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Abstract

In this thesis we investigate the influence of tides to the dynamics of ice sheet – ice shelf
systems with numerical modelling. Tides play an important role in these systems by
moving ice shelves and modulating the flow velocities of ice streams even far upstream.
The grounding line as the boundary between the shelf and the ice sheet plays a crucial
role in the mass balance and general stability of an ice sheet. It has been observed to
migrate in response to tidal forcing, but the exact mechanisms and consequences are not
yet understood in detail.

On short timescales, as present in tidal forcing, we need to account for the viscoelas-
tic character of glacier ice and choose a Maxwell model as an appropriate rheological
representation. We develop and implement a viscoelastic full stokes ice flow model and
implement it in the finite element software COMSOL Multiphysics. Two different test
setups are used to verify our flow model and show good agreement.

In our model we are able to identify two processes, which control ice flow variations
with tides. Uplifting of the ice shelf leads to retreat of the grounding line and therefore
less area of the ice base is in contact with the bedrock. This leads to smaller basal
shear stress, resulting in an increase in flow velocity. Additionally high tide causes
increased normal stress at the ice – water boundary, which slows the ice flow. When
forced with the S2 (12 h) and M2 (12.42 h) tidal constituents, we observe a non-linear
interaction, which leads to a perturbation of the horizontal flow velocity close to the
Msf (14.76 d) constituent. By not including tides and viscoelasticity into ice models we
commit significant errors for the estimation of the flux across the grounding line and
the resulting mass balance. For our experimental setup this error depends on the elastic
parameter and we obtain a maximal error of 3.75 %. We also observe a general retreat of
the grounding line due to tidal forcing. This implies that tides possibly lead to a different
equilibrium of the grounding line position.





Kurzfassung

In dieser Masterarbeit untersuchen wir den Einfluss von Tiden auf die Dynamik von
Eisschild – Schelfeis Systemen durch numerische Modellierung. Tiden spielen hierbei
eine wichtige Rolle, da sie die Schelfeise auf und ab bewegen und damit die Fließge-
schwindigkeit des Eises bis in den Eisschild beeinflussen. Die Aufsatzline bildet die
entscheidende Grenze zwischen dem Eisschild und dem Schelfeis. Sie ist maßgeblich für
die Massenbilanz und die generelle Stabilität des Eiskörpers verantwortlich. Messungen
haben gezeigt, dass sich diese Linie durch Gezeiten bewegt. Die exakten Mechanismen
und Folgen dessen sind bisher nur unzureichend erforscht.

Auf kurzen Zeitskalen, wie sie bei Gezeiten auftreten, verhält sich Eis viskoelastisch.
Dieses Verhalten bilden wir in unserem Fließmodell ab, indem wir ein Maxwell Modell
für die Beschreibung der Rheologie verwenden. Wir entwickeln ein viskoelastisches Full
Stokes Fließmodell und implementieren es in der Finiten Elemente Software COMSOL
Multiphysics. Mittels zwei verschiedener Testsetups verifizieren wir das Modell.

In unserem Modell ermitteln wir zwei Prozesse, die für die Modulation der Eisge-
schwindigkeiten durch die Tiden verantwortlich sind. Zunächst sorgt das Anheben des
Schelfeises dafür, dass weniger Fläche des Eiskörpers in Kontakt mit dem Felsbett ist.
Dies führt zu geringerer basaler Reibung und damit zu erhöhter Fließgeschwindigkeit.
Gleichzeitig führt ein höherer Wasserstand auch zu größerer Normalspannung an der
Eis – Ozean Grenzfläche, was die Fließgeschwindigkeit verringert. Eine nichtlineare
Interaktion der S2 (12 h) und der M2 (12.42 h) Partialtiden führt zu einer Perturbation
der horizontalen Fließgeschwindigkeit mit einer für die Msf (14.76 d) Partialtide typis-
chen Frequenz. Das Vernachlässigen der viskoelastischen Eigenschaften des Eises und
des Effekts der Tiden auf den Eiskörper, führt zu systematischen Fehlern bei der Bes-
timmung des Flusses über die Aufsatzlinie und damit der Massenbilanz. In unsererem
experimentellen Setup ermitteln wir für diesen Fehler einen maximalen Wert von 3.75 %.
Außerdem beobachten wir einen, durch Gezeiten verursachten, generellen Rückzug der
Aufsatzlinie. Daraus folgern wir, dass Gezeiten einen signifikanten Einfluss auf die Gleich-
gewichtsposition der Aufsatzlinie haben.
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1 Introduction

Glaciers and ice sheets play an important role in the Earth System. They are a crucial
component of our planet’s climate, directly influencing the radiation balance and global
sea level and therefore have a considerable impact, not only on physical but also on
social and eco-systems. The ice sheets of Greenland and Antarctica combined contain
enough water rise global sea level by 65.66 m (Vaughan et al., 2013). While they are
not expected to melt completely in the near future, they are subjected to rising temper-
atures and their contribution to sea level rise is increasing. A comparison of elevation
change rates between 2011 and 2014 to rates between 2003 and 2009 show that the
volume loss has increased by a factor of 3 for West Antarctica and by a factor of 2.5
for Greenland. An estimate of the combined volume change over the observed period
can be given as (−503 ± 107) km yr−1 (Helm et al., 2014). To the total sea level rise of
(3.2 ± 0.4) mm yr−1 over the period from 1993 to 2010 the ice sheets of Antarctica and
Greenland contribute about 0.6 mm yr−1 (Vaughan et al., 2013).

An ice sheet gains mass by surface accumulation of precipitation and loses mass
through drainage into the surrounding ice shelves, calving off icebergs and, to a lesser
extend, due to melt. The grounding line is the boundary between the ice sheet that rests
on rigid ground and the floating ice shelf. The flux across this transition zone mainly
controls the mass balance of the ice sheet and is therefore one of the most important
quantities to study. It is however difficult to determine the position of the grounding line
(and as a consequence also the flux), since there is no obvious indicator at the surface.

Ice shelves are formed by the ice draining from ice streams and outlet glaciers and
surround most of the Antarctic coast. They play a crucial role for the stability of the
ice sheets due to their buttressing effect which is caused by lateral shear margins in bay
areas and reduces the flow velocity of the ice. Over the last decades ice shelves along the
Antarctic Peninsula have become unstable, resulting in increasing flow velocities of outlet
glaciers. Recent studies rise the concern, that the marine portion of the West Antarctic
Ice Sheet (WAIS) may have started an irreversible collapse (Rignot et al., 2014; Joughin
et al., 2014).

It is crucial to undertake further research on the principles that drive ice sheet – ice
shelf interaction and to develop reliable numerical ice models, to predict the future re-
sponse of large ice sheets and their contribution to sea level and climate change.

While ice sheets rest on rigid ground, ice shelves float on the ocean and therefore are
affected by tides. The vertical movement of the ice shelf leads to elastic bending around
the grounding line. Hence the grounding line migrates in response to the tide as sketched
in Fig. 1.1. The area in which the bending occurs is called hinge zone. It can be observed
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Figure 1.1: Principle of the grounding line – ocean tide interaction. Variations in sea level
displace the ice shelf and since the ice stream is fixed, bending occurs in the transition
zone between ice shelf and ice sheet (hinge zone). The grounding line migrates back
and forth with the tides.

in interferometric Synthetic Aperture Radar (InSAR) satellite images, where the phase
shift in the signal is used to measure very small displacements. In Fig. 1.2 such an image
from an area of the Wilkins shelf is presented. Areas where the ice body is bending are
covered by color circles, called fringe belts. From this it is possible to locate the position of
the grounding line and also the amplitudes of the tides can be determined. Depending on
the topography and amplitude of the tides, the hinge zone can be several kilometers wide
and marks the area where the grounding line migrates. While this enables us to observe

Figure 1.2: Quadruple InSAR image of the Wilkins shelf ice. Areas of horizontally varying vertical
displacements (flexure) are visible as color cycles. The fringe belt marks the area of
bending. It consists of seven fringes which corresponds to a vertical displacement of
about 20 cm for the shelf (Moll, 2007).

the position of the grounding line on timescales of months (depending on the repeat cy-
cle of the satellite), its temporal resolution is not sufficient to help us understanding the
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underlying physical processes in detail. This is where numerical models become valuable.

Tidal motion also influences the horizontal velocities of ice shelves and the outlet
glaciers and ice streams even far upstream. Velocity variations of up to 20 % have been
observed and can be attributed to the fact that an uplifted ice shelf has less area in
contact with the ground. Hence the basal drag is reduced and this leads to higher
velocities (Gudmundsson, 2011; Lohse, 2012).

Ice is a viscoelastic fluid with a non Newtonian rheology. On timescales of months,
years and millennia, as usually studied in the realm of climate science, it can be described
as a purely viscous fluid. However when looking at tides, which change the load situation
of ice shelves on an hourly time scale, the elastic effects have to be considered as well.
Therefore an appropriate material model has to be chosen. It needs to be able to cor-
rectly incorporate viscous flow on long time scales as well as short term elastic behaviour.

The goal of this thesis is to develop a viscoelastic full Stokes ice model to investigate the
role of tides in the dynamics of ice sheet – ice stream interaction. The implementation is
done with the Finite Element method in the commercial software COMSOL Multiphysics.
Before the flow model can be used to make any predictions, it has to be tested and verified
against analytical solutions and other models. We use an idealized two dimensional ice
sheet – ice shelf geometry to perform different experiments. The main focus lies on
understanding the processes involved in the modulation of the flow velocity by tidal
forcing and to identify the influence of specific variables, such as tidal periods, elastic
parameters and bedrock inclination.

