporal development of
Pestimated but also had a closer look on the differences among mesocosms. Differences were generally small
and the overall trend was similar, but we noticed that Pestimated tended to be lower in those mesocosms,
which harbored higher numbers of picophytoplankton (e.g., M5, M7, and M9; Figures 3A and 3C). In order
to test this observation, we first calculated the biovolume of all phytoplankton groups (Figure 9), then calcu-
lated the ratio of groups smaller 2μm (PICO) to groups larger 2μm in diameter (NANO), and thereafter cor-
related the average PICO/NANO ratio with the average Pestimated (Figure 7). We found a negative correlation
between the PICO/NANO ratio and Pestimated in all four aggregate size classes (Figure 7), which suggests that
plankton communities with abundant picophytoplankton tend to generate more tightly packed aggregates
than communities where a higher fraction of the biomass is accumulated in larger species. This observation is

Figure 7. Influence of plankton community structure on Pestimated. Estimated cell diameters used for biovolume calcula-
tions (assuming spherical shape) were Synechococcus = 1 μm, picoeukaryotes = 1 μm, NANO I group = 3 μm, NANO II
group = 10 μm, E. huxleyi = 6 μm, and cryptophytes = 7 μm. Biovolume was subsequently calculated by multiplication of
flow cytometry counts (Figure 3) with species-specific biovolumes. The sum of biovolume of species smaller than 2 μm
(Synechococcous and picoeukaryotes) divided by the sum of biovolume provided by species larger than 2 μm (NANO I,
NANO II, E. huxleyi, and cryptophytes) is the PICO:NANO ratio. Shown here is the PICO:NANO ratio and Pestimated averaged
over the whole experiment with one line for each of the four aggregate size classes.
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mechanistically reasonable because small aggregate components allow relatively little interstitial space
between them [Burd and Jackson, 2009]. Furthermore, PICO-dominated communities usually prevail in
regenerative systems, where particles potentially undergo a relatively large degree of biotic reprocessing
and therefore a continuous compression [Lam et al., 2011]. With respect to particle matter export, low
Pestimated aggregates formed in a high PICO/NANO regime would promote transfer efficiencies as they prob-
ably sink faster than fluffy aggregates. Thus, the negative correlation between PICO/NANO and Pestimated

(Figure 7) observed in our study may help to explain the numerous observations that low productivity
regimes tend to generate particles with high transfer efficiencies [Francois et al., 2002; Lam and Bishop,
2007; Lomas et al., 2010; Lam et al., 2011; Henson et al., 2012a, 2012b; Maiti et al., 2013; Cavan et al., 2015;
Puigcorbé et al., 2015].
4.1.3. The Potential for Sinking Velocity Acceleration by E. Huxleyi-Derived CaCO3 Ballast
Phase III was characterized by decreasing chlorophyll a and BSi concentrations as well as treatment-specific
developments within major phytoplankton and zooplankton types (Figures 3 and 4). The differential devel-
opments amongmesocosms were reflected in particle sinking velocities, where those mesocosms which har-
bored significant E. huxleyi blooms generated aggregates with some of the highest sinking velocities
measured during the entire study, while aggregate sinking velocities remained at a low level in mesocosms
where E. huxleyi growth was muted (Figures 3 and 6).

The acceleration of sinking velocities in phase III was most likely due to CaCO3 ballast provided by E. huxleyi
(Figure 8) and rather not caused by tight packaging because Pestimated was higher in those treatments with
high CaCO3 availability (compare Figures 5I–5L with 5O). We used the positive correlations between particle
sinking velocity and E. huxleyi abundance (Figure 8A) or sediment material PIC:POC ratio during phase III
(Figure 8D) to estimate the influence of E. huxleyi-dependent acceleration of particle sinking velocity on trans-
fer efficiency with the one-dimensional particle flux model (equation (9)) derived in section 2.6. Therefore,
slopes and the y intercepts of the four sinking velocities versus PIC:POC or cell abundance correlations (see
Figures 8A and 8D) were plotted against average ESD of the respective size class. Slopes and y intercepts
of the four correlations increased with average aggregate size (Figures 8B, 8C, 8E, and 8F), which is expected
according to Stokes’ law. With the slopes versus ESD (Figures 8B and 8E) and y intercepts versus ESD

