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a b s t r a c t

In austral summer 2012, during the expedition ANT-XXVIII/3 on board RV Polarstern, two sites were
sampled 1600 km apart in the South Polar Front area (521S) at the boundary of different productivity
regimes for meio- and macrobenthos using a multiple-corer and an epibenthic sledge, respectively.
Patterns in density and abundance data were compared between different size classes of the benthos
and interpreted in relation to surface primary productivity data and sediment oxygen consumption. We
tested the hypothesis that long-term satellite-derived surface phytoplankton biomass, in situ real time
biomass, and productivity measurements at the surface and throughout the euphotic zone are reflected
in abyssal benthos densities, abundances and activity. Specifically, we investigated the effect of boundary
conditions for lower and higher surface productivity. Surface and integrated to 100 m depth biomass and
primary productivity measurements vary stations, with the lowest values at station 85 (0.083 mg Chl-
am�3 at surface, 9 mg Chl-am�2 and 161 mg C m�2 d�1� integrated over the first 100 m depth), and the
highest values at station 86 (2.231 mg Chl-am�3 at surface, 180 mg Chl-am�2 and 2587 mg C m�2 d�1

integrated over first 100 m depth). Total meiofaunal densities varied between 102 and 335 individuals/
10 cm². Densities were the highest at station 86-30 (335 individuals) and lowest at station 81-13 (102
individuals). Total macrofaunal densities (individuals/1000 m²) varied between 26 individuals at station
81-17 and 194 individuals at station 86-24. However, three EBS hauls were taken at station 86 with a
minimum of 80 and a maximum of 194 individuals. Sediment oxygen consumption did not vary
significantly between stations from east to west. Bentho-pelagic coupling of meio- and macrobenthic
communities could not be observed in the South Polar Front at the boundary conditions from low to high
surface productivity between stations 81 and 86.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Seasonal productivity influences benthic species composition
and life cycles (e.g. Abem et al., 1997; Brandt, 1995, 1996, 1997;
Gaston and Blackburn, 2000; Ormond et al., 1997), but can also
influence species' reproductive pattern in the deep sea, as docu-
mented in the North Atlantic (Brandt et al., 1994). These processes
also imply responses of the benthos to fluctuations in the food
supply (Gooday and Thurley, 1990). Graf (1989, 1992) published
the first evidence of a deep-sea benthic community response to a
pulse of natural organic matter, which occurred in less than eight
days and down to nine cm in the sediment. Later, the importance
of biologically mediated fluxes from the benthic nepheloid layer

across the sediment–water interface into the sediment and vice
versa was underpinned, and it was described how changes of the
physical properties of the sediment (e.g., tubes, pits, burrows)
influence hydrodynamic conditions and processes such as biore-
suspension and biodeposition (Graf and Rosenberg, 1997). More-
over, sediment topography influence interfacial flows which are
important for the uptake of particulate organic matter into perme-
able shelf sediments (Huettel et al., 1996). Piepenburg et al. (1997)
uncovered that benthic community pattern in the Northeast Water
polynya (Greenland) reflects water column processes. These
authors explained that the profound impact of water column
processes on the benthos in this area is influenced by many
factors, including microbial activity, total phytoplankton produc-
tion, zooplankton grazing and lateral advection.

These results were obtained in upper bathyal water depths,
while, roughly 70% of the Earth's surface is abyssal seafloor
Z4000 m depth (Gage and Tyler, 1991). Phytodetritus is one of
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the major food sources for abyssal benthic communities which can
also arrive in pulses within a few days (Billett et al., 1983; Graf,
1989; Lampitt, 1985).

Witte et al. (2003a) performed an in situ experiment and
quantified the abyssal benthic community response to a phytode-
tritus pulse over a period of 2.5–23 days. In contrast to previous
publications (e.g. Graf, 1989; Smith and Baldwin, 1984; Smith and
Kaufmann, 1999), Witte et al. (2003a, 2003b) could demonstrate
that the sediment community oxygen consumption doubled
immediately and that the macrofauna was most important for
initial carbon degradation, while responses of bacteria and for-
aminiferans occurred retardedly. Tracer experiments with 13C-
labeled diatoms (Thalassiosira rotula Meunier, 1910) in the Porcu-
pine Abyssal Plain underpinned the fast response of the macro-
fauna, as only after 2.5 days, 77% of the macrofauna displayed
tracer uptake (Aberle and Witte, 2003). The response of the
metazoan meiofauna to pulses of phytodetritus is often less
obvious and in several cases limited to shifts in vertical distribu-
tions rather than variation in total density or biomass (Galéron
et al., 2001; Guilini et al., 2011, 2013).