This thesis is structured as follows: The second chapter (Chapter 2) introduces the
underlying theory of the ice model. Balance equations for mass and momentum and the
resulting full Stokes system of equations are presented. The rheological behaviour of ice
is discussed and the equations for the Maxwell model are derived. Chapter 3 describes
the numerical implementation in the Finite Element software COMSOL and verifies the
correct operation of the model at two test cases. The detailed description of experiments
and results is the subject of Chapter 4 and in Chapter 5 the conclusions are summarized
and an outlook for further research is given.





2 Theory

In this chapter we outline the theoretical foundations of the flow model used. The viscous
flow of large ice masses can be described using continuum mechanics. In the model
glacier ice is defined as an incompressible, isothermal, nonlinear viscoelastic fluid. The
governing equations are balance equations for mass and momentum. They are completed
by constitutive material equations suitable to account for long term nonlinear viscous
creep as well as short term elastic responses. Though ice is considered incompressible, the
equations are introduced in their general compressible form and subsequently adapted
for incompressibility. Continuum mechanics is a wide field and better described in depth
elsewhere. Thus the following derivation originates mostly from Greve and Blatter
(2009) and only the most important equations are presented in two dimensional form.
We can not introduce the concept of Finite Elements methods in this work, but we give a
brief overview about the equations and procedures invoked in solving of the equations
in Section 3.1.4.

2.1 Balance Equations

2.1.1 Mass Balance
In general, the mass balance of an incompressible continuum can be written as

div v = 0. (2.1)

This equation is also called the continuity equation, and represents a divergence-free
(solenoidal) velocity field.

2.1.2 Momentum Balance
The momentum balance arises from Newton’s second law of motion and requires the
change of momentum over time to be in equilibrium with the forces applied to the
body. These forces are volume forces f (i.e. gravity, coriolis force) and surface forces σ
(such as water pressure or shear stresses). Due to very slow flow and high viscosity of
glacier ice, inertial forces can be neglected (Greve and Blatter, 2009, pp. 62-64) and only
gravitational attraction remains as a volume force. The resulting equation reads as

divσ + f = 0, (2.2)

with the Cauchy stress tensor σ, which represents the relevant surface forces. This tensor
is symmetric (due to balance of angular momentum (Greve and Blatter, 2009, pp. 33-34))
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and is commonly split into a deviatoric or viscous part σD and a pressure dependent
hydrostatic part pI

σ = σD − pI, (2.3)

where p = −1/3 trσ denotes the pressure and I the identity tensor. As volume force f
we only consider the gravity force ρg, where g has the form g = (0,−g)>. This leads to
the Stokes equation

div(σD − pI) = −ρg. (2.4)

2.2 Constitutive Equations
In the previous section we derived balance equations of mass and momentum. Knowing
the force f leads to a set of 3 equations (mass balance: 1, momentum balance: 2)
for 6 unknowns (p: 1(scalar), v:2 (2D vector), τ :3 (symmetric 2 × 2 tensor)). The
system is therefore underdetermined and requires additional closure-relations between
the quantities (stresses and strains in our case). The system of equations is universally
true for every possible material, since we do not make any assumptions on the material
behaviour. The description of material properties is incorporated into the model using
constitutive relations to complement the balance equations.

2.2.1 Incompressible Newtonian Fluid
Although ice is of highly nonlinear nature, it is helpful to consider first the simpler case
of a Newtonian fluid. A incompressible Newtonian fluid is a fluid in which the deviatoric
viscous stresses σD are linearly proportional to the strain rate tensor ε̇:

σD = 2ηε̇, (2.5)

where the viscosity η is constant (J. Altenbach and H. Altenbach, 1994, p. 234). Note that
ε̇D = ε̇, due to the mass balance Eq. (2.1) being equivalent to tr ε̇ = 0. The linearized
strain rate tensor ε̇ is a symmetric second order tensor with the components

ε̇ij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
. (2.6)

2.2.2 Rheological Behaviour of Polycrystalline Ice
Glacier ice appears in nature usually as a cluster of microscopic ice crystals, called
crystallites or grains, which constitute a polycrystalline body. We can assume that the
orientation of single crystals in this compound is random and therefore the macroscopic
behaviour is isotropic.

If a constant shear stress τ is applied to a block of polycrystalline ice, the shear angle γ
is measureable over time. The qualitative result is shown in Fig. 2.1b. The curve shows
an instantaneous elastic deformation, followed by decreasing of the shear rate γ̇ due to
the raise of geometric incompatibilities of the crystallites. This phase is called primary
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Figure 2.1: (a) Shear experiment for a block of polycrystalline ice. The constant shear stress is
denoted by τ .
(b) Observed shear angle γ over time t. Reproduced from Greve and Blatter (2009).

creep. It is followed by secondary creep, where the shear rate is minimal and the shear
angle increases linearly in time accordingly. In case of high temperatures and/or stresses,
it is also possible to observe a phase of tertiary creep for large time scales, consisting of
a short acceleration and then a considerably higher constant shear rate as in the second
phase. This can be attributed to dynamic recrystallization of grains.

2.2.3 Glen’s Flow Law
Laboratory experiments (e.g. Glen, 1955) suggest a power law as relation between the
deviatoric stress tensor σD and the strain rate tensor ε̇. In the generalized form of Nye
(1957) it can be written as

ε̇ij = EAσDe
n−1

σDij , (2.7)

with σDe being the effective deviatoric stress, the second invariant of the deviatoric
stress tensor. This equation is called Glen’s flow law. The flow-rate factor A is usually
dependent on temperature and water content, but is assumed constant in this study. The
enhancement factor E parameterizes otherwise unaccounted physical contributions, such
as impurities or fractures in the ice and is taken to be 1 in this study. The exponent n is
set to a common value of 3 (Paterson, 1994).

It is possible to write Glen’s flow law in its inverse form

σD = 2ηε̇ with η(ε̇e) =
1

2
(EA)−1/nε̇(1−n)/ne . (2.8)

In contrast to the Newtonian fluid, the relation between stress and strain rates is nonlin-
ear. The viscosity η(ε̇e) depends on the effective strain rate ε̇e

ε̇e =

√
1

2
tr ε̇2. (2.9)
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In case of incompressibility (Eq. (2.1)) and two dimensions in x,z direction Eq. (2.9)
simplifies to

ε̇e =

√(
∂vx
∂x

)2

+
1

4

(
∂vx
∂z

+
∂vz
∂x

)
. (2.10)

For numerical stability it is necessary to add a small value of 10−30 to ε̇e to keep the term
non-zero.

Glen’s flow law is able to describe the behaviour of ice in the secondary creep phase
very well. It can, however, not account for elastic deformation on short timescales, which
we assess in this study. Therefore, a rheological model which incorporates this behaviour,
needs to be developed.

2.2.4 Viscoelastic Rheology Models
Unless otherwise stated, the following deductions on viscoelasticity are compiled from
Malvern (1969). For the development of more sophisticated models, it is convenient to
use so called spring-dashpot models. These one dimensional mechanical analog models
use Hookean springs to represent the instantaneous elastic deformation (i.e. the stress is
linearly dependent on strain) of the material and Newtonian dashpots to denote creep
behaviour (i.e. stress depends on the rate of strain), shown in Fig. 2.2. Axial force in the

2G σDσD
2η

σDσD

Figure 2.2: Hookean spring (left) and Newtonian dashpot (right).

model defines stress in the continuum, while axial elongation and velocity correspond to
strain and strain rate. If we assume small deformation and only consider uniform strain
with no rotation, then the velocity can be identified with the rate of strain (This could
be generalized for large deformations using e.g. convected derivatives to obtain frame
indifference as described in Christensen (1982, pp. 340-341), but is not necessary and
therefore not done in our application).

Stresses and strains can be decomposed into volumetric components, changing the
volume, and deviatoric components, which change the shape of the body. (see Sec-
tion 2.1.2). Hence the stress in Fig. 2.2 is denoted by σD and the stresses in the spring
and damper are σD = 2GεD and σD = 2ηε̇D respectively. Herein G is the shear mod-
ulus which defines the rigidity of the spring in the case of pure shear or shear stress
and η is the viscosity. These relations are valid for a constant cause (stress or strain).
Time dependent causes (σ(t), ε(t)) can be treated as a series of constant causes applied
at different times. Their respective responses are independent of each other and add
up cumulatively to the time dependent response. This is principle is called Boltzmann
Superposition Principle.

A dashpot and a spring connected in parallel are called a Kelvin-Voigt unit, while in
series they represent a Maxwell unit. Both units show viscoelastic properties, but on
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long timescales the Kelvin-Voigt unit behaves like a solid and the Maxwell unit as a fluid.
Over tidal timescales ice acts as a viscoelastic medium and its rheological behaviour,
observed in experiments, can be modelled using a four-element Burger model as shown
in Fig. 2.3a (e.g. Jellinek and Brill, 1956; Reeh et al., 2003). Despite being a relative
simple model, it is able to exhibit instantaneous elastic deformation, primary creep and
secondary creep. The instantaneous elastic behaviour is governed by the spring in the
Maxwell unit, while the Kelvin unit accounts for primary creep. On long timescales only
the damper of the Maxwell unit remains significant in driving the steady-state viscous
deformation.

In his study of ice-stream response to tides and the basal sliding law Gudmundsson
(2011) found that with appropriate parameters, a Maxwell model can be used to repro-
duce the rheological behaviour of the Burger model on the timescales of interest. Only
for loading periods of less than 100 s the models have significant differences. In Fig. 2.3
the Maxwell model and the strain response to sudden stress is compared to the Burger
model.

