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Abstract 

Magnetic anomaly identifications underpin plate tectonic reconstructions and form the 

primary dataset from which age of the oceanic lithosphere and seafloor spreading 

regimes in the ocean basins can be determined.  Although these identifications are an 

invaluable resource, their usefulness to the wider scientific community has been 

limited due to the lack of a central community infrastructure to organize, host and 

update these interpretations.  We have developed an open-source, community-driven 

online infrastructure as a repository for quality-checked magnetic anomaly 

identifications from all ocean basins.  We provide a global sample dataset that 

comprises 96,733 individually picked magnetic anomaly identifications organized by 

ocean basin and publication reference, and provide accompanying Hellinger-format 

files, where available. Our infrastructure is designed to facilitate research in plate 

tectonic reconstructions or research that relies on an assessment of plate 

reconstructions, for both experts and non-experts alike.  To further enhance the 

existing repository and strengthen its value, we encourage others in the community to 

contribute to this effort. 

 

1. Introduction 

Marine magnetic anomaly data are one of the primary data sources for the 

interpretation of seafloor spreading in the world’s ocean basins and were instrumental 

in the development of the theory of plate tectonics (Dietz, 1961; Hess, 1962; Vine and 

Matthews, 1963). These data record recognizable patterns formed due to reversals in 

the Earth’s magnetic field over geological time. The majority of marine magnetic 

anomaly data, collected through marine ship track, aeromagnetic and helicopter 
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surveys, have been made available to the scientific community through the GEODAS  
(GEOphysical Data System) archive, developed by the US National Geophysical Data  
Center (NGDC) (Sharman et al., 2001). A sub-set of these data, which have been  
error-checked for observational outliers, excessive gradients, metadata consistency,  
and agreement with satellite altimetry-derived gravity and bathymetry grids (Chandler  
and Wessel, 2008, 2012) is available through the MGD77 supplement to the Generic  
Mapping Tools software suite (Wessel et al., 2013). Experts in marine geophysical  
data interpretation compare these magnetic anomaly data against synthetic crustal  
magnetic models and the geomagnetic reversal timescale to create a set of so-called  
magnetic anomaly identifications - a spatio-temporal representation of the magnetic  
anomalies themselves.  From these magnetic anomaly identifications, the age and  
spreading regime of the ocean floor can be ascertained and a plate kinematic model  
constructed. Often, non-experts in marine geophysical data interpretation are  
interested in constructing and/or assessing alternative plate kinematic scenarios but  
lack the necessary expertise to interpret the raw data. Previous global and regional  
compilations of magnetic anomaly identifications have been presented as maps with  
no accompanying digital data (e.g.Karasik and Sochevanova, 1981; Karasik and  
Sochevanova, 1990; Ségoufin et al., 2004) limiting their usefulness for other  
researchers. The exception are the lineations of Cande et al. (1989) which are  
available through the NDGC website (www.ngdc.noaa.gov) but these are outdated  
and contain minimal metadata. An infrastructure that houses a freely available,  
downloadable repository of magnetic anomaly identifications that can be updated  
indefinitely is therefore of genuine value to the wider scientific community.   
We have established a new infrastructure and repository for magnetic anomaly  
identification data.  The infrastructure is open-source and community-driven, where  
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consistent and well-documented information on magnetic anomaly identifications is 

collected, quality-controlled and made accessible to the public via a dedicated website 

(www.soest.hawaii.edu/PT/GSFML). We have initially populated the repository with 

a global set of 96,733 published magnetic anomaly identifications (Fig. 1), and further 

additions will make the global database an evolving resource. A team of trusted, 

expert users are responsible for the addition and/or revision of contributions and 

overall management of the repository to ensure consistency and integrity of 

information. All information is stored under version control, allowing the history of 

the database to be reconstructed. The data are provided in three commonly used file 

formats: OGR/GMT multi-segment files, KMZ Google Earth files and ESRI 

Shapefiles. These data can be loaded directly into the plate reconstruction software, 

GPlates (Boyden et al., 2011), for visualization and interrogation or to construct or 

assess plate tectonic reconstructions. Where possible, we also provide any additional 

information (such as further details of the picking technique; the data source; 

processing techniques) in readme files for individual datasets. The infrastructure is 

complementary to the Global Fracture Zone database (Matthews et al., 2011), which 

enhances the power of the magnetic anomaly database for plate reconstruction studies. 