The Southern Ocean is the largest water mass on Earth. It is the
central connection between Atlantic, Pacific and Indian ocean
basins as well as between upper and lower layers of the global
ocean circulation (Meredith et al., 2013; Rintoul et al., 2001, 2012;
Van Sebille et al., 2013). Carbon fixation, through phytoplankton
and the subsequent pathways of the “biological pump” (grazing,
export into deep-water layers, sedimentation to the sea floor) (e.g.
Longhurst and Harrison, 1989), represents one of the major CO2

sinks on Earth (Falkowski et al., 2000) and is the primary energy
source for abyssal life (e.g. Smith et al., 2008). However, it is almost
unknown whether the benthos shows a clear reaction to primary
productivity processes at the surface of the ocean, as reported for
the initial processing of fresh phytoplankton from the water
column through the macrofauna (as explained above, Witte
et al., 2003a, 2003b).

In the framework of three ANDEEP (ANtarctic benthic DEEP-sea
biodiversity: colonization history and recent community patterns)
expeditions to the southern ocean, deep sea high biodiversity and
distinct patterns of species richness and distribution within meio-,
macro and megafauna (Brandt et al., 2007a, 2007b, 2007c, 2009,
2012) have been revealed depending on taxon and reproductive
mode. On the background of this baseline project, SYSTCO (SYS-
Tem COupling) project was designed to investigate the processes
that drive the pattern observed. Research questions of SYSTCO
included the investigation of the trophic structure and functioning
of abyssal communities. The first SYSTCO I expedition on board of
research vessel Polarstern took place in 2008/2009 (ANT-XXIV/2)
(Brandt and Ebbe, 2011). During this expedition, a reaction of
southern ocean deep-sea bacteria and meiofauna to the deposition
of particulate organic matter could be observed after a phyto-
plankton bloom (Veit-Köhler et al., 2011). For the seamount Maud
Rise it could be demonstrated that “downward transport of the
organic matter produced in the pelagic realm may be more
constant than elsewhere due to low lateral drift over the sea-
mount” (Brandt et al., 2011: 1962) and that the biological prosper-
ity can be related to both oceanographic and sea-ice processes in
this area.

Based on our present knowledge on bentho-pelagic coupling
processes in the southern ocean, we wanted to test whether meio-
and macrofaunal organisms reflect primary productivity further
north in the south polar front (SPF), where phytoplankton blooms
occur frequently during austral summer (e.g. Bracher et al., 1999;
Moore and Abbott, 2000; Arrigo et al., 2008). To this end, two
areas in the SPF at roughly 521S 101E (stations 81 and 84) and 521S
121W (stations 85 and 86) (Fig. 1) were compared with regard to
surface phytoplankton biomass (Chl-a conc.) and productivity,

meiofaunal and macrofaunal densities and sediment properties.
Almost all stations were abyssal stations (with the exception of the
lower bathyal station 85-15 at 2752 m depth) and ranged between
2570 and 4320 m depth. We focused this comparison on the area
characterized by the strongest spatial shifts from high to low
surface productivity, hypothesizing that vertical transport of
particulate organic carbon (POC) would reflect in similar patterns
in different size fractions of the benthos.

2. Material and methods

Data and specimens were collected during the SYSTCO II
(SYSTem COupling) expedition (ANT-XXVIII/3) with RV Polarstern
in the South Atlantic during the austral summer between 7 January
and 11 March of 2012 (Fig. 1; Tables 1–4, Wolf-Gladrow, 2013).