2G2

2η2

2η1 2G1

(a)

ε

t
t0 t1

(b)

2η 2G

(c)

ε

t
t0 t1

(d)

Figure 2.3: Comparison of the Burger model used by Jellinek and Brill (1956) to the Maxwell
model used by Gudmundsson (2011) and this study.
(a) The Burger model consists of a Kelvin unit and a Maxwell unit in series.
(b) Resulting displacement ε of the Burger model in response to a sudden stress at
t = t0, which is released at t = t1.
(c) The Maxwell model consists of a Newtonian damper and a hookean spring.
(d) Resulting displacement ε of the Maxwell model to the same stress.
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By using a Maxwell model instead of a Burger model the amount of unknown material
parameters is reduced and also the complexity and therefore computational time is
significantly smaller.

2.2.5 Maxwell Model
To obtain an equation for the Maxwell model, we use that in serial connection the total
stress is equal to the stress in every single element

σD = σDE = σDV (2.11)

and the total displacement is the sum of the displacements of all elements

εD = εDE + εDV , (2.12)

where the subscribts E and V denote the elastic and viscous components respectively.
Stresses in the elements can be written as

σDE = 2GεDE (Hookean spring) (2.13)

σDV = 2ηε̇DV . (Newtonian dashpot) (2.14)

Starting from the displacement Eq. (2.12) we take the derivative over time and insert
the specific displacements from Eq. (2.13) and Eq. (2.14) to obtain

ε̇D =
1

2G
σ̇DE +

1

2η
σDV . (2.15)

Due to the stresses being equal in all elements, we can write

ε̇D =
1

2G
σ̇D +

1

2η
σD, (2.16)

which is the commonly known form for the deviators of the Maxwell model. It is also
possible to express Eq. (2.16) in terms of elastic deformation εE by inserting Eq. (2.13)
and multiplying by η:

ηε̇D = ηε̇DE +GεDE . (2.17)

For the volumetric component we assume ice to be purely elastic under hydrostatic
pressure:

trσ = 3K tr ε, (2.18)

where K is the bulk modulus of the Maxwell model and we obtain the equation for the
total stress:

σ = K tr ε+ σD. (2.19)

Under the assumption of incompressibility (see Section 2.2.1) the total stress σ and
the total strain ε are equal to their deviatoric counterparts σD and εD and Eq. (2.17)
simplifies to

ηε̇ = ηε̇E +GεE , (2.20)



2.3 Boundary Conditions 11

which we use in the implementation.

For an isotropic material there are only two independent constants, therefore the shear
modulus G and the bulk modulus K are expressible with the Young’s modulus E and the
Poisson’s ratio ν:

G =
E

2(1 + ν)
, K =

E

3(1− 2ν)
. (2.21)

For glacier ice we follow Gudmundsson (2011) and assume values of E between 1 GPa
and 140 GPa. We set ν = 0.5 as we consider ice to be incompressible.

2.3 Boundary Conditions

The balance equations previously derived are only valid under the assumption of con-
tinuously differentiable fields which lie completely inside the observed volume. This
assumption does not hold at the interfaces with the surroundings and the equations are
not longer valid. Therefore, additional jump conditions or boundary conditions have to
be formulated. Consequently a kinematic condition, specifying the movement of the
interface in relation to the fluid flow, and a dynamic condition, taking into account the
force balance at the surface, have to be prescribed. We will give the relevant conclusions,
transformed into two dimensional form, and refer to Greve and Blatter (2009) for the
complete deduction again.

Figure 2.4: Geometry of the ice sheet - ice shelf system with indicated boundary conditions.
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2.3.1 Ice Surface
The ice surface describes the stress-free interface between the ice body and the atmo-
sphere and can be given in its implicit form

Fs(x, z, t) = z − zs = 0, (2.22)

where zs is the position of the upper surface. Its kinematic evolution reads:

∂zs
∂t

+ vx
∂zs
∂x
− vz = Nsa

⊥
s = as, (2.23)

where Ns is short for the gradient norm,

Ns = | gradFs| =

(
1 +

(
∂zs
∂x

)2
)1/2

, (2.24)

and a⊥s is the accumulation-ablation function or surface mass balance. A positive value of
a⊥s signifies accumulation and a negative value ablation.

For the dynamic condition we assume a stress-free surface. Stress-free means that
atmospheric pressure and wind stress can be neglected and therefore implies

n · (σ · n) = 0 (2.25)

t · (σ · n) = 0 (2.26)

at the surface, where n is the unit normal vector of the surface pointing outward and t
the tangential vector to the surface (n = gradFs/| gradFs|).

2.3.2 Ice Base
In a similar fashion the kinematic equation at the ice base can be derived

∂zb
∂t

+ vx
∂zb
∂x
− vz = 0, (2.27)

neglecting accretion of sea water by refreezing or melt of bottom ice.
For the dynamic condition we need to distinguish between areas that are in contact

with the bedrock and areas where the ice is floating freely on ocean water. The position of
the grounding line xgrl, and therefore the location of the floating and grounded parts, is
not known in advance and therefore part of the solution. This can be treated as a contact
problem as described in Durand et al. (2009). We consider the ice to be in contact with
the bedrock at a point x if the distance in between equals zero and additionally the stress
applied from the ice to the bedrock is larger than the sea-water pressure. On the contrary
the ice is considered to float if the ice base zb is above the bedrock or if it touches the
bedrock and the sea-water pressure pw is larger than the normal stress σnn = n · (σ · n)
exerted by the ice. Hence the ice-bedrock boundary condition has to be applied if

zb(x, t) = b(x) and − σnn|b > pw(zb, t), (2.28)
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and the ice-sea boundary condition applies if

zb(x, t) > b(x),

or zb(x, t) = b(x) and − σnn|b ≤ pw(zb, t), (2.29)

where b(x) is the position of the bedrock and |b indicates, that the value is to be taken
at the bottom surface. In the implementation we approximate σnn as ρgH, because the
pressure has a singularity at the grounding line.

For the ice-bedrock boundary the ice is not allowed to penetrate into the bed and a
non-linear friction law (Weertman-type) is applied:

v · n = 0,

t · (σ · n)|b︸ ︷︷ ︸
τb

= −β2 t · u︸︷︷︸
vb

. (2.30)

The basal shear stress or basal drag τb is related to the sliding velocity vb via the basal
sliding parameter β2, which can be parameterized as

β2 = −C|vb|m−1, (2.31)

where C is the basal sliding coefficient (also basal roughness) and the stress exponent m.
Therefore Eq. (2.30) can also be written as

v · n = 0,

τb = C|vb|m−1vb. (2.32)

When the ice is floating freely over the ocean the ice-sea boundary equation applies and
the shear stress is zero, while the normal stress is equal to the sea-water pressure:

t · (σ · n) = 0 (2.33)

n · (σ · n) = −ρswg(zsl(t)− zb) · n (2.34)

Note that zb is always negative and therefore, high tide leads to increased normal pres-
sure.

2.3.3 Calving Front
The calving front is the point where icebergs are calving off. In this study its position
does not change over time, therefore the kinematic equation is ommited. It undergoes
the sea-ice pressure pw(z, t), therefore the dynamic boundary condition reads

(σ · n) · n = pw(z, t), (2.35)

where pw(z, t) is given by{
pw(z, t) = ρswg(zsl(t))− z), z < zsl(t)

pw(z, t) = 0, z ≥ zsl(t).
(2.36)
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2.3.4 Ice Divide
Locations that separate opposing flow directions of the ice are called ice divides. At these
locations there is no surface slope and therefore no driving stress. Stress and flow on one
side of the ice divide oppose that on the other side, making the problem axisymmetric.
The dynamic boundary condition is given by

(σ · n) · tx = 0, (2.37)

where tx is the unit tangent vector in horizontal direction, meaning that there are no
tangential stresses at the ice divide.



3 Implementation and Verification

In this chapter we introduce the full-Stokes viscoelastic model. We describe the imple-
mentation in the finite element software COMSOL Multiphysics c© in Section 3.1. The
verification of the viscoelastic flow model is presented in Section 3.2. Note that the
implementation of the purely viscous grounding line migration had already been done by
Martin Rückamp 1, but here the complete process is shown together with the additions
necessary for the viscoelastic material model.

3.1 Implementation

For the implementation of the full-Stokes viscoelastic flow model we use COMSOL
Multiphysics c©(Version 4.3b), a commercial finite element software. The finite element
method is a numerical technique for finding approximate solutions to differential equa-
tions, which we will not explain here in detail, but refer to the literature (e.g. Reddy
and Gartling, 2010). The COMSOL Software can be used via a graphical user interface
(a screenshot is shown in Fig. 3.1), which enables the user to make use of the finite
element method and build complex models, without needing to implement the method
from scratch. On the other hand it is often a disadvantage not to be able to have a look
at and modify the source code. For the development of new models the GUI is very
convinient, but for the actual computing process the batch mode, where it is possible to
run studies from the commandline, is prefered.

The COMSOL GUI ist mainly divided into three parts: Model Builder, Node Properties
and Graphics. The model is assembled via the Model Tree inside the Model Builder.
Different branches, representing components of the model, can be added and configured
in Nodes. From this COMSOL internally compiles a set of equations, which constitute
the model. The branches availible by default are Global Definitions, Model, Study and
Results. In Global Definitions parameters that can be accessed everywhere in the model
can be defined. We use that for physical constants as listed in Table 3.1. The Model node
is subdivided into several subnodes and contains the actual model. It consists of (Local)
Definitions, Geometry, Material (which we do not use), various Physics and Mesh. We use
the local definitions to enter dependent variables for the particular physics. In Table 3.2
all the variables in use are listed, while the explanation follows in the description of the
flow model (Section 3.1.2).

1Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, guest scientist at the Institute
of Geophysics, University of Hamburg
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Figure 3.1: Screenshot of the COMSOL GUI

COMSOL offers two ways to implement a physical model. It is possible to implement
the equations ’by hand’ as partial differential equations, but also predefined Physics can
be added to the model. These physics nodes contain a set of equations already assembled
and tuned for common physical problems, such as Laminar flow or Heat transfer. This
is very convenient for rapid development, but for more complex tasks, such as the
coupling of different physics, additional PDEs are necessary. In our study we use the
laminar flow physics for solving the Stokes equation in combination with a PDE for the
maxwell model. The Moving Mesh (ALE) physics is used to solve for the evolution of the
boundaries. Additionally we need a second PDE for Glen’s flow law which we explain in
Section 3.1.4. The complete model tree looks like this:

Model Tree

Global Definitions

Model

Definitions

Geometry

Laminar Flow

Moving Mesh (ALE)

Maxwell

Glen

Mesh

Study (Solver)

Results
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Table 3.1: Parameters in the viscoelastic ice flow model

name expression unit description

rho_ice 900 kg m−3 ice density
rho_sea 1000 kg m−3 seawater density
g 9.8 m s−2 acceleration of gravity
E 1 enhancement factor
n 3 exponent in Glen’s law
A 0.9× 10−25 Pa−3 s−1 rate factor
m 1/3 sliding exponent
C_const 1× 107 Pa m−1/3 s−1/3 sliding parameter C
smb 0.5 m yr−1 surface mass balance as
Ee 1.4× 1010 N m−2 Young’s modulus
nue 0.5 Poisson’s ratio

mw 1 Maxwell switch
spy 31 556 926 seconds per year

In the following sections we describe how we implement the geometry and compu-
tational mesh in general (Section 3.1.1), the viscoelastic flow model with boundary
conditions (Section 3.1.2) and the procedure to solve the resulting model equations
(Section 3.1.4).
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3.1.1 Geometry and Mesh
The first step in building the model in COMSOL is to create the geometry. COMSOL
provides the possibility to create the geometry from basic geometric shapes, such as
rectangles and circles and to compose complex outlines with intersection, union and
difference operators. The alternative is to desribe the geometry via equations and co-
ordinates. By dividing the entire Model Domain into smaller Model Subdomains specific
physics can be applied to part of the model and also be used to control the mesh in
particular areas.

Since we use different geometries in the experiments, we describe the general shape
here, while the exact setup will be explained in the corresponding experiments. For
the ice sheet - ice shelf system we use Import in the geometry branch to import an
existing geometry. This geometry is the result of a spinup experiment with parameters
similar to the Marine ice sheet model intercomparison project (MISMIP; Pattyn et al., 2012)
experiments (also shown in Table 3.1). The ice rests on a solid bedrock which is described
by b = −s ∗m − 100m with b measured downwards from z = 0m and s denoting the
slope of the bed. The x coordinate is measured from the leftmost part of the model
and the whole model has a length of 800 km. The generation of the initial steady state
geometry (spinup) is not part of this thesis and the geometry is kindly provided by Martin
Rückamp. In Fig. 3.2 the geometry view of COMSOL is shown. Note that COMSOL does

Figure 3.2: Geometry partitioned into domains. The leftmost part (domain I) of the ice is always
in contact with the bedrock, the middle part (domain II) is the area in which the
grounding line is able to move and the right part (domain III) is always floating.

not show the real geometry until the meshing is done, but the different domains can be
seen. There are three upper domains which resemble the ice and three lower domains
which contain the bedrock. This partitioning serves the purpose of controlling the mesh
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and refine it around the grounding line. We expect that the grounding line does only
move in domain II and therefore use a higher mesh resolution in this area.
The mesh of the ice shelf – ice sheet system is a structured grid consisting of quadrilateral
elements and is shown in Fig. 3.3. It consists of 5 equidistant vertical layers, which is
sufficient for isothermal models of this scale (thermal models generally need more layers
towards the bottom). Horizontal resolution is much more important and Durand et al.
(2009) have shown that a grid spacing of less than 30 m is necessary to obtain consistent
results for a migrating grounding line. We refine our mesh locally in an area around
the grounding line to have sufficiently small grid spacing while maintaining reasonable
computational costs. A constant grid spacing of Hmin is applied to domain II. In domain I
and III the grid spacing ranges from Hmin, at the edge close to domain II, to Hmax,I at the
ice divide and Hmax,III at the calving front, where the spacing grows in 10 % increments
relative to their neighbors. Values for Hmin and Hmax are specified for each experiment.

Figure 3.3: Mesh of the flow model with a much higher resolution around the grounding line.
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3.1.2 Ice flow Model
For the implementation of the Stokes flow we use the prebuilt Laminar Flow physics
which we modify to include the Maxwell rheology. The Maxwell PDE (Eq. (2.20)) is
implemented as a Coefficient Form PDE.

Laminar Flow

The dependent variables in COMSOL notation are u,v,p (vx, vz, p). Additional variables
needed are set in Local Definitions and their values are given in Table 3.2. Since we model
ice as an incompressible fluid, we choose that option in the Laminar Flow node. Usually,
linear elements (P1) are used to discretize the pressure, while quadratic elements (P2)
are used for the velocity. This originates from the Babuška-Brezzi condition, which states
that the basis functions for the velocity have to be of higher order than the basis functions
for the pressure. Basis functions of the same order can only be used in combination with
a numerical stabilization technique, such as COMSOL’s streamline diffusion (Galerkin
Least Square), as described by Franca and Frey (1992). To reduce computational cost
we use (P1) elements for velocity and pressure and activate Streamline diffusion. For
the Density we enter rho_ice. We need to add a Volume Force node to implement
gravity and enter F = (0, -rho_ice*g). For purely viscous fluids Glen’s flow law can
be included by entering nu (from Table 3.2) as the Dynamic Viscosity, but in the case
of a Maxwell rheology we have to use an additional Equation for Glen’s flow law and
therefore introduce nupde (see Glen’s flow law below).

Table 3.2: Flow variables. Note that for two dimensional models COMSOL uses y and not z as
vertical coordinate. Derivatives of the velocity in x and z direction are denoted by ux

and uy.

name expression description

nu 0.5*E*(A)�(-1/n)*(d+1e-30)�((1-n)/n) viscosity η (Eq. (2.8))
d sqrt(max(ux�2+1/4*(uy+vx)�2,1e-22)) effective strain rate

(Eq. (2.10))
mismip_sl -(C_const*(abs(-u*ny+v*nx)+1e-30) sliding law weak form

�(m-1)*(�(m-1)*u*-ny+v*nx))*

test(u*-ny+v*nx)

To incorporate the Maxwell model into the Laminar flow, we modify the equations
generated by the physics node. Each physics node in COMSOL has an Equation View, in
which the selected options and inputs are accessible as equations. We use that to change
the computation of the stress to represent viscoelastic rheology. While in the Newtonian
rheology the stress is given by τ = 2ηε̇D (Eq. (2.5)), we want to include the stress of the
Maxwell model, τ = τE = 2GεDE (Eq. (2.13)). Hence we replace all occurrences of the
viscous stress with the viscoelastic stress in the Equation View. To have an easy way to
switch between the purely viscous and the viscoelastic case we implement a parameter
mw, that is evaluated via if-statements and serves as a simple switch to select which
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constitutive relation is used (see Fig. 3.4). This enables us to easily set up viscoelastic
and purely viscous runs in the same model file.

Figure 3.4: Replacement of the stress equations. In COMSOL notation my, eps_xx_2_d, spf.mu
are G, εDE and η. Derivatives of vx and vz in x and z direction are denoted by ux and
uy. The third component is zero, because we implement the model in two dimensions
only. Yellow warning signs signify that the equations have been altered.

Laminar Flow
Stokes equation

div(σD − pI) = −ρg

Newtonian rheology

σD = 2ηε̇

Laminar Flow with Maxwell
Stokes equation

div(σD − pI) = −ρg

Maxwell rheology

σD = 2GεE = 2ηε̇V

Maxwell PDE

ηε̇ = ηε̇E +GεE

Figure 3.5: Default Laminar Flow compared to the modified version including Maxwell’s model.
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Maxwell Model

The Maxwell model is implemented as a Coefficient Form PDE. This physics node can be
used to implement arbitrary partial differential equations into COMSOL. Its default form
is

ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · (−c∇u− αu+ γ) + β · ∇u+ au = f, (3.1)

where u is the dependent variable solved for. We set the coefficients to resemble our
Maxwell equation for the deviatoric elastic deformation εDE (Eq. (2.20)). This means
all coefficient are set to zero, execpt for a = G and da = η. The force term f is set to
ηε̇D. Since we have three components (εDExx, ε

D
Exz, ε

D
Ezz), the PDE is a system of three

equations:

η
∂εDExx
∂t

+GεDExx = η
∂vx
∂x

(3.2)

η
∂εDExz
∂t

+GεDExz =
1

2
η

(
∂vx
∂z

+
∂vz
∂x

)
(3.3)

η
∂εDEzz
∂t

+GεDEzz = η
∂vz
∂z

. (3.4)

For the discretization we choose linear discontinuous Lagrange elements.

