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Abstract. A synthetic stalagmiteδ18O record for the Bunker
Cave (51◦ N, 7◦ E) is constructed using a combined climate–
stalagmite modelling approach where we combine an atmo-
spheric circulation model equipped with water isotopes and a
model simulating stalagmite calciteδ18O values. Mixing pro-
cesses in the soil and karst above the cave represent a natural
low-pass filter of the speleothem climate archive. Stalagmite
δ18O values at Bunker Cave lag the regional surface climate
by 3–4 yr. The power spectrum of the simulated speleothem
calciteδ18O record has a pronounced peak at quasi-decadal
time scale, which is associated with a large-scale climate
variability pattern in the North Atlantic. Our modelling study
suggests that stalagmite records from Bunker Cave are rep-
resentative for large-scale teleconnections and can be used to
obtain information about the North Atlantic and its decadal
variability.

1 Introduction

Speleothems are a valuable archive of past climate variability
since they allow precise dating (Richards and Dorale, 2003;
Fairchild et al., 2006; Scholz and Hoffmann, 2008) and pro-
vide high-resolution climate proxy data (Wang et al., 2001;
Dayem et al., 2010, Pausata et al., 2011a). The most com-
monly used climate proxies in speleothems are stable carbon
and oxygen isotope signals (δ13C andδ18O) (McDermott,
2004; Yuan et al., 2004; Lachniet, 2009) as well as various
trace elements such as magnesium or strontium (Fairchild

and Treble, 2009). Their potential for paleoclimate research
is related to the question whether they reflect local climate
conditions above the cave or large-scale climate variabil-
ity modes. Such modes show coherent spatial structures and
were identified both in the tropical Pacific (e.g. Philander,
1990), North Pacific (Walker and Bliss, 1932), and the North
Atlantic (Walker, 1924; Hurrell, 1995; Deser and Blackmon,
1993). Part of the problem of understanding climate variabil-
ity is linked to the question of identifying the corresponding
spatial patterns (e.g. Rimbu et al., 2001, Felis et al., 2004;
Lohmann et al., 2004; Langebroek et al., 2011). A climate–
speleothem proxy relationship is postulated through a cor-
respondence between speleothemδ18O records and several
local processes such as rainfall amount and large-scale ef-
fects (e.g. Fairchild and Treble, 2009; Drysdale et al., 2009;
LeGrande and Schmidt, 2009; Lewis et al., 2010). Baker et
al. (2011) analyse the climate–proxy relationship for an an-
nually laminated Scottish stalagmiteδ18O and found little
correspondence to instrumental climate data, although a clear
relationship between local rainfallδ18O and atmospheric cir-
culation is observed. They concluded that this prevents a sim-
ple palaeoclimate interpretation in terms of atmospheric cir-
culation for the stalagmiteδ18O proxy in this region.

Here, we follow their idea and trace the simulated
speleothemδ18O, which stems from the composition of infil-
trated water in a cave. We analyse the climate variability pat-
tern related to variations in a cave system in Central Europe,
which is under the influence of maritime climate. It is well
known that the climate over the North Atlantic sector varies
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on quasi-decadal to multi-decadal timescales (Deser and
Blackmon, 1993; Hurrell, 1995; Sutton and Allen, 1997). In
this pattern, the atmospheric and oceanic circulation gener-
ate a tripole pattern in sea surface temperature (SST) anoma-
lies (Bjerknes, 1964; Deser and Blackmon, 1993; Kushnir,
1994; Dima and Lohmann, 2004). Modelling studies with
atmospheric general circulation models (AGCMs) of differ-
ent complexity forced by global SST variability over the last
century show that the atmospheric circulation over the North
Atlantic is at least partly predictable on decadal timescales if
global SST variability can be predicted (Rodwell et al., 1999;
Latif et al., 2000; Robertson et al., 2000; Sutton and Hodson,
2003; Grosfeld et al., 2007; Keenlyside et al., 2008). On in-
terannual time scales, internal variability of the atmosphere
plays an important role in determining atmospheric circula-
tion over the Atlantic sector (e.g. Mignot and Frankignoul,
2005).