2.1. Primary productivity

Water samples were obtained from Niskin bottles attached to
the conductivity temperature depth (CTD) rosette at different
depths (10, 20, 40, 60, 80 and 100 m) from six stations. Net
primary production (NPP) rates were determined in duplicate by
the incubation of 20 mL seawater sample spiked with 20 mCi
NaH14CO3 (53.1 mCi mmol�1; Perkin-Elmer) in a 20 mL glass
scintillation vial for 24 h in a seawater cooled on-deck incubator.
Seawater samples were incubated at different irradiances for 24 h
on-deck. Irradiance levels were achieved with neutral density
filters decreasing incoming photosynthetic active radiation (PAR)
to 25%, 12.5%, 6.3%, 3.1%, 1.6% and 0.8%.

After the addition of the NaH14CO3 spike, 0.1 mL aliquots were
immediately removed and mixed with 10 mL of scintillation
cocktail (Ultima Gold AB, PerkinElmer). After 2 h, these samples
were counted with a liquid scintillation counter (Tri-Carb 2900TR,
Perkin-Elmer) to determine the total amount of added NaH14CO3

(100%). For blank determination, one additional replicate per
sample was immediately acidified with 0.5 mL 6 N HCl. After the
outdoor incubation of the samples over 24 h, 14C incorporation
was stopped by adding 0.5 mL 6 N HCl to each vial. The vials were
then left to degas overnight, thereafter 15 mL of scintillation
cocktail (Ultima Gold AB) was added and samples were measured
after 2 h with the same liquid scintillation counter. NPP rates
[mg C m�3 d�1] at each sample depth were calculated as follows:

NPP mg C m�3d�1
h i

¼ DIC DPMsample–DPMblank
� �

1:05
� �

=DPM100%t

where DIC is the concentration of dissolved inorganic carbon
[mmol kg�1], t is the incubation time [h], DPMblank, DPMsample and
DPM100% are the disintegration per minute measured by the scintil-
lation counter for the blank, the sample and the determination of
the total amount of added NaH14CO3, respectively. Column-
integrated NPP [mg C m�2 d�1] were derived by integrating values
for 100 m depth.

2.2. Phytoplankton biomass

Water samples for pigment analysis were collected from CTD
Niskin bottles at the same depths as for the primary production
measurements. Samples were filtered with 25 mm diameter GF/F
filters, shock-frozen in liquid nitrogen and stored at �80 1C for later
analysis at the laboratory in Germany. The pigments were analyzed
using the high performance liquid chromatography (HPLC) technique,
following the method Barlow et al. (1997) modified by Hoffmann et al.
(2006) and adjusted to our instruments as presented in Taylor et al.
(2011). We determined the total chlorophyll-a concentration
(Chl-a) taking the sum of concentrations of monovinyl- and divinyl
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Fig. 1. Location of stations sampled in the southern Polar Front during SYSTCO II cruise. Replicate stations were taken roughly at 521S 101E (station 81) and 521S 121W
(station 86). (A) Overview of the area sampled in the South Atlantic and (B) station numbers and enlarged topography (red and blue frames represent enlarged stations)
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
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chlorophyll-a and chlorophyllide-a (divinyl chlorophyll-a was not
detected in our samples). We derived surface Chl-a [mg Chl-am�3]
from the 10m depth samples and column-integrated Chl-a [mg Chl-
am�2] by integrating values for 100 m depth.We derived maps
showing the average Chl-a for January and February 2012 from the
POLYMER level-3 product of the Medium Resolution Imaging Spectro-
meter (MERIS) data at 0.021 spatial resolution (Steinmetz et al., 2011).
POLYMER is an atmospheric correction algorithm developed to
improve pixels contaminated by sun glint, thin clouds or heavy aerosol
plumes, providing much better spatial coverage than operational data
products. The Chl-a concentration is derived using the standard
OC4Me algorithm (Morel et al., 2007) (Figs. 2A and 3). We also
assessed the mean, median and standard deviation of Chl-a for the
year (2011) and for the three years (2009–2011) before the cruise for
the grid point of each station from the merged daily Full Product Set of
the GlobColour Archive (http://hermes.acri.fr). This level-3 Chl-a data
set is gridded at 4.6 km resolution.