Figure 8. Influence of the E. huxleyi blooms on sinking velocities during phase III. (A) Sinking velocities of the four size classes (black triangles: 80–130 μm; blue dots:
120–180 μm; green squares: 170–260 μm; red pyramids: 240–400 μm) as a function of water column E. huxleyi abundance. Each data point represents the phase III
average of one mesocosm with error bars being standard deviations. Note that we calculated phase III averages (instead of using daily measurements during phase
III) as we are unable to tell with what temporal delay E. huxleyi cells arrive in the sediment traps. (B) Correlations between slopes and average ESD or (C) y intercepts
and average ESD of the regressions calculated in Figure 8A. (D–F) The same results as in Figures 8A–8C, but in this case, sinking velocities are a function of PIC:POC
ratio measured in sediment trap material. Note that data from individual days during phase III could be used in Figure 8D in contrast to Figure 8A because mea-
surements of PIC:POC and sinking velocities were done with material collected on the same day.

Global Biogeochemical Cycles 10.1002/2016GB005372

BACH ET AL. SINKING VELOCITY OF MARINE AGGREGATES 1159



(Figures 8C and 8F) correlations, we were able to parameterize the dependency of sinking velocities on either
sediment material PIC:POC ratio or water column E. huxleyi abundance (Nehux) as

SinkingvelocityPIC:POC ¼ slopePIC:POC�PIC : POCþ interceptPIC:POC (11)

and

Sinkingvelocityehux ¼ slopeehux�Nehux þ interceptehux (12)

where slopePIC:POC and slopeehux as well as interceptPIC:POC and interceptehux were taken from regressions
shown in Figures 8B, 8C, 8E, and 8F. The E. huxleyi- or PIC:POC-dependent acceleration of sinking velocities
can subsequently be included in the export model (equation (9)) by multiplying the sinking velocitymodel

term with the ehuxfactor or the PIC:POCfactor, defined as

ehuxfactor ¼ slopeehux�Nehux þ interceptehux
interceptehux

(13)

and

PIC : POCfactor ¼ slopePIC:POC�PIC : POCþ interceptPIC:POC
interceptPIC:POC

(14)

Hence, Umodel in equation (9) increases about a certain percentage throughout the entire water column,
similar as has been simulated in the sensitivity analysis conducted in section 3.4. This time, however, sinking
velocity is not increased by an arbitrary factor but scales with E. huxleyi cell concentrations in the euphotic
zone or the PIC:POC ratio of the sinking aggregates.

Sinking velocity acceleration was already profound under relatively low E. huxleyi abundances or PIC:POC
ratios (Figures 8A and 8D), which also considerably increased transfer efficiencies (Figure 9). For example,
we estimated an acceleration of almost 40% for an increase in E. huxleyi abundance from 0 to
1500 cellsmL�1 or a PIC:POC increase of ~0.1 (Figures 8A and 8D). Such a ballast-mediated increase in sinking
velocity could elevate transfer efficiencies from 14 to 24% (Figure 9). The key question now is: Are E. huxleyi
cell densities of 1500 cellsmL�1 and the corresponding increase in PIC:POC exceptional or common in the

Figure 9. Influence of the E. huxleyi blooms on transfer efficiencies during phase III calculated with the one-dimensional
carbon flux model (section 4.1.3). (A) Flux attenuation as a function of different E. huxleyi-dependent sinking velocity
parameterizations (section 4.1.3; Figure 8a). The upper and lower horizontal grey lines indicate the bottom of the euphotic
zone and sequestration depth, respectively. (B) Increase of transfer efficiency with E. huxleyi abundance in the euphotic
zone. (C and D) The same results as in Figures 9A and 9B, but in this case, sinking velocities are a function of PIC:POC ratio
measured in sediment trap material (section 4.1.3; Figure 8D).
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oceans? Abundances of up to 1000 [Poulton et al., 2013], 1500 [Balch et al., 1991], and even 20,000
coccospheresmL�1 [Holligan et al., 1993] were counted during bloom seasons on the Patagonian Shelf,
the Gulf of Maine, and south of Iceland (63°N, 20°W), respectively. Kopelevich et al. [2014] calculated that E.
huxleyi often reaches abundances of 3000 cellsmL�1 or even more during the typical coccolithophore sum-
mer bloom in the Black Sea. An estimated 3mmol PICm�3 contributed by 1500 cellsmL�1 (assuming
2 pmol PIC cell�1 [Balch et al., 1993]) also compares reasonably well with data from the satellite studies by
Moore et al. [2012] and Hopkins et al. [2015], who found coccolithophore PIC of 1–10mmolm�3 to be com-
mon on shelves and many regions of the open ocean during bloom season. Based on these assessments
on E. huxleyi abundance we conclude that E. huxleyi-associated particle sinking velocity accelerations of
~40% or even more are perhaps not unusual. Thus, the regional and/or seasonal occurrence of E. huxleyi
blooms may mark events of highly efficient sequestration pulses.