Glen’s Flow Law

Although Glen’s flow law is a simple explicit equation, we need to implement it in a way
that allows us to solve it in a separate step as detailed in Section 3.1.4. Hence we add
an additional Coefficient Form PDE and modify the coefficients to resemble an algebraic
equation. The default form is the same as for the Maxwell model, Eq. (3.1), but in this
case we only set a = 1 and therefore do not have any derivatives in the equation. The
force term f is set to nu, which contains Glen’s flow law from Eq. (2.8).

3.1.3 Boundary Conditions
Boundary conditions in COMSOL are added as subnodes to the corresponding Physics
node. The dynamic boundary conditions are added inside the Laminar Flow node. COM-
SOL offers a set of predefined conditions which can be assigned to different edges of
the geometry. It is convinient to group edges into named selections such as surface,
base, calvingfront and icedivide. This is done in the Definitions and the resulting
selections can also be used for generating the mesh and exporting the data.

To implement the kinematic boundary conditions we use COMSOL’s arbitrary Lagran-
gian-Eulerian (ALE) method which has its own physics node. It handles the movement
of boundaries with a combination of the Lagrangian method, where the observer (or
mesh) moves with the material, and the Eulerian method, where the observer (or mesh)
is fixed. This allows the boundaries to move without the need for the mesh to move
with the material (COMSOL, 2012b, p. 908). This adds additional dependent variables X



3.1 Implementation 23

and Y, which the model has to solve for as well. For the discretization we choose linear
elements.

Ice Surface

The ice surface is stress free (Eq. (2.26)) and we implement this in Laminar Flow as Open
Boundary and add surface as the selection where the condition is applied to. For the
kinematic condition (Eq. (2.24)) we add a Prescribed Mesh Velocity node to the Moving
Mesh node and enter u*nx+v*ny+smb as prescribed velocity in vertical direction.

Ice Base

As discussed in the theory part, we have to determine if the ice base is in contact with the
bedrock. Therefore we use a Contact Pair node (COMSOL, 2012b, p. 246) in Definitions.
We choose the bedrock as source and the ice base as destination which gives us access
to the src2dst_ap1 operator that is equal to one if the selected edges are in contact
with each other and zero otherwise. The search distance at which a point is considered
to be in contact is set to 0.0001 m. As described in Section 2.3.2 we also compare the
normal stress exerted by the ice to the water pressure to determine if the ice is afloat.
In Table 3.3 the resulting variables are shown. Note that there is an additional variable

Table 3.3: Contact variables

name expression description

sig_nn rho_ice*g*(z_s-z_b) normal stress
p_w rho_sea*g*-(z_b-z_sl) water pressure
contact src2dst_ap1 && sig_nn > p_w

contact_mesh (src2dst_ap1 || y<=b) && sig_nn > p_w

contact_mesh to check if the ice has penetrated into the bed.
For the bottom edge of domain I, where the ice is always in contact with the bedrock,

we apply a Slip Wall condition, which implements v · n = 0. Additionally we add
the mismip_sl variable from Table 3.2 to the weakform in the equation view. This
implements the sliding law directly in its weakform. This is necessary, because in its
original form the Slip Wall condition applies a free slip condition. In Moving Mesh we
set the Prescribed Mesh Velocity in x and y direction to zero, as the ice is not allowed to
pass the bedrock, nor to move away from it. Additionally we add a Pointwise Constraint
0=-z_b+b to this edge to get rid of numerical chattering between points. To apply
a boundary condition depending on if the ice is in contact with the bed, we add a
Pairs → Wall node to domain II and III in Laminar Flow. Inside this node we add
a Fallback Feature → Boundary Stress. This way the Slip condition is applied where
the ice is in contact while on parts without contact the fallback Boundary Stress with
-rho_sea*g*(y-z_sl) is used. In the Wall node the mismip_sl variable is added to the
weak expression as above, but only for parts where contact is true. For the kinematic
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condition we use a Prescribed Mesh Velocity node and enter 0 for the x velocity and
if(contact_mesh,0,-(u*nx+v*ny)) for the y velocity. This is a good approximation of
Eq. (2.27) and as above we add a Pointwise Constraint of 0=if(contact_mesh,-z_b+b,0)
for numerical stability.

Calving Front

The calving front is implemented according to Eq. (2.36). We use the Boundary Stress
condition and enter if(y<0,-rho_sea*g*(y-z_sl),0) as normal stress. Since the posi-
tions of the calving front is not allowed to change we add a Prescribed Mesh Velocity of
zero in x-direction in the Moving Mesh branch.

Ice Divide

The boundary condition for the ice divide is given by Eq. (2.37). This is implemented as
a Symmetry which is applied to the icedivide selection. Likewise the calving front, the
ice divide does not move and the same Prescribed Mesh Velocity conditions is applied to
it.
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3.1.4 Solver
From all previous configuration steps COMSOL generates the FEM model equations
which have to be solved to obtain a solution. There are a lot of strategies and methods
to numerically find solutions to these equations. COMSOL provides a variety of Solvers,
which approximate the numerical problem with a linearized problem and subsequently
solve the resulting linear system of equations. We are interested in a prognostic solution
and therefore use the Time Dependent Solver, which uses variable-step-size Backwards
Differentiation Formulas (BDF) for the time derivatives, as described in Hindmarsh et al.
(2005). The time step is not explicitly set, but adapted by the algorithm in respect to a
given tolerance.

Since we have multiple variables to be solved, we need to decide if we use a Fully
Coupled Solver or a Segregated Solver. While the Fully Couples Solver solves for all variables
at once, the Segregated Solver allows to define groups of variables which are solved for
in separate steps. Variables not solved for in a particular step, are considered constant
and values from the previous step are taken. The use of a Segregated Solver is usually
used to reduce memory requirements, but in our case we need it in order to deal with
the combined nonlinearity of Glen’s flow law and the Maxwell model. We add two steps
to the Segregated Solver. In Segregated Step 1 the Coefficient Form PDE for Glen’s flow
law is solved. In Segregated Step 2 the Stokes equations, the Maxwell equations and the
equations for the ALE method are solved. In each step the system of nonlinear equations
is solved with a damped Newton method. For each step we have to set an appropriate
termination criterion. We end the iteration process if either a maximum of iterations
nmax is reached or if the relative error is smaller than the relative tolerance. The relative
error is given by the weighted Euclidean norm

ε =

√
1

M

√√√√√ M∑
j=1

1

Nj

Nj∑
i=1

(
|Ei,j |
Wi,j

)2

, (3.5)

where M is the number of fields (unknown variables solved for), N is the number of
DOFs in field j and Wi,j = max(|Ui,j |, Sj). Here Ui,j denotes the current approximation
to the solution vector and Sj is a scale factor used to generate well posed matrices from
variables of different magnitudes. The estimated error of Ui,j is denoted by Ei,j where
the double subscript denotes DOF index (i) and field (j) component (COMSOL, 2012a,
p. 940).

We set the relative tolerance to a value of 10−2 and the number of maximum iterations
nmax in Segregated Step 1 and Segregated Step 2 to 100. For the outer loop around the
two steps, we set nmax = 20. The complete solving process is pictured in Fig. 3.6. A
Stationary Solver is used to obtain a initial solution from which the Time Dependent Solver
is able to start.
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Stationary solver

Time dependent solver
DO WHILE t ≤ tend

Segregated solver
DO UNTIL

{
ε ≤ TOL
n ≥ nmax

Step 1:

Glen’s flow law: η(ε̇e)

DO UNTIL
{
ε ≤ TOL
n ≥ nmax

Step 2:

Stokes equations: vx, vz, p

Maxwell equation: εE

ALE: zb, zs

DO UNTIL
{
ε ≤ TOL
n ≥ nmax

save timestep

t
=
t

+
∆
t

initial conditions

Figure 3.6: Solver sequence. The Stationary solver is identical to the time dependent setup
without the loop over time and the computation for the ALE. It solves for a solution
where all time derivatives are zero and this solution is used as initial condition for
the time dependent solver.
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3.2 Verification
A numerical model has to be tested before it can be used to make any projections. We
distinguish between verification and validation. For the verification the model is tested
in simple cases against analytical solutions and thus assures that the implementation is
done correctly and the code contains no bugs. Validation can only be done when the
verification was successful and aims to test whether the mathematical model sufficiently
describes the real-world process it claims to represent. This can be done by comparing
the model results to measured data. It is also possible to compare results from different
models, a so called model intercomparison which is not clearly attributable to neither
verification nor validation. In this thesis we only do the verification of our viscoelastic
flow model.

As few viscoelastic ice models exist there is no well established benchmark or analytical
solution yet. To verify our model we use two different setups. We check if the model
is able to predict the correct longterm solution of iceflow with Glen’s flow law with the
Ice Sheet Model Intercomparison Project for Higher-Order ice sheet Models (ISMIP-HOM)
(Pattyn et al., 2012). This is shown in Section 3.2.1. To test the viscoelastic behaviour we
use a setup of stress build-up in a viscoelastic Maxwell body described in Gerya (2009),
in Section 3.2.2.

3.2.1 ISMIP-HOM Experiment D
The Ice Sheet Model Intercomparison Project for Higher-Order ice sheet Models (Pattyn et
al., 2012) is a set of six experiments for which the results of 28 models are compared. All
results of the participating models are in close agreement and can therefore be considered
as a reference. We implement experiment D: Ice stream flow II in our model to check
if we can reproduce the longterm solution. Experiment D is a diagnostic experiment
and therefore has no dependency on time. Since the longterm behaviour of the Maxwell
model is identical to the behaviour of a Newtonian fluid, we can compare the solutions
at a time tvisc where the elastic component has subsided completely. Ice shows elastic
behaviour at timescales of hours, hence we choose tvisc = 180 d to ensure that only the
viscous component drives the flow.