2.3. Meiofaunal and macrofaunal samples

Samples for meiofauna were obtained using a multiple-corer
(MUC) (Eleftheriou, 2013), while samples for macrofauna by
means of an epibenthic sledge (EBS) (after Brandt and Barthel,
1995; Brenke, 2005; Rothlisberg and Pearcy, 1977) at depths from

2570 to 4320 m. Stations were located at the South Polar Front
(SPF). The EBS was successfully deployed at seven stations before it
got unfortunately lost in a submarine crevice at station 141-4
(Table 2). At all deep benthic stations (ten MUC and seven EBS
hauls), and for each MUC deployment, two cores were selected for
meiofaunal analyses (Table 3). The cores were sliced in slices of
1 cm for the first 5 cm's. All separate sediment slices were stored
in 4–7% buffered formalin until further analysis. Organisms were
later sorted and counted on major taxon level following Higgins
and Thiel (1988) at the laboratory of the Marine Biology Research
Group of Ghent University. In the present analysis, however, total
meiofaunal density from MUC cores was used. Density was
expressed as number of individuals per 10 cm2.

The EBS consists of a supra- and epibenthic net equipped with
cod ends of 300 mm. The haul distances were calculated from the
time the sledge traveled on the ground until to the moment when
it had left the ground, which was indicated by the tension meter.
Haul lengths varied from 2586 m to 4789 m; for the comparative
analysis between sampling stations the data were therefore
standardized to 1000 m hauls, equivalent to a bottom area of
1000 m² sampled by the sledge (according to Brenke, 2005; Brandt
et al., 2007c). In total, 29,090 m² seafloor were sampled. On deck
the samples were immediately transferred into pre-cooled 96%
ethanol and kept for at least 48 h at �20 1C.

Table 1
100 m-integrated net primary production (NPP [mg C m�2 d�1]) and Chl-a (surface [mg Chl-a m�3] and integrated for 100 m [mg Chl-a m�2 d�1]) as well as 1-year and
3-year averaged GlobColour satellite-based surface layer Chl-a estimates [mg Chl-am�3] for sampled stations in the southern Polar Front during SYSTCO II cruise.

Station 81-11 84-17 85-3 86-2 141 175n

Surface mg Chl a m�3 0.531 0.326 0.083 2.231 1.148 2.086
100 m integrated mg Chl am�2 55 29 9 180 187 100
100 m integrated net primary productivity [mg C m�2 d�1] 791 1.023 161 2.587 – 1.575
1 year average Chl a (mg/m3) from GlobColour 0.236 0.366 0.163 0.270 0.396 1.228
3 years average Chl a (mg/m3) from GlobColour 0.231 0.261 0.260 0.444 0.445 1.113

�: Data not available.
n Samples were taken with the MUC, but not with EBS which was lost at station 141-4.

Table 2
EBS data (macrofaunal densities per 1000 m²/station).

Station no. EBS Date Latitude Longitude Depth (m) Haul length (m) Total macrofauna

81-17 20.01.2012 52100.180 S 010100.720 E 3744 3926 26
81-18 20.01.2012 52100.360 S 010101.470 E 3706 4789 96
84-25 23.01.2012 53100.890 S 010103.550 E 4327 4525 101
85-15 27.01.2012 51159.880 S 007159.730 W 2752 2586 87
86-20 31.01.2012 51159.830 S 012103.170 W 3935 4442 80
86-24 01.02.2012 52100.070 S 012102.940 W 3934 4319 194
86-25 01.02.2012 52100.490 S 012102.050 W 3936 4503 105
141-4 17.02.2012 51111.970 S 012137.060 W 3913 EBS lost –

Table 3
MUC data (meiofaunal densities per 10 cm²/station).

Station no. MUC Date Latitude Longitude Depth (m) Total meiofauna

PS79/081-08 19.01.2012 511 59.990 S 091 59.990 E 3761 209
PS79/081-09 19.01.2012 521 00.010 S 101 00.050 E 3761 271
PS79/081-12 19.01.2012 511 59.930 S 101 00.060 E 3758 295
PS79/081-13 19.01.2012 521 0.0420 S 091 59.900 E 3761 102
PS79/084-24 23.01.2012 531 00.670 S 101 03.000 E 4320 –

PS79/085-14 27.01.2012 511 59.980 S 071 59.990 W 2749 –

PS79/086-26 01.02.2012 511 58.870 S 121 03.760 W 3966 335
PS79/086-28 01.02.2012 511 58.740 S 121 02.110 W 3968 141
PS79/086-29 01.02.2012 511 58.780 S 121 01.950 W 3971 260
PS79/086-30 01.02.2012 511 58.910 S 121 02.160 W 3965 319