4.2. Sinking Velocity Measurements of Mesocosm Sediment Trap Material: Uncertainties, Limitations,
and Future Directions
4.2.1. Influence of Lithogenic Ballast Materials
Some of the highest sinking velocities of the entire experiment were measured during the first days
(Figure 6). As lithogenic material has not been quantified in this study, it cannot be ruled out that the initially
fast sinking rates are due to lithogenic ballast minerals enclosed while lowering the mesocosm bags at the
beginning of the experiment. However, mesocosm bags were closed 4 days before the first sinking velocity
measurement and the sediment traps were emptied on a daily basis until then. Artificial seeding of meso-
cosms with Saharan dust particles (99% <1μm in size) showed that fastest sinking dust particles are trans-
ferred to 9.5m within hours [Bressac et al., 2012]. Smaller particles remained longer in the water column
but also declined considerably within 2 days [Bressac et al., 2012]. Thus, if lithogenic ballast particles were pre-
sent in relevant quantities at the beginning of our experiment, then most of it should have sunk out of the
water column before the first sinking velocity measurement.

The Icelandic volcano Grímtsvötn erupted in the course of the experiment on 21 May. Part of the Grímtsvötn
ash plume passed the Raunefjord area during the night from 24 to 25 May (days 144–145) with ash concen-
trations ranging from 200 to 4000μgm�3 air and ash particle sizes between ~1μm and 50μm [Tesche et al.,
2012; Lieke et al., 2013]. Sinking velocities, however, remained low after the ash passage (Figure 5) for at least
another 4 days, which is too long considering that particles within this size class should have arrived much
earlier in the sediment trap. Furthermore, the acceleration of sinking velocity 4 days after the ash passage
was inconsistent among mesocosms, which is in contrary to expectations in case of such a dust-seeding
event. Thus, it is concluded that dust from the Grímtsvötn eruption was unlikely to have a significant ballast
effect on mesocosm aggregates, either because ash concentrations were too low or because they were insuf-
ficiently collected by the mesocosms.

Based on these two lines of evidence we conclude that lithogenic ballast materials did not play a crucial role
in the present study. Nevertheless, it is advisable to quantify their influence in mesocosm experiments on
particle export because they may play an important role in other settings, where dust influx is more likely.
4.2.2. Sampling-Associated Limitations and Potential Improvements
Prior to sinking velocity determination, aggregates had to be pumped from the sediment trap to the surface,
carried to land in a bottle, and prepared for the measurements (see section 2.3). This procedure provoked
aggregate fragmentation and reassembly, which potentially influenced aggregate porosity and density
and likely influenced aggregate size. Potential effects on porosity and density should be relatively constant
over time and thus of minor consequence on the trends observed in this study. The likely modification of
the aggregate size structure prevented us from investigating if changes in the plankton community compo-
sition could influence aggregate sinking velocity through changes in aggregate size structure.

Our method to measure sinking velocities (as set up in this study) is restricted to particles from 80 to 400μm
in ESD [Bach et al., 2012a]. Although particles of that size are responsible for a large fraction of organic matter
export to depth, we missed the important influence of particles outside that range [Clegg and Whitfield, 1990;
Ebersbach and Trull, 2008; Durkin et al., 2015]. In our study it is likely, however, that sinking velocities of aggre-
gates>400μmwould have shown a similar response to changing plankton community structure as the ones
below this threshold as long as they are composed of smaller aggregate building blocks. The same principle
should apply for aggregates <80μm but only until they become so small that they reach the size of
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individual components (e.g., single-diatom cells), where their specific chemical composition no longer
averages out in the aggregate matrix. The good correlation between sinking velocities of aggregates from
different size classes (Figure S2C) supports the notion that temporal trends observed between 80 and
400μm could to some extent also be found outside this size range.