 

2. Magnetic anomaly identifications 

Marine magnetic anomaly identifications are an interpretation of the age of the 

oceanic crust, made by correlating individual magnetic anomaly patterns along profile 

against a synthetic crustal magnetic model and geomagnetic reversal timescale.  The 

two-dimensional forward modeling of magnetic anomalies (e.g., Blakely (1995), 

Modmag (Mendel et al., 2005) and Magan (Schettino, 2012)) take into account factors 

that skew the shape of the magnetic anomalies such as remanent magnetization 



 5

parameters, ambient geomagnetic field directions, spreading rates, spreading  
asymmetry and spreading ridge orientation. Synthetic models predominantly assume a  
vertical magnetized body. An alternative, but equivalent, approach is to de-skew  
(Schouten, 1971) the magnetic anomaly profiles taking into account the same  
parameters. The technique of “picking” magnetic anomalies and assigning their 

temporal component has been performed using methods that differ slightly in their 

design. This has led to inconsistencies in metadata assignment and storage, making it 

difficult to combine disparate studies into one self-consistent dataset. It is therefore 

often left to individual researchers to collate various datasets and ensure self-

consistency. 

2.1. Picking technique 

The picking technique employed for magnetic anomalies differs between researchers.  

Picking is made by eye on hard-copy printouts or digitally, or by using numerical 

approaches to “objectively” pick the location of the magnetic contrasts. Researchers 

commonly pick the “young” or “old” end of a magnetic chron (Fig. 2). As the 

geomagnetic reversal timescale is calibrated to the start and end of a magnetic chron, 

assigning an age to a magnetic anomaly identification based on this method is 

straightforward. In other cases, researchers pick the “center” or “middle” of an 

anomaly from which to make their magnetic anomaly identification, i.e. at the 

maximum or mid-point of the peak or trough that constitutes that anomaly (Fig. 2). 

This approach may be valuable in places where the edges of neighboring anomalies 

are unclear due to superposition owing to short isochron durations and/or slow 

spreading rates, even though correlating this type of identification with the 

geomagnetic reversal timescale becomes problematic. This information is usually 

depicted as “y”, “o”, “c” or “m” following the chron number.  The absence of this 
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information could potentially lead to tens of km of difference in the location/age 

association of a magnetic anomaly identification, with serious implications for plate 

motion studies.  It is therefore crucial to preserve the chron end of each magnetic 

anomaly identification and also a measure of the confidence of this information.   

An inherent assumption of magnetic anomaly identifications is that they are based on 

magnetic anomaly data recorded by elongated bodies formed by seafloor spreading 

parallel to the ridge axis. However, recent studies (e.g. Croon et al., 2008; Granot et 

al., 2009; Keller, 2004) have added additional picks using tectonic trends i.e., abyssal 

hills from high quality multibeam data. In these cases, two additional picks are 

identified on the edges of the swath multibeam to define three picks from a single 

voyage track. The identification method for each pick is noted to distinguish 

identifications not based on magnetic anomaly data. 

2.2. Magnetic chron and timescale 

The temporal component of a magnetic anomaly identification is based on a 

geomagnetic reversal timescale. Many alternative timescales exist (e.g. Cande and 

Kent, 1995; Gee and Kent, 2007; Gradstein et al., 1994; Gradstein et al., 2004; 

Heirtzler, 1968) and modifications continue as new constraints are obtained (e.g. Ogg 

and Lugowski, 2012). For this reason, the age of an identification is not explicitly 

stored but rather, we provide look-up tables for some commonly used timescales, such 

as (Cande and Kent, 1995; Gee and Kent, 2007; Gradstein et al., 2004), with the 

option of including other timescales in the future. A planned GMT5 supplement will 

provide tools to automate the look-up process. 