A. Brandt et al. / Deep-Sea Research II 108 (2014) 51–5954

http://hermes.acri.fr


2.4. Sediment analyses

Sediment cores were collected using a MUC. Undisturbed cores
were selected for oxygen micro profiles at temperature control
laboratory (2–3 1C). Two sediment cores were analyzed for oxygen
(six microprofiles per core) using UNISENSE electrodes. The
microprofiles were done at 200 mm intervals. Sediment oxygen
consumption (SOC) values reflect the oxygen consumption by
bacteria, protists and the fauna (Table 4). Once the profiles were
performed, each sediment core was sectioned every 5 mm down
to 1 cm and thereafter every 10 mm until the bottom of the

sediment core is reached. Grain size distribution per core (each
core sectioned per cm down to 5 cm) was measured using a
Malvern Mastersizer 2000 (0.02–2000 mm size range).

3. Results

3.1. Surface productivity measures

Surface and integrated to 100 m depth biomass and primary
productivity measurements (Table 1) show similar patterns for the

Fig. 2. (A) Sampling stations positions plotted on top of the average Chl-a conc. for January and February 2012 derived from the polymer product using satellite observations
from MERIS. (B) Meiofaunal densities (ind./10 cm²; mean surface values), macrofaunal densities (ind./1000 m) and sediment oxygen consumption at stations in the SPF.

Fig. 3. Sampling stations plotted on top of the mean Chl-a conc. in the surface layer for 2009–2011 derived from the merged SeaWifS, MERIS and MODIS GlobColour data set.

Table 4
Main sediment characteristic of the stations sampled during SYSTCO II cruise in the southern Polar Front (Meyer-Löbbecke, 2013). SOC: μMO2 m2 d�1. SOC¼sediment
oxygen consumption (all gear have different station-haul numbers, therefore station 86-20 equals 86-26, 81-18 equals 81-13 and 81-17 equals 81-8).

Station 86-20 85-15 84-25 81-18 81-17

SOC (mM O2 m2d�1) 373.57216.5 276.57187.3 209.27134.9 395.957243.2 395.957243.2
Silt-clay 91.53 – – 92.207 91.992
Very fine sand 8.47 – – 7.793 7.996
Fine sand – – – – 0.012
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stations, with the lowest values at station 85 (0.083 mg Chl-am�3 at
surface, 9 mg Chl-am�2 and 161mg Cm�2 d�1� integrated over the
first 100 m depth), and the highest values at station 86 (2.231 mg Chl-
am�3 at surface, 180 mg Chl-am�2 and 2587mg Cm�2 d�1). Esti-
mates from the eastern stations (stations 81, 84 and 85) were generally
lower than those further west (stations 86) (Lins et al., 2014).

GlobColour satellite data integrated over the year 2011 revealed the
highest estimates for mean Chl-a concentrations above the station 84
(0.366 mg Chl-am�³), followed by station 86 (0.270 mg Chl-am�³),
station 81 (0.236 mg Chl-am�³) and station 85 (0.163 mg Chl-am�³),
see Table 1. Differences were more pronounced when GlobColour
satellite data were integrated over 3 years, then values at stations 81,
84 and 85 were much lower (with 0.231, 0.261 and 0.260 mg Chl-
am�³, respectively) than at station 86 (0.444 mg Chl-am�³) (Table 1
and Fig. 3). The same trends were seen for the median data (data not
shown). However, differences between stations were not significant.
One has to keep in mind that according to Gordon and McCluney
(1975) the satellite ocean color sensors provide only information on
the average Chl-a within about the first penetration depth, i.e. the
depth to which 90% of the water leaving radiance has penetrated to (in
our area probably between 5 and 30m).