However, it remains poorly understood how changing cli-
matic boundary conditions affect the strength and dynamics
of these natural oscillations in the North Atlantic realm on
longer time scales. Such information can be inferred from
the past using climate proxy data if the large-scale telecon-
nections remain unaffected (e.g. Justino and Peltier, 2005;
Brachert et al., 2006; Li and Battisti, 2008; Pausata et al.,
2009, 2011b).

Here we elaborate the large-scale relation of theδ18O sig-
nal recorded in a simulated stalagmite, for the location of
Bunker Cave (51◦ N, 7◦ E). The cave is located in the Rhen-
ish Slate Mountains in the western part of Germany (Riechel-
mann et al., 2011; Fohlmeister et al., 2012). Our model ap-
proach is based on an AGCM including water stable isotopes
(Werner and Heimann, 2002) as well as a proxy model for
the general processes influencing theδ18O signal of cave drip
water and speleothem calcite (Wackerbarth et al., 2010). This
model was developed in order to better understand the in-
fluence of climate change on theδ18O values of speleothem
calcite. We examine the related large-scale variability on in-
terannual to multi-decadal timescales in the North Atlantic
realm. In addition, our approach helps to study the relation-
ship between climate change and the recorded speleothem
proxy signals.

2 Methods

2.1 Atmospheric model

The applied model was the Hamburg AGCM ECHAM4
(Roeckner et al., 1996) with both water stable isotopes H18

2 O
and HDO explicitly cycled through the water cycle of the
model (Werner and Heimann, 2002). The simulation was per-
formed in T30 resolution (3.75 by 3.75 spatial grid; 19 verti-
cal levels). Observed monthly values of the global sea ice and
sea surface temperature data set (GISST2.2) of the UK Mete-
orological Office were prescribed for the period 1908–1994

(Rayner et al., 1996). Atmospheric concentrations of green-
house gases (CO2, CH4, N2O) but no additional aerosol forc-
ing were also prescribed according to the observations. With
the same SST data and the same model, ensemble integration
with three members was performed in order to study interan-
nual to multi-decadal variability (Latif et al., 2000; Grosfeld
et al., 2007). Furthermore, our water isotope module has been
applied for recent and past interglacial variability (Werner
and Heimann, 2002; Herold and Lohmann, 2009; Cruz et al.,
2009).

From the model run, we extract the local climate and oxy-
gen isotope signature for the region 7.5–8.5◦ E, 51–52◦ N.
This information is then used as the input for the stalagmite
model (Wackerbarth et al., 2010, 2012).

2.2 Stalagmite model

Cave drip water inherits theδ18O value from the meteoric
precipitation above the cave, but is modified in the soil-karst
system before it enters the cave and feeds the stalagmite. The
Oxygen isotope Drip water and Stalagmite Model (ODSM)
(Wackerbarth et al., 2010) simulates this modification of the
δ18O value from meteoric precipitation (δ18Oprecip) to calcite
precipitation on the stalagmite surface.

The first process modifying theδ18O value is evapotran-
spiration. Evaporation increases theδ18O value of the water
due to the preferential removal of lighter isotopes. The re-
maining amount of water represents the contribution to the
drip water. During warmer months, most of the water is lost
during evapotranspiration. During the colder season, this ef-
fect is largely reduced. In the ODSM, the amount of evap-
otranspiration is determined by ECHAM4 and the effect on
theδ18O value calculated by Majoube (1971).

Due to the higherpCO2 in the soil air compared to the
atmosphere, the infiltrating water forms carbonic acid and
dissolves the host rock. This process does not affect theδ18O
value of the water. The extent of mixing of water in the soil,
which can range from days to decades depending on the indi-
vidual cave system, may have a large effect on theδ18O value
of the water. The mixing smoothes the seasonal variability of
the δ18Oprecip values, and the drip waterδ18O value shows
a largely reduced variability around the infiltration-weighted
meanδ18Oprecip value.