2.3. Rotation parameters  
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Magnetic anomaly identifications, together with fracture zone traces, can be used to 

reconstruct palaeo-positions and direction of motion through time between two or 

more tectonic plates described by a rotation model. When two flanks of a spreading 

system are preserved, a series of stage or finite rotations can be computed using either 

a visual-fitting technique or, more robustly, the least-squares approach of Hellinger 

(1981) and Royer and Chang (1991) or Eagles (2004). These approaches compute 

rotations and their uncertainties based on a set of magnetic anomaly identifications, 

fracture zones segments, associated uncertainties and an approximate rotation pole 

position. The most-widely employed method to estimate uncertainties in plate 

reconstructions is that of Hellinger (1981). Our infrastructure has been designed to 

preserve, where available, input files for the “Hellinger” methodology (e.g. magnetic 

anomaly identifications, fracture zone segments) as well as the output files (e.g. the 

resultant rotations and covariance matrices). The “Hellinger” output can be converted 

to GROT format (Qin et al., 2012), the native rotation file format of the plate 

reconstruction software, GPlates.   

 

2.4. Magnetic survey information  

Ideally, magnetic anomaly interpretations are made along survey lines but this 

information is rarely preserved in digital magnetic anomaly identification 

compilations, especially for older datasets. Our infrastructure provides an optional 

field allowing for the survey line name to be preserved, such that individual magnetic 

anomaly identifications can easily be traced back to the original source data. 

2.5. Limitations 
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Magnetic anomaly identifications are an interpretation of data, with errors stemming 

from a variety of sources: the original data itself; the interpretation technique; the way 

the information has been preserved. Source data errors have largely been addressed 

through error corrections applied to the NGDC data (Chandler and Wessel, 2008, 

2012), but the errors originating from the source data remain as these corrections have 

not been propagated through to magnetic anomaly identifications made from the 

uncorrected data. Sources of error may derive from; errors in the location of the 

measurements, particular for old, pre-GPS data; large skewness angles due to 

magnetization and the ambient geomagnetic field directions; non-vertical magnetic 

boundaries within the magnetic source layer. Errors in the “picking” technique mainly 

arise from digitizing errors; the anomaly end assignment, especially if the centre-point 

of the anomaly was chosen or if this information is not explicitly stored; incorrect 

chron assignment; and low sampling resolution. Magnetic anomaly mis-

interpretations are possibly the largest sources of error but are difficult to quantify, 

especially if there are no alternative reconstructions for comparison. The association 

of Hellinger input and output files, where available, may provide confidence for one 

particular interpretation over another. The establishment of a community-driven 

repository with multiple, consistently formatted magnetic interpretations for each area 

may help partly overcome these limitations.  

3. The infrastructure and data repository 

Due to their close relationship, both fracture zone traces (and other seafloor fabric 

data) and the new magnetic anomaly and Hellinger-format files are accessible from 

the same top-level website (www.soest.hawaii.edu/PT/GSFML). Data files will be 

presented in GMT/OGR ASCII, KML, and shapefile formats for GMT, GPlates or 
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general-purpose GIS software and will be distributed via zip files. We provide links to 

relevant plate reconstruction software and other tools from our site. 

4. Sample magnetic anomaly identification data from the world’s oceans 

As part of our community magnetic anomaly identification repository, we provide a 

sample dataset of global identifications. This dataset has been quality-checked for 

consistency and only data attributable to a published data source is included. Our 

magnetic anomaly identification sample dataset is by no means complete but rather 

includes those data that have been provided freely to the community either through 

publication supplementary data, general online data repositories or through personal 

requests from the authors. Many more magnetic anomaly identifications exist that 

have yet to reach the public domain.  Our intention for providing this sample data is to 

initiate the effort for a globally self-consistent magnetic anomaly identification 

repository.  