The focus on rather small aggregates in this study (80–400μm) explains comparatively slow sinking rates,
ranging from an average of 6md�1 in the smallest size class (80–120μm) to 15md�1 in the largest one
(240–400μm). Extrapolation based on the size versus velocity correlation given in Figure S2B projects settling
rates of about 200md�1 for 4mm large aggregates. This aligns well with in situ measurements yielding
1.3–287md�1 at a particle size of 0.2–20mm [Diercks and Asper, 1997; Pilskaln et al., 1998; Nowald et al., 2009]
and in situ sensor estimates yielding 10–200md�1 at a size of 0.07–6mm [Mcdonnell and Buesseler, 2010;
Jackson et al., 2015]. They tend to be somewhat lower, however, than sinking velocities calculated from sediment
trap deployments with either the “benchmark”method (average of 70 to 450md�1 [Berelson, 2002; Fischer and
Karakaş, 2009; Xue and Armstrong, 2009]) or specialized settling velocity sediment traps (ranging from 1 to
2000md�1 [Armstrong et al., 2009; Alonso-González et al., 2010]). Potential explanations for discrepancies
between direct measurements and sediment trap-derived estimates could be poor trapping efficiency of slow
sinking particles [Baker et al., 1988], leading to their underrepresentation in the sediment trap sample or remi-
neralization of slow sinking particles before reaching the usually quite deeply deployed sediment traps.

Aggregate remineralization is the other factor (next to sinking velocity) controlling the attenuation of POM flux
with depth (equation (9)). In the present study we neglected remineralization rate but we assume that changes
in this parameter are opposite to the changes in sinking velocity. For example, tightly packed aggregates will
sink faster than similar-sized fluffy aggregates but their remineralization will probably be slower because less
porous particles have a reduced surface to volume ratio. Likewise, ballast-mediated acceleration of sinking velo-
cities can be accompanied by reduced remineralization rates in case the ballast encloses and physically protects
the organic matter [Francois et al., 2002]. Thus, we speculate that the calculated trends in transfer efficiencies
would be amplified rather than buffered by changes in remineralization rates.
4.2.3. Restriction to Surface Ocean Processes: The Need for “Meso-Pelagi-Cosms”
The water column enclosed in the mesocosms was 25m deep. Accordingly, the time from particle formation in
the water column to collection in the sediment trap is relatively short and particles experienced little modifica-
tions after production. Our analysis is therefore restricted to processes taking place in the epipelagic but leaves
postproduction particle modifications within the mesopelagic realm unconsidered. Thus, sinking velocities
reported here should be seen as “entry speed” of aggregates at the beginning of their descent into the deep.

This limitation could be solved by designing significantly longer mesocosm bags than the ones used here—
ideally ones which reach hundreds of meters deep into the mesopelagic. These Meso-pelagi-cosms would
fully exclude advection and therefore enable us to understand and precisely quantify organic matter fluxes
into the deep, how they depend on the plankton community in the euphotic zone, and how they are attenu-
ated below the euphotic zone. Although construction and successful deployment of such Meso-pelagi-cosms
are technically challenging, it may be worth aiming for such an approach in the future.

5. Conclusions

In this study we have investigated the influence of community structure on aggregate sinking velocity. We con-
clude that plankton communities influence sinking velocities primarily by providing ballast minerals andmodify-
ing aggregate porosity, although it must be kept in mind that the porosity estimate in this study (Pestimated) is a
highly derived parameter and therefore associated with uncertainties (sections 2.5 and 4.2.2). Our observations
point toward the following: (1) Ballast availability was relatively high when phytoplankton blooms were fueled
by inorganic nutrients and dominated by diatoms. Yet sinking velocities of aggregates generated during these
bloom were not necessarily accelerated by ballast. This could be related to the relatively high porosity of aggre-
gates produced when the plankton community is in a new production state. (2) Pestimated tended to decrease in
postbloom periods, which we hypothesize to be caused by a shift from new to regenerated production. (3)
Pestimated averaged over the entire study period was lower in those mesocosms, where picophytoplankton
contributed a larger fraction to the autotrophic biovolume. Therefore, PICO-dominated communities may be
indicative for foodweb structures promoting a high degree of particle repackagingwith potential for accelerated
sinking velocities. Our Pestimated-based interpretations (2, 3) align very well with the growing body of literature
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pronouncing the important role of particle repackaging in particulate matter export [e.g., Lam et al., 2011;Henson
et al., 2012b; Puigcorbé et al., 2015]. (4) Some of the highest sinking velocities were measured during a moderate
E. huxleyi bloom toward the end of the experiment. This is in line with the common notion that CaCO3 is a parti-
cularly effective ballast mineral and emphasizes the importance of E. huxleyi to support regional organic matter
sequestration pulses.
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