When the drip water enters the cave, CO2 degasses, and
calcite precipitates and forms a stalagmite (Kaufmann, 2003;
Mühlinghaus et al., 2007; Dreybrodt and Scholz, 2011). In
the ODSM, the isotope fractionation between theδ18O value
of the drip water (δ18Odrip) and the precipitated speleothem
calcite (δ18Ocalc) is calculated as described by the models of
Scholz et al. (2009), M̈uhlinghaus et al. (2009) and Deininger
et al. (2012) with dependence on cave temperature, drip in-
terval and supersaturation with respect to calcite. For a de-
tailed description, see Wackerbarth et al. (2010, 2012) and
Wackerbarth (2012).
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Fig. 1. Local input time series at the cave site:(a) surface temperature,(b) precipitation,(c) δ18Oprecip, (d) evaporation values at Bunker
Cave. Blue lines indicate the 12-month and red lines the 60-month running mean values, respectively.

For the application in this study, the ODSM is used
as a forward model, which is forced by output parame-
ters from ECHAM4 (temperature, precipitation, evaporation,
δ18Oprecip) in monthly resolution in order to capture the sea-
sonality. Cave- and drip site-specific parameters were ap-
propriately adjusted for Bunker Cave based on a long-term
monitoring program (Riechelmann et al., 2011). The mixing
time of water parcels in the soil and karst is assumed to be
48 months (Wackerbarth, 2012), the mean value of the drip
interval 3600 s, and the mixing parameter set to 1 (the lat-
ter two parameters are needed for calculating kinetic isotope
fractionation; see M̈uhlinghaus et al., 2009 and Deininger et
al., 2012 for details). The extent of mixing of water parcels in
the aquifer only affects the degree of smoothing of theδ18O
value of the drip water. The meanδ18O value of the water
remains unchanged.

We note that the simulated stalagmiteδ18O values are
given in monthly resolution and, therefore, show a higher
variability than the values expected for natural stalagmites
from Bunker Cave. Due to their relatively low growth rate,
these normally have a temporal resolution of about 8–10 yr
(Fohlmeister et al., 2012).

3 Results

We start with local temperature and the hydrological cycle in
the AGCM, indicating pronounced interannual and decadal
climate variability (Fig. 1). The simulated surface temper-
ature, local precipitation, evaporation, andδ18Oprecip at the
cave site serve as the main input parameters determining
the cave temperature, soil humidity and speleothemδ18Ocalc.

The simulated monthly localδ18Oprecip values and surface
temperature indicate a positive correlation with a smaller
slope for higher temperatures (Fig. 2).

The ODSM stalagmite proxy model calculates the cave
temperature (Fig. 3a) from the running mean over the past
12 months of the surface temperature and simulates the ex-
pected speleothemδ18Ocalc values at Bunker Cave (Fig. 3b).
To examine the behaviour of the simulated proxy, we analyse
the spectra for the input and output of the speleothem calcite.
The local temperature andδ18Oprecip indicate pronounced in-
terannual variability, whereasδ18Odrip and δ18Ocalc exhibit
pronounced decadal variability (Figs. 3 and 4). The spectra
of the temperature, speleothemδ18Ocalc as well as the lo-
cal δ18Oprecip values show interannual (with peaks at about
3 and 5 yr) and quasi-decadal variability (at about 14 yr). The
decadal peak is not significant for temperature andδ18Oprecip
(Fig. 4a and c), in contrast toδ18Odrip and δ18Ocalc where
the interannual variability inδ18Odrip, δ18Ocalc is suppressed
(Fig. 4b and d) and the power spectra emphasise pronounced
peaks at about 14 yr. The variability ofδ18Opreciphas a flatter
spectrum as compared toδ18Odrip, δ18Ocalc (Fig. 4).

In order to compare the localδ18Oprecip with δ18Ocalc, we
apply a low-pass filter of 5 yr to localδ18Oprecip. The lag cor-
relation between these quantities shows a significant lag at
about 3–5 yr (Fig. 5), which is related to the infiltration of a
water parcel and its inflow into the cave. This value is con-
sistent with earlier work at Bunker Cave (Kluge et al., 2010;
Wackerbarth et al., 2010). We find that this lag is not very
sensitive to the low-pass filtering when using 4, 5, or 6 yr
(not shown).
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Fig. 2. Relationships between localδ18Oprecip vs. surface temperature(a, c) and precipitation(b, d) at the cave site.(a) and (b) for the
monthly values, and(c) and(d) for the 60-month running mean values. The linear regression lines are shown in blue; green lines indicate a
second-order polynomial fit.
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Fig. 3. Time series of the simulated monthly mean (speleothem
δ18Ocalcandδ18Odrip values at Bunker Cave). The thick lines show
the 60-month running mean.