4.1. Atlantic Ocean 

We have collated magnetic anomaly identifications for the Cenozoic South Atlantic 

from Cande et al. (1988) and Müller et al. (1999), and from Rabinowitz and 

LaBrecque (1979) for the Mesozoic (Fig. 3a).  In the southern South Atlantic, 

magnetic anomaly identifications associated with the Malvinas plate are from 

LaBrecque and Hayes (1979) and Marks and Stock (2001); the Cenozoic South 

America-Antarctic spreading corridors from LaBrecque and Cande (1986) and 

Livermore et al. (2005); and the early break-up of South America and Africa by 

Martin et al. (1982).  The Mesozoic spreading in the Weddell Sea is represented by 

magnetic anomaly identifications from Kovacs et al. (2002).  Magnetic anomaly 

identifications for the North Atlantic are from Klitgord and Schouten (1986) for the 
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Mesozoic-Cenozoic Central Atlantic; Müller et al. (1999) for the Cenozoic Central 

Atlantic; Klitgord and Schouten (1986) and Gaina et al. (2002) from Iberia-

Newfoundland to Greenland-Eurasia and the Labrador Sea; Srivastava and Tapscott 

(1986) and Gaina et al. (2002) for Greenland-Eurasia and the Eurasian Basin; and 

Srivastava and Tapscott (1986) and Gaina et al. (2009) for the Norway Basin  (Fig. 

3b). Numerous identifications of Neogene period reversals (20 Ma and younger) for 

the Arctic basin, the Kolbeinsey and Reykjanes Ridges, and the Mid-Atlantic Ridge 

north of the Azores triple junction are included from Merkouriev and DeMets (2008).  

Similarly detailed identifications of Neogene period reversals from the Africa-North 

America segment of the Mid-Atlantic Ridge (15 N to 37 N) are included from 

Merkouriev and DeMets (2014). The noticeable absence of magnetic anomaly 

identifications in the equatorial Atlantic is due to the combined effect of a north-south 

striking ridge and its position at the equator. 

Where multiple magnetic anomaly identification datasets are available, we prefer the 

magnetic anomaly identifications of Müller et al. (1999) for the Cenozoic South 

Atlantic and Central Atlantic. In the North Atlantic a combination of identifications 

from Merkouriev and DeMets (2008) and Merkouriev and DeMets (2013) for Chron 6 

and younger, and from Gaina et al. (2002) and Gaina et al. (2009) for reversals older 

than Chron 6, as the latter four studies each include rotations derived using the 

Hellinger method and rigorously estimated rotation uncertainties. In addition, the data 

for three of the studies (Gaina et al., 2009; Gaina et al., 2002; Merkouriev and 

DeMets, 2013) include fracture zone identifications based variously on multibeam, 

sonar, and satellite altimetry data. 

4.2. Indian Ocean 
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We have collated magnetic anomaly identifications in the Indian Ocean from a variety 

of sources.  In the western Indian Ocean, these include Royer et al. (1988) for the 

Southwest Indian Ridge; Baines et al. (2007) for two detailed spreading corridor 

studies proximal to the Southwest Indian Ridge; DeMets et al. (2005) and Merkouriev 

and DeMets (2006) for the Central Indian and Carlsberg Ridges; Cande et al. (2010), 

Eagles and Hoang (2013) and Eagles and Wibisono (2013) for the Central Indian 

Basin; and Eagles and Konig (2008) for the Mesozoic spreading history (Fig. 3c).  In 

the eastern Indian Ocean, these include Cande and Stock (2004), Tikku and Cande 

(1999), Veevers (1986), Granot et al. (2013) and Whittaker et al. (2007) for the 

southeast Indian Ridge; Gibbons et al. (2013) and Williams et al. (2013) for the 

Mesozoic Enderby Basin; and Mihut and Müller (1998), Müller et al. (1998) and 

Gibbons et al. (2012) for the Meoszoic anomalies along the western Australian 

margin (Fig. 3d).  In addition, we incorporate a dataset covering the entire Indian 

Ocean from the Red Sea to the southeast Indian ridge from Segoufin et al. (2004) 

(Fig. 3c-d). We acknowledge the existence of many more unpublished magnetic 

anomaly identifications in the Indian Ocean (e.g. Yatheesh et al., 2013), which will be 

incorporated into our magnetic anomaly repository once they are published.  