The satellite Chl-a from the MERIS Polymer-Chl-product and
the GlobColour product have been validated globally and region-
ally within the current ESA Climate Change Initiative for Ocean
color. Polymer was chosen as the best algorithm for MERIS data
processing (Brewin et al., 2014; Müller and Krasemann 2012). We
used for the long-term satellite Chl-a data analysis the GlobColour
product because until today Polymer has not been processed for
the entire MERIS data set. The GlobColour product is therefore for
this analysis the best choice because it gives us the best coverage
by satellite data for this region. By comparing total Chl-a concen-
trations obtained from surface (o10 m) HPLC measurements
during our cruise collocated (same day and within the satellite
pixel) to MERIS Polymer, and GlobColour Chl a, we revealed a
reasonable correlation coefficient (r2¼0.67 and 0.65, respectively),
low bias (0.17 and 0.21 mg m�3, respectively) and percent error
(33% and 37%, repectively) between the satellite and in-situ data
sets. Therefore, both satellite Chl a data set seem to be of reason-
able good quality to reconstruct the temporal and spatial devel-
opment of phytoplankton at the surface.

3.2. Benthos densities (meio- and macrofauna)

Meiofauna occurred in the MUC samples with a broad range of
taxa in lower densities including Rotifera, Kinorhyncha, Gastro-
tricha, Nematoda, Tardigrada, Aplacophora, Bivalvia, Polychaeta,
Acari, Copepoda, Ostracoda, Cumacea, Isopoda, Amphipoda, Tanai-
dacea, and Holothuroidea. Nematoda were by far most frequently
in the samples with relative abundance from 84.4% to 91.7%,
followed by Copepoda (3.8–8.2%). Total meiofaunal densities
(Table 3) varied between 102 individuals (ind.)/10 cm² and 335
ind./10 cm². Densities were highest at station 86-30 (335 ind./
10 cm²) and lowest at station 81-13 (102 ind./10 cm²). However, at
haul 86-28 densities were also low (141 ind.). On average the
densities were very similar at both areas (Table 3; Fig. 2).

Macrofaunal taxa sampled with the EBS included Cnidaria,
Nemertini, Sipunculida, Polychaeta, Bivalvia, Gastropoda, Scapho-
poda, Solenogastres, Caudofoveata, Copepoda, Branchiopoda,
Cumacea, Amphipoda, Isopoda, Tanaidacea, Mysida, Phyllocarida,
Euphausiacea, Decapoda, Asteroidea, Echinoidea, Ophiuroidea,
Chaetognatha, Bryozoa and Ascidiacea (Brandt et al., 2014). Total
macrofaunal densities (ind./1000 m²) (Table 2; Fig. 2) varied
between 26 ind. at station 81-17 and 194 ind. at station 86-24.
However, different EBS hauls at station 86 varied considerably
between a minimum of 80 ind. and a maximum of 194 ind.
(Table 2).

3.3. Sediment

Sediment grain size was determined from MUC cores (Table 4).
Sediment was mainly composed of very fine fractions of silt-clay
(91.4–92.5%) and some very fine sand (6.6–8.6%), whereas fractions of
fine, medium and coarse sand were absent. There were no significant
differences between sampling stations. Sediment oxygen consumption
(SOC) (mmO2 m2 d�1) was measured as a proxy for biological activity.
It was lowest at station 84-25 (209.27134.9 mmO2 m2 d�1), and
highest at stations 81-17 and 81-18 with 395.957243.2 mm
O2 m2 d�1 (Table 4, Fig. 2B).

4. Discussion

We tested the hypothesis that long term satellite-derived
surface phytoplankton biomass (Chl-a) data and in situ real time
measurements of Chl-a and primary production are reflected in
abyssal benthos densities and activity at boundary conditions. The
results of our analyses did not indicate that bentho-pelagic
coupling occurred during the sampling time between January
and March 2012 in the two areas investigated (521S 101E (st. 81)
and 521S 121W (st. 86)).

Although 14C-based estimates of primary production and Chl-a
measured by HPLC technique (Table 1), as well as satellite images
on mean Chl-a of January and February 2012 (Fig. 2A), document
differences in Chl-a standing stocks and primary productivity
between stations 81 and 86, no significant differences in either
meiofaunal or macrofaunal densities could be observed (Fig. 2B).
Fig. 2B illustrates that the values of both meiofauna and macro-
fauna were slightly higher at station 86 than at station 81.
However, variability between hauls at station 86 was high
(Tables 2 and 3) for meio- (between 141 and 335 ind./10 cm²)
and macrofaunal communities (80–194 ind./1000 m²) and sedi-
ment oxygen consumption showed not much difference between
stations, except for stations 84 and 85, were values were some-
what lower. Bottom topography can be excluded as a potential
reason for differences between stations, as stations 81 and 86 were
both sampled at smooth abyssal plains. Only stations 84 and 85
differed slightly in having a more complex topography (Fig. 1).
Sediment properties however did not differ between any of the
stations (Table 4) and total microbial cell counts (as determined by
DAPI staining [ml-1 sediment]) differed insignificantly (7,48E 708
at station 81 and 7,69Eþ08 st station 86; Knittel et al., 2014).
These strong variabilities in meio- and macrofaunal communities
at stations 81 and 86 did not allow to attribute the slightly higher
values at station 86 to coupling with the surface productivity, as
these differences might be due to patchiness or rarity of organisms
sampled.