The geometry is given by

zs(x) = −x · tanα (3.6)

zb(x) = zs(x)− 1000, (3.7)

where x ∈ [0, L] and L =160, 80, 40, 20, 10 and 5 km and α = 0.1◦. We only show the
results for L = 80 km as they are representative for all lengths. It resembles an iceblock
on an inclined bed with a constant ice thickness of H = 1000 m. The geometry and
boundary conditions of Experiment D are shown in Fig. 3.7. The domain has lateral
periodic boundary conditions, corresponding to infinite extend and no stress at the
surface. At the base a sliding law in the form of Eq. (2.31) is applied, where the basal
friction coefficient β2 varies horizontally with x given by

β2(x) = 1000 + 1000 sin (ωx), (3.8)
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Figure 3.7: Geometry and boundary conditions of ISMIP-HOM Experiment D with basal friction
coefficient β2.

with ω = 2π/L. The ice flow parameters are given in Table 3.4. We compute the solution
on a grid of 100 × 5 quadrilateral elements in x and z direction, resulting in 13 028 DOF.

Table 3.4: Flow parameters for the ISMIP-HOM Experiment D

name expression unit description

rho_ice 910 kg m−3 ice density
g 9.8 m s−2 acceleration of gravity
A 10−16 Pa−3 yr−1 rate factor

In Fig. 3.8 the horizontal surface velocity is compared to the solution of the mmr1
model from Pattyn et al. (2012). The mmr1 model is also a full Stokes model imple-
mented in COMSOL and therefore a logical candidate for comparison. The velocities
produced by the Maxwell model agree well with the one given by the mmr1 model.
This shows the correct implementation of Glen’s flow law and the ability of the Maxwell
model to represent secondary creep on long timescales.
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Figure 3.8: Comparison of horizontal surface velocities of the Maxwell model (symbols) and the
mmr1 model (solid line) from Pattyn et al. (2012).
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3.2.2 Stress Build-up in a Viscoelastic Maxwell body
For the case of uniform pure shear deformation of an incompressible viscoelastic medium
under constant strain rate ε̇xx, Gerya (2009) presents a solution for the deviatoric stress
σDxx given by

σDxx = 2ε̇xxη[1− exp(−tG/η)], (3.9)

where η denotes the constant viscosity and G denotes the shear modulus. The material is
initially unstressed. Based on Eq. (3.9) Gerya proposes a numerical test of stress build-up,
which is pictured in Fig. 3.9. On a rectangular block constant velocities are prescribed
at the edges, where vx is pointed outwards from the vertical edges and vy is pointed
inwards from the horizontal boundaries. The velocities are given by

vx =
1

2
ε̇Lx, (3.10)

vy =
1

2
ε̇Ly, (3.11)

where ε̇ denotes the deviatoric strain rate and Lx and Ly the horizontal and vertical
length of the block. There is no traction at the boundaries resulting in free slip conditions.
We compute the solution for ε̇ = 10−14 s−1, η = 1021 Pa s and G = 1010 Pa to be consistent
with Gerya who is modelling the Earth’s lithosphere. Lx and Ly are set to 1 m and
discretized on a 25 × 25 quadratical element grid.

vxvx

vy

vy

Figure 3.9: Setup for the stress build-up in a viscoelastic maxwell body.

Figure 3.10 compares the numerical solution to the analytical one and shows the
high accuracy of the model. The numerical solution agrees well with the one given by
Eq. (3.9) and therefore demonstrates the ability of the model to correctly describe the
instantaneous elastic behaviour as well as the transition to the viscous regime.
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4 Experiments and Results

This chapter deals with the design and evaluation for the different experiments per-
formed with the viscoelastic flow model. In Section 4.1 the experiment setups with their
respective parameters are presented, while in Section 4.2 the results are shown.

4.1 Experiments
Tides arise from gravitational loading of various astronomical bodies. Due to the su-
perposition of forces and frequencies, there is a vast amount of different resulting tidal
constituents. Those, which are considered in our experiments, are given in Table 4.1.
The focus of the experiments lays on determining the impact of the viscoelastic material
model on the ice flow and grounding line behaviour. Therefore, we vary Young’s modulus
E, the amplitude A and the period T of the tidal forcing.

We divide the experiments into two major parts: In Experiment 1 (Section 4.2.1) we
choose a relatively small amplitude which, due to the limited mesh resolution, does not
trigger any migration of the grounding line. In Experiment 2 (Section 4.1.2) we choose
a high amplitude, which leads to a migration of multiple mesh elements. This enables us
to study the effects of the viscoelasticity separately from the grounding line migration.

Table 4.1: Tidal constituents used in the experiments

Name Symbol Period in hours

Principal lunar semidiurnal M2 12.420
Principal solar semidiurnal S2 12.000
Lunisolar synodic fortnightly Msf 354.367
Lunar monthly Mm 661.311

4.1.1 Experiment 1: No migration M2 S2 tide
Experiment 1 aims to study the effect of the viscoelastic material model on the ice flow.
We use the geometry described in Section 3.1.1 with an inclination of the bed given by
s = 1/1000. The grid spacing in the vicinity of the grounding line Hmin is 150 m. At the
ice divide the spacing is HmaxI ≈ 20 km and HmaxIII ≈ 10 km at the calving front. The
model is forced with a superposition of the M2 and S2 tidal components each with an
amplitude of 0.3 m. Therefore, the maximum amplitude is 0.6 m, which is not enough to
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trigger grounding line migration at the given grid resolution. These values can be seen as
realistic for some ice shelves, although tidal amplitudes vary strongly with geographical
location. In this experiment the grounding line is always located at x = 546875m.

We vary Young’s modulus over three values as given in Table 4.2 and also do a purely
viscous reference run.

Table 4.2: Values for Young’s modulus used in Exp. 1 and their respective solution times.

Young’s Modulus in Pa Solution time

purely viscous 18 hours
1.4× 1010 3 days, 1 hour
5.0× 109 1 day, 21 hours
1.0× 109 2 days, 18 hours

Motivated by the study of Gudmundsson (2011) we varied the exponent in the sliding
law m and conduct this experiment with a nonlinear sliding law, setting m = 1/3 (this
corresponds to m = 3 in the study of Gudmundsson, due to alternative formulation of the
equation), as well as with linear sliding with m = 1. For the m = 1 case we additionally
changed the sliding paramter C to 2× 1010 Pa m−1 s−1. This ensures that the observed
velocities will be in comparable range.

The experiment is performed over a period of 90 days and the variable time step is
constrained by a minimum of one step every ten minutes for the purely viscous run.
Results of Experiment 1 are shown in Section 4.2.1.

4.1.2 Experiment 2: High amplitude, Mm tide
In Experiment 2 we want to investigate the effect of tides and the viscoelastic rheology
on grounding line migration. Since the amplitudes used in Experiment 1 are too small
to induce the migration, we choose an amplitude of 10 m for Exp. 2. While such a high
amplitude is unrealistic, it enables us to study the effect in general.

We use the same geometry as in Exp. 1, which is s = 1/1000, Hmin = 150 m, HmaxI ≈
20 km and HmaxIII ≈ 10 km. For the tidal constituent we choose a much longer period
because a large displacement over short time would likely result in numerical instability.
Hence we pick T = 30 d, which is close to the Mm constituent.

We are also interested in the influence of the bedrock inclination and therefore, we
repeat the experiment with a new geometry, in which s is set to 1/500. Results are
presented in Section 4.2.2.

4.2 Results

4.2.1 Experiment 1
In Fig. 4.1 the horizontal surface velocities at various distances upstream of the grounding
line are shown for the purely viscous (a) and the E = 1.4× 1010 Pa (c) case. Linear trends
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have been removed and the signal has been normalized by dividing it by its maximum.
We show an extract from day 66 to day 81, which corresponds to one tidal cycle of the
superimposed M2 and S2 constituents. Over the whole duration of the experiment (90 d)
we obtain 4 complete cycles, but since they are extremely similar to the one in Fig. 4.1
we do not show them here.
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Figure 4.1: Horizontal detrended and normalized velocities at different distances to the ground-
ing line. The sea level (black) is shifted by −2 m along the y-axis.
(a) Purely viscous reference run.
(b) Closeup of a local maximum from (a). No phase shift visible.
(c) Maxwell model with E = 1.4× 1010 Pa.
(d) Closeup of a local maximum from (c). The Maxwell model causes a phase shift.
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It is obvious that the ocean tides modulate the flow of the ice in the case of a purely
viscous as well as in the case of a Maxwell rheology. For the purely viscous case we
directly observe high velocities at low tides and low velocities at high tides. For all
observed positions, from 20.9 to 26.9 km upstream of the grounding line, the velocities
are identical (see also the closeup in Fig. 4.1(b)). For the Maxwell case, shown in
Fig. 4.1(c), however, we find a phase shift in the velocities (clearly visible in the closeup
Fig. 4.1(d)).

At larger distance from the grounding line the shape of the velocity signal changes. In
Fig. 4.2 the detrended and normalized velocity at a distance of 87 km inland from the
grounding line is presented. The velocity is barely correlated to the tidal signal but we
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Figure 4.2: Horizontal detrended and normalized surface velocity at a distance of 87 km up-
stream of the grounding line. The velocity modulation takes place at a long tidal
period close to the Msf period.

notice a modulation of the flow velocity with a period close to the fortnightly period of
the Msf tidal constituent.