Where multiple magnetic anomaly identification datasets are available in the Indian 

Ocean we prefer a combination of Whittaker et al. (2007) and Tikku and Cande 

(1999) for the magnetic anomaly identifications in the southeast Indian Ocean, Cande 

et al. (2010) in areas of data overlap in the Central Indian Basin, the data of Gibbons 

et al. (2012; 2013) for the Mesozoic eastern Indian Ocean, Royer et al. (1988) and 

Baines et al. (2007) for the southwest Indian Ridge and Eagles and Konig (2008) for 

the Mesozoic spreading between Africa, Madagascar and Antarctica. These 

interpretations were chosen as they were derived using newly collected data, recent 
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fracture zone identifications, provide all the necessary metadata and/or incorporate 

uncertainties in derived rotations using the Hellinger method. 

4.3. Pacific Ocean 

The Pacific Ocean is vast and many of the magnetic anomaly identifications are old 

(pre-1980s), poorly documented and subject to larger data source and digitizing 

uncertainties than the more recent identifications found in many of the other ocean 

basins.  We have collated magnetic anomaly identifications for the Mesozoic western 

Pacific from Nakanishi et al. (1992), Sharman and Risch (1988) and Atwater (1989) 

(Fig. 3e); the Mesozoic-Cenozoic northeast Pacific from Atwater (1989), Bassinger et 

al. (1969), Caress et al. (1988), Currie and Riddihough (1982), Elvers et al. (1967), 

Elvers et al. (1973), Klitgord and Mammerickx (1982), Mason and Raff (1961), 

Lonsdale (1991) and Vaquier et al. (1961); and the Cenozoic southeast Pacific from 

Atwater (1989), Barckhausen et al. (2013), Cande and Haxby (1991), 

Handschumacher (1976), Handschumacher (1981), Herron (1972), Klitgord and 

Mammerickx (1982), Mammerickx et al. (1980), Mayes et al. (1990), Munschy et al. 

(1996), Pardo-Casas and Molnar (1987), Tebbens and Cande (1997), Tebbens et al. 

(1997), Theberge (1971) and Weissel et al. (1977).  Much recent focus has been on 

the remote Pacific-Antarctic spreading system due to its crucial role in the global 

plate circuit.  Magnetic anomaly identifications have been made in the following 

publications: Croon et al. (2008), Larter et al. (2002), Wobbe et al. (2012) and Cande 

et al. (1995).  Magnetic anomaly identifications for West Antarctic-Australia 

spreading in the Balleny corridor come from Cande et al. (2000), Cande and Stock 

(2004) and Granot et al. (2013), identifications from the Adare Trough representing 

spreading between East and West Antarctica come from Cande et al. (2000), Davey et 

al. (2006) and Granot et al. (2013), identifications around the Macquarie Ridge com 
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from Keller (2004) . Finally, picks of Neogene period reversals from the northern end 

of the East Pacific Rise are included from DeMets and Traylen (2000). 

Our preferred magnetic anomaly identifications for the southeast Pacific include a 

combination of the identifications from Barckhausen et al. (2013), Cande and Haxby 

(1991), Handschumacher (1976), Munschy et al. (1996), Pardo-Casas and Molnar 

(1987), Mammerickx et al. (1980), Tebbens and Cande (1997) and Weissel et al. 

(1977).  For the northeast Pacific, our preferred magnetic anomaly identifications 

consist of a combination of interpretations from Atwater (1989), Bassinger et al. 

(1969), Elvers et al. (1967), Elvers et al. (1973) and Vaquier et al. (1961).  Our 

preferred set of magnetic anomaly identifications for the Pacific-Antarctic ridge 

includes a combination of Croon et al. (2008), Wobbe et al. (2012) and Cande et al. 