Serpetti et al. (2013) investigated spatial distribution and
patchiness of deep-sea macrofaunal communities on the basis of
three megacores (very similar to MUC) at 900 m depth and about
18 km apart in the Rockall Trough. These authors concluded that
macrofaunal communities differed significantly. Differences were
mostly driven by changes in densities of polychaetes, crustaceans
and nematodes. These groups are in fact also the most important
faunal components of abyssal plains (Brandt et al., 2007a, 2007b,
2007c, 2012). Kaiser et al. (2007) documented the complexity of
the deep-sea isopod composition. They sampled across three
spatial scales and concluded that variability in densities between
stations was no greater at sites thousands of km apart than meter
tens of km. These authors also showed that most of the studied
peracarid families or genera are probably not rare but very
patchily distributed, because most peracarid species occur in very
few samples and even then in just low numbers or as singletons.
Ellingsen et al. (2007) analyzed the importance of depth for the
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diversity and species distribution of polychaetes, isopods and
bivalves in the Atlantic sector of the deep Southern Ocean and
also found that a high proportion of species was restricted to one
or two sites. The impact of depth on species richness was not
consistent. Polychaetes showed a negative relationship with
depth, isopods displayed highest richness at around 3000–
4000 m, while bivalves showed no clear relationship with depth.
However, depth did not play a role in our deep-sea samples, as all
(but one) samples were taken at similar abyssal depths.

It is striking that, despite the relatively high pelagic biomass
and productivity in the SPF (Bracher et al., 1999; Moore and
Abbott, 2000; Tremblay et al., 2002; Kaiser et al., 2011), the
numbers of macrobenthic organisms are much lower than further
south (e.g. Arntz et al., 1994; Brandt et al., 2007b, 2007c; Kaiser
et al., 2007). Next to effects of lateral transport of sinking organic
matter (e.g. Fischer et al., 2000), this apparent mismatch could be
explained by the high temporal and spatial inter-annual variability
in the occurrence and intensity of phytoplankton blooms in the
Atlantic sector of the polar frontal zone (Borrione and Schlitzer,
2013; Park et al., 2010), which may be restricting the potential to
sustain benthic communities over longer timespans. Another
reason for the observed decoupling could be various recycling
processes occurring in the water column, preventing the organic
matter from reaching the sea floor (Buesseler and Boyd, 2009; De
La Rocha and Passow, 2007). While the largest changes in vertical
fluxes occur in the upper part of the water column (o250 m),
there are fluxes of particulate organic carbon (POC) to the deep
ocean which are usually low and almost constant (Iversen et al.,
2010; Iversen and Ploug, 2013). Similar to earlier findings on the
polar frontal zone, the fraction of organic matter recycled in the
upper mixed layer estimated from nutrient deficits was high for
the large-scale phytoplankton bloom occurring around station 86
(C. Hoppe, pers. comm.; Tremblay et al., 2002).

Laboratory experiments on temperature effects on carbon-
specific respiration rate and sinking velocity of diatom aggregates
“using a remineralisation rate measured at 4 1C and an average
particle sinking speed of 150 md�1, calculated carbon fluxes were
similar to those collected in deep ocean sediment traps from a
global data set, indicating that temperature plays a major role for
deep ocean fluxes of POC” (Iversen and Ploug, 2013: 4073).
Temperature was rather similar between stations. Moreover,
differences in sinking velocities of aggregates unlikely influence
deep fluxes and benthic densities at stations compared in this
investigation (Meyer-Löbbecke et al., 2014).