In an ice sheet – ice shelf system the surface velocity increases towards the sea, due
to the fact that the ice is allowed to float freely on the water. This is also true for
flow modulations arising from tides. Figure 4.3 shows the maximum of the detrended
horizontal surface velocity at various distances to the grounding line. This allows us to
study how the amplitudes of the flow variation are affected by the elastic parameter E.
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Figure 4.3: Maximum of the detrended horizontal surface velocity over the distance to the
grounding line for various elastic parameters. The viscous reference is shown in
blue, E = 1.4× 1010 Pa in purple, E = 5× 109 Pa in red, and E = 1× 109 Pa in
yellow.

As predicted, the amplitude decreases with the distance to the grounding line. Smaller
(’softer’) elastic parameters cause higher amplitudes at the grounding line, while the
purely viscous reference produces the lowest velocity. A close inspection of the closeup
reveals that the velocity decays faster with distance for smaller elastic parameters. At a
distance of 4 km the maximum velocity produced by the softest model, is already lower
than the velocity of the model with E = 5× 109 Pa.
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The flux q over the grounding line is a crucial quantity for the mass balance and also
the grounding line position. It is given by

q = vx|xgrl(zs − zb)ρice, (4.1)

where vx|xgrl denotes the vertical mean horizontal velocity at the grounding line. In
Fig. 4.4 the flux is presented for different values of Young’s modulus over one tidal cycle.
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Figure 4.4: Flux across the grounding line for different elasticity parameters. Smaller elastic
parameters lead to increased flux.

We observe a significant asymmetry of the flux, which leads to an increase in the mean
flux. The flux also strongly depends on the Young’s modulus. A smaller value for E leads
to increased flux, while the purely viscous reference shows the lowest flux.

To determine if the increase in mean flux depends on the forcing, we repeat the
experiment with a tidal period of T = 30 d as in Exp. 2 without viscoelasticity. The
experiment is done over a period of 180 days. All other parameters stay the same. In
Fig. 4.5 the resulting flux for this case is shown.
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Figure 4.5: Flux across the grounding line for a tidal period of T = 30 d (red line) and purely
viscous material model compared to the steady state flux (black line). The mean flux
of the tidally modulated model (dotted red line) is slightly higher than the steady
state flux.

While not as obvious as in the previous case, the asymmetry still exists. The mean flux
for the tidally modulated is slightly higher than the steady state flux.

In Fig. 4.6 and Fig. 4.7 the results for different sliding laws are presented. Figure 4.6
shows normalized detrended surface velocities at five different points between 0 and
43 km upstream of the grounding line for the nonlinear sliding law using m = 1/3.
Herein we observe a noticeable asymmetry directly at the grounding line, which is not
present 10 km upstream. At a distance of 20 km the asymmetry is barely visible, but it
clearly reappears at 30 km and is even more prominent at 43 km.

For the case of the linear sliding law (m = 1) the behaviour is similar. It is shown
in Fig. 4.7. At the grounding line we observe strong asymmetry, while at a distance of
10 km the signal is almost symmetrical. With increasing distance from that point, the
asymmetry increases again.
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4.2.2 Experiment 2
In Fig. 4.8 the results for Exp. 2 are shown for two different values of Young’s modulus.
While in Exp. 1 high tides correspond with low velocities, the relation is more complex
here due to the migrating grounding line. We observe a sinusoidal velocity modulation,
which is similar to the one in Exp. 1. The velocity decreases when the sea level rises.
But this sine-shaped modulation is disrupted by ’jumps’, which counteract this behaviour.
They are caused by the migration of the grounding line. Whenever the grounding line
advances by one element, the velocity drops.

Retreat of elements leads to an overshoot in the velocities. This is clearly visible for
the case of E = 5× 109 Pa but also present for E = 1.4× 1010 Pa, although with much
smaller amplitudes. Each overshoot decays after approximately 3 h for the 1.4× 1010 Pa
and after approimately. 5 h for the 5× 109 Pa case. For the advance of the grounding line,
no overshoot is observed.

The grounding line position over time does not depend on the elastic parameter in
this case. Both models show the same advance and retreat. Over the observed 180 days
the grounding line shows a general trend to retreat, when compared to the steady state
position. Accordingly the velocity is generally increasing over the whole observation
period.

The results of the same experiment with the shallow bedrock are presented in Fig. 4.9.
The behaviour is very similar to the one in the previous geometry. The relation between
velocity and tide is visible even better, due to the lack of overshoot. While the grounding
line on the previous geometry migrates mostly over 5 elements (750 m) for one cycle, it
only migrates over 3 elements (450 m) in the shallow geometry. At 130 days the ground-
ing line retreats one element further in purely viscous model than in the viscoelastic
model, but we consider this a numerical artifact.
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Figure 4.8: Results for Exp. 2 at a distance of 6 km upstream. The upper panel shows the
velocities for E = 5× 109 Pa (purple line) and E = 1.4× 1010 Pa (red dashed line).
In the middle paned the position of the grounding line is shown and the bottom
panel contains the sea level.
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Figure 4.9: Results for Exp. 2 at a distance of 6 km upstream for a shallower geometry with
s = 1/500 The viscous case is compared to the Maxwell case with E = 1.4× 1010 Pa.
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4.3 Discussion

4.3.1 Experiment 1
In Experiment 1 we observe a significant phase shift in the velocities, which is not present
in the purely viscous case (Fig. 4.1). This can be explained by the fact that the Maxwell
material model, in contrast to the purely viscous rheology, contains time derivatives.
Therefore perturbations propagate with finite velocity. A phase lag to oscillatory forcing
is in fact a classic characteristic of a viscoelastic material (Findley et al., 1976). This
phase shift has already been observed in GPS studies of ice shelves (e.g. Lohse, 2012).
A combination of GPS surveys (or remote sensing data) with appropriate models can be
used to constrain in situ viscoelastic properties of ice.

The shape of the velocity signal varies with the distance to the grounding line. At
close distance, the velocity resembles the tidal forcing and the frequency of the velocity
matches the frequency of the forcing. At larger distances the signal is transformed,
higher frequencies are dampened and at a distance of 87 km we observe a frequency
which corresponds to the Msf tidal constituent, which is not present in the forcing
(Fig. 4.2). This may seem surprising, but it is a basic property of a nonlinear system.
While a linear system can only produce responses at the frequency range it has been
forced at, a nonlinear system is not subjected to the superposition principle and may
therefore, produce a response at a different frequency. The S2 and M2 tidal constituents
produce a nonlinear interaction which leads to flow perturbations at frequencies not
previously present in the forcing. Gudmundsson (2011) observes this behaviour as well
and attributes it to the nonlinear sliding law, which we can not confirm in our study (see
below).

We observe a relation between Young’s modulus E and the detrended velocity ampli-
tudes. A smaller elastic parameter produces higher amplitudes at the grounding line.
At a certain distance this relation is inverted and the model with the smallest elastic
parameter shows the smallest amplitudes (Fig. 4.3). This is also an effect of the Maxwell
material model. It can be pictured like this: Sudden stress on the Maxwell unit im-
mediately deforms the spring, while the damper reacts more slowly. A smaller elastic
parameter implies a softer spring which leads to large velocities at the grounding line. A
softer spring also absorbs more of the stress, while a stiffer spring transfers more stress
to the damper. Hence for larger elastic parameters the energy is transported further into
the ice sheet and leads to higher amplitudes further upstream.

This is also the explanation for the dependency of the flux to the Young’s modulus,
because it depends mostly on the velocity. For the mass balance and long term position
of the grounding line this would not be relevant, since higher amplitudes do not change
the mean of the flux, but due to the strong asymmetry (Fig. 4.4), we the observe an
increase in the mean flux. This asymmetry is also present when the model is forced
with a single period of T = 30 d (Fig. 4.5). It is therefore not a result of the nonlinear
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interaction of tidal constituents, but a direct result of the nonlinearity of the system. The
flux variation is driven by the variation of the velocity at the grounding line, since the ice
thickness does not change over the observed period. Since the flux across the grounding
line determines its advance or retreat behaviour (increased flux correlates with retreat
and decreased flux correlates with advance), this has important implications.

In Table 4.3 the differences of the temporal mean of the flux ∆q are shown for dif-
ferent elastic parameters. We observe a difference of 0.77 % for the purely viscous case,
which means that the behavior is not exclusively an effect of the viscoelasticity. Though
viscoelasticity amplifies the effect and for a Young’s modulus of 1× 109 Pa we obtain a
difference of 3.57 %. This means, that by not including tides and viscoelasticity in ice
models, we commit a significant error.

Table 4.3: Comparison of the temporal mean flux q over the grounding line for different elastic
parameters. The difference between the steady state flux and the flux in the tidally
forced case is denoted by ∆q.

q in kg m−1 s−1 ∆q in kg m−1 yr−1 ∆q in %

steady state 7.784 – –
purely viscous 7.844 0.060 0.770
E = 1.4× 1010 Pa 7.872 0.088 1.131
E = 5× 109 Pa 7.925 0.141 1.805
E = 1× 109 Pa 8.062 0.278 3.567

Gudmundsson (2011) also describes asymmetries in the velocities and attributes them
to the nonlinear sliding law. In his reference experiment with linear sliding (m = 1)
no asymmetry occurs. This contradicts our findings, that the behaviour for m = 1/3
and m = 1 is basically the same and the shape and symmetry differs with the location
of observation. While our modelling approaches are similar, there are some important
differences, which can possibly cause the disagreement in our findings.