(1995) as well as a few identifications from the earlier part of seafloor spreading from 

Larter et al. (2002) for the Pacific-Antarctic spreading system.  We use the recent 

magnetic anomaly identifications for East-West Antarctic motion from Granot et al. 

(2013), which significantly reduces uncertainties in rotation parameters to define this 

motion compared to Cande et al. (2000). 

4.4. Backarc basins and marginal seas  

Seafloor spreading in back-arc basins and marginal seas produce identifiable magnetic 

anomalies even though spreading is often quite complex with chaotic seafloor 

spreading fabric, faster seafloor spreading rates and shorter time sequences of activity. 

In the southwest Pacific, we have collated the magnetic anomaly identifications for 

the Tasman Sea (Gaina et al., 1998), Coral Sea (Gaina et al., 1999) and North Loyalty 

and South Fiji Basins (Sdrolias et al., 2003).  In southeast Asia, we incorporate the 

magnetic anomaly identifications for the South China Sea (Briais et al., 1993), 

Caroline Basin (Gaina and Müller, 2007) and the Parece Vela and Shikoku Basins 
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(Sdrolias et al., 2004).  We have collated magnetic anomaly identifications for the 

Scotia Sea from Barker and Burrell (1977) and Eagles et al. (2005) for the Drake 

Passage and Hill and Barker (1980) for the Sandwich plate, eastern Scotia Sea. 

 

5. Discussion and Conclusion 

Plate tectonic motion models provide the framework to place features on the Earth’s 

surface in their spatio-temporal context and are important for assessing global and 

regional geological relationships and processes. These models are underpinned by 

magnetic anomaly and fracture zone interpretations. In addition, some key models of 

real value to the community rely directly on the constraints provided by magnetic 

anomaly identifications, e.g. the age of the ocean floor (Müller et al., 1997; Müller et 

al., 2008a), spreading rates and asymmetries (Müller et al., 2008a; Seton et al., 2009), 

predicted bathymetry (Müller et al., 2008b) and heatflow and hydrothermal flux 

(Müller et al., 2013). 

The open-access, community-driven infrastructure that we have developed provides 

access to these fundamental constraints for the broader community. Our infrastructure 

allows for studies requiring the assessment of alternative plate reconstructions to be 

achieved by non-specialists or alternatively, for the specialist community to have 

access to previous interpretations of an area and assess which areas require further 

data collection and interpretation. We anticipate that the sample data provided with 

this infrastructure will be continuously updated and we strongly encourage the 

community to contribute their magnetic anomaly identifications to this effort.   

 



 15

Acknowledgements 

We would like to extend thanks to the many researchers who have directly or 

indirectly contributed magnetic anomaly identifications to the wider community and 

the NGDC for hosting the marine magnetic anomaly datasets.  MS and JMW would 

like to thank support from Statoil, MS for support from Australian Research Council 

(ARC) grant DP0987713, RDM and SEW for support from ARC grant FL0992245, 

and PW for support from US National Science Foundation grant 0752543. CG 

acknowledges the Geological Survey of Canada and Geological Survey of Norway for 

their support and access to digital magnetic databases.  

 

Figures 

Figure 1: The global magnetic anomaly identification dataset that is provided as part 

of our infrastructure. Magnetic anomaly identifications are coloured by age based on 

the timescale of Gee and Kent (2007).  

Figure 2: Schematic of how to “pick” a magnetic anomaly identification. We track the 

confidence in the anomaly end assignment using a numerical code, where 1 = 

anomaly end clearly listed in the original paper; 2 - some problem exists from the 

original paper but there is confidence in the anomaly end assignment; 3 – anomaly 

end unclear in original paper and the end has been inferred. 

Figure 3: Regional maps showing magnetic anomaly identification datasets, coloured 

by reference, which is how the data is provided in the repository. 

a. South Atlantic 

b. North Atlantic 
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c. Western Indian 

d. Eastern Indian  

e. Western Pacific 

f. Northeast Pacific 

g. Southeast Pacific 

h. South pole 

i. North pole  
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