Densities are low in the abyssal deep sea (Dahl, 1954; Gage and
Tyler, 1991). However, there is evidence that macrofauna may play
an important role in the initial processing of fresh phytoplankton
from the water column (Levin et al., 1999; Witte et al., 2003a,
2003b). Foraminiferans are considered an important intermediate
link in the energy flow from phytodetritus to small metazoans
(Gooday et al., 1996; Koho et al., 2008; Nomaki et al., 2009; Sibuet
et al., 1989; Witte et al., 2003b; Würzberg et al., 2011; Würzberg,
2014). Additionally, deep-sea metazoan meiofauna reacts to food
input, as documented in observational and experimental studies
(e.g. Gooday et al., 1996; Ingels et al., 2010; Witte et al., 2003b).
However, there is a time lag of several days to months between
food presentation and measurable reactions on and in the seafloor.
Little research, however, analyzed the reaction of metazoan
meiofauna to food input at abyssal depths (e.g., Guilini et al.,
2011; Ingels et al., 2010; Witte et al., 2003b). For example, Veit-
Köhler et al. (2011) investigated sediment from the SYSTCO I
expedition with RV Polarstern in 2008/2009 at a station in the
SPF at 521S 01E and 2960 m depth during and after a phytoplank-
ton bloom. These authors observed “significantly higher relative
meiofaunal densities at the sediment surface after the remains of
the phytoplankton bloom reached the seafloor” and concluded

that …” higher oxygen consumption after the phytoplankton
bloom may have resulted from an enhanced respiratory activity
of the living benthic component” (Veit-Köhler et al., 2011: 1983).
In their study also Nematoda were by far the most abundant
meiofaunal taxon followed by Copepoda in importance.

Sachs et al. (2009) identified different plankton provinces in
the Southern Ocean, which are reflected in the benthic organic
carbon flux. Regional pattern of organic carbon fluxes derived from
microsensor data furthermore suggests that episodic and seasonal
sedimentation pulses are important for the carbon supply to the
seafloor of the deep Southern Ocean. Furthermore, Sachs et al.
(2009) provided a spatial distribution of the benthic flux of labile
organic carbon reaching the seafloors. The spatial map indicates
that our stations 81 and 86 are both situated in an area with
elevated proportions of Fragilariopsis kerguelensis (O'Meara, 1877)
frustules. This strongly silicified diatom species leads to high ratio
of biogenic silica to organic carbon (Si:C) in sinking particles,
restricting the proportion of POC in sinking material (Assmy et al.,
2013) and thus food supply for benthic organisms. On the contrary,
phytoplankton communities and sediments in the SPF north of
South Georgia are dominated by Chaetoceros spp. (Sachs et al.,
2009: 1326, Fig. 6), a genus being characterized by much lower Si:
C ratios and thus serving as a particularly efficient carbon-sinking
species (Assmy et al., 2013). Congruently, high surface concentra-
tion of Chl-a translated to increased densities and response of
meiofauna (station 141; see data by Lins et al., 2014). At this
station and further to the west in the SPF north of South Georgia,
some foraminiferans were found to contain large amounts of
pigments (Cedhagen et al., 2014) indicating immediate grazing of
the freshly sedimented food pulse. Unfortunately, the EBS was lost
at station 141, so that we lack macrofaunal data for this region. In
the context of plankton provinces it should furthermore be noted,
that differences in dominant species could possibly lead to
differences in meio- and macrofaunal communities depending
on dietary specializations.

5. Conclusions

Bentho-pelagic coupling of meio- and macrobenthic commu-
nities retrieved from EBS and MUC samples could not be observed
in the SPF at the boundary conditions from low to high surface
productivity. However, this does not necessarily mean that cou-
pling of the benthic communities to surface production does not
occur in the SPF at all. On the one hand there are indications of
tight linkages between surface primary productivity and meiofau-
nal densities as well as pigment uptake by foraminiferans (Lins
et al., 2014; Cedhagen et al., 2014). On the other hand, high ratios
of Si:C in sinking particles might reduce vertical POC fluxes and
thus food supply for benthic organisms (Assmy et al., 2013). Due to
the loss of the EBS at station 141 we can only compare the data
available. Therefore, we need to return to the SPF and sample
stations further west at the same season of the year by means of
the EBS in order to uncover potential bentho-pelagic coupling
processes in this seemingly high productivity area.
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