The geometry in the model of Gudmundsson spans 170 km and has a different bedrock
slope upstream (0.003) and downstream (0.001). Our model geometry has a horizontal
extension of 800 km and the slope is 0.001 for the whole domain. While Gudmundsson
uses an Upper Convected Maxwell (UCM) material model, which is a generalization of the
Maxwell model for large deformations, we chose a Maxwell model, since we only deal
with small deformations. We also neglect compressibility of the ice, while Gudmundsson
includes it in the elastic part of his model. The major distinction is in the handling of
the boundary conditions. In Gudmundsson’s model the boundary positions are merely
fixed and only the ice sheet is allowed to move according to the tides. In our model we
consider the entire ice base and ice surface and implement movement corresponding to
the flow dynamics.

Apparently we are observing an additional nonlinearity, which is not caused by the
sliding law. The complete explanation for the disagreement has not yet been found and
demands further investigation of the problem.
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4.3.2 Experiment 2

The results of Experiment 2 show that our model is able to realise a grounding line
migration using a viscoelastic material model. In Fig. 4.9 we can observe the relation
between the tides, the grounding line positions and the flow velocity in detail. At high tide
the grounding line is at its position farthest upstream (minimum) and the velocity is at
maximum. The grounding line is only able to migrate in distance increments prescribed
by the grid size, which leads to the discontinuous movement. A close inspection of
the velocity shows, that we deal with a sinusoidal shape, which is disrupted by sudden
’jumps’ occurring whenever the grounding line advances or retreats by one element.
This sine wave has its minimum when the sea level is at maximum. This sine wave is
however dissected and offset, such that the maximum velocity occurs at the maximum
tide. This reveals that the velocity modulation induced by the ocean tides is not as simple
as described in the introduction, but the result of two different processes. As described
in the introduction, the uplifting of the ice shelf leads to landward movement of the
grounding line. Therefore, less area is in contact with the bedrock and affected by basal
stress. This results in higher velocities at high tides. The discontinuous movement of the
grounding line causes this process to cause the ’jumps’ in the flow velocity.

Additionally there is another process which is the normal stress directly exerted by the
sea on the ice body as a boundary condition. This stress increases at high tide, according
to Eq. (2.34), reduces the flow velocity and therefore counteracts the uplifting effect. In
the presented experiments the effect of the migrating grounding line dominates, but this
likely depends on various factors, such as geometry and tidal amplitude.

The overshooting of the velocity, seen in Fig. 4.8, is a typical response of the Maxwell
model to a sudden change in the boundary conditions. The decay times are reasonable
for the respective elastic parameter. Interestingly the overshooting only occurs when the
grounding line is retreating. While during an advance, no overshooting is visible. For the
shallow geometry we do not notice any overshooting at all.

When we compare the movement of the grounding line for the Maxwell and the purely
viscous case, there is practically no difference. Viscoelasticity does not have an influence
on the migration of the grounding line in our experiment. We explain this with the
relatively long periodical forcing, which happens on a timescale where the dominant
rheological behaviour of ice is already purely viscous and expect measurable differences
for tidal constituents of smaller periods.

Over the whole duration of the experiment we notice a general retreat of the ground-
ing line. It migrates back and forth over a few elements and the time spent at the position
farthest upstream increases with each cycle and does not reach its previous maximum
until it migrates one element further in upstream direction. This implies that the inclu-
sion of tides possibly leads to a new equilibrium state of the system.

In the variant of Exp. 2 with the shallow bed, the grounding line migrates over a
smaller distance. This is a surprising result, because the assumption is that at a less
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inclined bed the same tidal amplitude, results in a larger grounding line migration. Here
we have to consider that the shallow bed results in a totally new equilibrium position
and a lot of other factors have also changed. Nevertheless this experiment suggests, that
there is a more complex relation between the bedrock inclination and migrated distance.



5 Conclusion and Outlook

In this thesis we investigated the role of tides in the dynamics of ice sheet – ice shelf
systems. Therefore, a full Stokes viscoelastic ice model has been developed and imple-
mented. We discuss implications of different rheological models and chose a Maxwell
model to represent the rheological behaviour of glacier ice, based on that discussion. The
flow model is tested against results from the ISMIP-HOM benchmark (model intercom-
parison) and against a pure shear setup, for which an analytical solution is available. In
both test cases our flow model performs extremely well, being able to reproduce elastic
properties on short timescales, as well as long term viscous creep. The solutions agree
well even in the transition zone between the elastic and viscous regime. This provides
confidence that the implementation is done correctly and that allows applying the model
to study the influence of tides on the ice flow.

We are especially concerned with the processes at the grounding line, since it is the
most crucial point for determining the mass flux of the system. The mass flux controls
contribution to sea level rise and the general stability of the ice body. Tidally induced mi-
gration of the grounding line has been observed but the exact processes are not yet fully
understood. Therefore, we performed various experiments on an idealized ice sheet – ice
shelf geometry to improve our understanding of the system. From the results obtained
we can draw the following conclusions:

Ice stream flow velocities are clearly modulated by tidal forcing. For the Maxwell
model we find a phase shift in the horizontal velocities upstream the grounding line.
Additionally we find a significant velocity variation with a period close to the Msf period
of 14 days, even though we force the system with the S2 (12 h) and M2 (12.42 h) tidal
constituents. This is a result of the nonlinear interaction of the forcing and the system
response, which is not present in purely viscous models. These effects have also been
observed at ice shelves and ice streams in Antarctica.

The amplitude of velocity variations at the grounding line depends strongly on the
elastic parameter. While smaller values for Young’s modulus produce larger amplitudes
close to the grounding line, they also cause them to decay more rapidly with distance.
Further upstream from the grounding line larger elastic parameters produce larger am-
plitudes. This means, that we deal with a dampening effect, which controls how far
upstream into the ice shelf tidal energy is transported. The exact implications of this
are still unclear and have to be addressed in further studies. In connection with the
phase shift this knowledge may possibly be used to determine material parameters from
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satellite or GPS data.

For the mass balance of glacier system the flux across the grounding line is a key
quantity. It is a measure of how much mass is lost by the ice sheet and contributes to
sea level rise, and also directly related to grounding line migration. We find that tidal
forcing leads to an asymmetry of the flux, which increases the mean flux compared to
the steady state with no forcing. In the purely viscous case we observe a difference of
0.77 %. Smaller elastic parameters lead to further increase of the flux. At a value of
1× 109 Pa for Young’s modulus the difference amounts to 3.57 %. This means by not
accounting for the effect of tides and viscoelasticity, we neglect a significant effect for the
mass balance of ice sheets. However, the obtained values are only valid for our specific
geometry and setup and further research has to be done to determine the importance for
real geometries.

When we force the model with a tidal period of 30 d we observe a difference of only
0.01 %. This reflects that the response is rather viscous than elastic for such a long tidal
period.

We show that our model is able to reproduce tidally induced grounding line migration.
In the interaction of tides and flow velocity we identified two different processes that
control the speed at which the ice flows. When the ice is uplifted by the tide, the area
in contact with the bedrock gets smaller and therefore basal drag is reduced leading to
higher velocity. At the same time the high tide causes increased normal stress at the
ice – water boundary, which reduces the velocity. The superposition of these two effects
controls the flow speed.

We observe velocity overshooting whenever the grounding line retreats one element.
This overshoot is clearly attributed to the Maxwell material’s response to a sudden change.
Interestingly the overshoot in the case of an advance is much smaller. The cause for this
phenomenon has not yet been revealed and further studies are necessary.

Over the observed period the grounding line does not migrate symmetrically around
its steady state, but shows a constant retreat. This occurs for the Maxwell case as well as
in the purely viscous case and implies that tides possibly lead to a different equilibrium
state.

A comparison of the grounding line behaviour at two differently inclined beds reveals
that a more shallow bed does not automatically lead to a migration over a larger area.
The reason for that is not yet understood and shows the importance of conducting further
simulations.

The grounding line position over time does not depend on the elastic parameter and
is the same for the purely viscous case. We explain this by the relatively slow change
of forcing. Studies with more rapidly changing tides have to be conducted, but with a
smaller amplitude. This in turn, makes a much higher resolution necessary. It is difficult
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to investigate the effect of the grid size, since different grid sizes lead to different equilib-
rium positions and therefore, new steady states have to be computed and the comparison
among those yields new problems. Nevertheless this should be the next steps in future
research on this topic.

We have shown, that the selection of an appropriate material model and the inclusion
of tides have significant influence on the results of ice models and should therefore be
considered at large scale modelling. This will give rise to new problems, because the
model calculations are expansive in time. In large scale modelling we are often interested
in timescales of a couple of hundreds, or even thousands, of years, which is not feasible
with our model at the moment. It is necessary to optimize the numerical implementation
a lot and we still have the problem that very small time steps are necessary to correctly
incorporate the viscoelastic behaviour. Additionally, the forcing limits the maximum time
step, since we are not able to resolve changes smaller than the time step.

Finally we have to take into account that in reality we deal with complex geometries
and not just uniformly inclined beds. The next step to a future three dimensional model
of a real geometry could be to add small scale undulations at the ice base and study the
effect. Retrograde beds in combination with ice rises are also interesting because this
could be applied to the situation of West Antarctica.

The grounding line is the defining boundary between ice and ocean and its importance
can hardly be overstated. Obtaining further insight on the processes at the grounding
line is crucial for the understanding of the whole system.
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