In order to relate the simulatedδ18Ocalc signal to the large-
scale climate pattern and to eliminate the noise in the system,
we filter the SST, surface temperature, andδ18Oprecip with
the low-pass filter of 5 yr in the following (Figs. 6–8). Prior
to the correlations, the seasonal cycle was removed, the time
series detrended, and the data normalized to their standard
deviation.

The correlation of the localδ18Oprecip values with SST
(Fig. 6a) shows a band of positive correlation between 30 and
60◦ N. Areas showing a significant correlation (95 % confi-
dence level, t-test) are coloured. A similar correlation pat-
tern is obtained when applying a 3-yr lag on the simulated

δ18Ocalc signal (Fig. 6b). The similarity in the panels of
Fig. 6 is due to the time delay between the simulatedδ18Ocalc
signal and the localδ18Oprecip caused by infiltration. Sim-
ilar patterns are obtained in composite map analysis (von
Storch and Zwiers, 1999) between theδ18Ocalc and SST
(not shown). The SST maps (Fig. 6) reflect ocean advection
around the Gulf Stream area south of Newfoundland further
downstream, which will be discussed below.

Also of interest are the hydrological cycle and its spa-
tial extension. Figure 7 displays the correlation map of the
δ18Oprecip values with respect to the localδ18Oprecip val-
ues (Fig. 7a) and with respect to the 3-yr laggedδ18Ocalc
(Fig. 7b), indicating a regional coherence in Central Europe
and at the eastern coast of North America. The similarity
of both panels in Fig. 7 (note the different colour scales) is
due to the lag correlation (Fig. 5). Furthermore, part of the
δ18Oprecipcorrelation pattern in Fig. 7 bears similarities with
the associated SST correlation pattern (Fig. 6).

In order to understand the coherence in the SST corre-
lation (Fig. 6), we apply an empirical orthogonal function
(EOF) analysis (von Storch and Zwiers, 1999) of observed
SSTs using the updated GISST sea surface temperature data
set (Rayner et al., 2006). Figure 8 shows two distinct vari-
ability patterns in the North Atlantic Ocean: the first EOF
explains 38 % of the variance (Fig. 8a) with pronounced
decadal and multi-decadal timescale variability in the prin-
ciple component (PC1) (Fig. 8c). The second EOF explains
9 % of the variance and shows zonal bands of SST stacked in
the meridional direction (Fig. 8b). This mode is dominant on
quasi-decadal timescales (Fig. 8d). Both EOFs account for
a substantial amount of North Atlantic variability, and their
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Fig. 4.Power spectra of the annual mean(a) cave temperature,(b) δ18Odrip, (c) δ18Oprecip, (d) δ18Ocalc at the Bunker Cave. The green lines
denote the 95 % (90 %) highest spectrum of 1000 AR(1) processes with the same autocorrelation.

signature can be recovered in the coherent correlation fields
(Figs. 6 and 7).

4 Discussion

Instrumental surface temperature data over the last century
depict strong variability at interannual to multidecadal time
scales. There is evidence that the global climate system con-
tains modes of climatic variability operating on decadal to
multidecadal time scales involving temperature and atmo-
spheric circulation (e.g. Deser and Blackmon, 1993; Kushnir,
1994; Mann et al., 1995; Delworth and Mann, 2000; Dima
and Lohmann, 2004; Liu, 2012). Here we want to elaborate
the temporal behaviour of the speleothem climate archive
for a specific cave site in Germany (51◦ N, 7◦ E) where
large-scale patterns may play a role. We combine two mod-
els: one AGCM and a speleothem proxy model for Bunker
Cave. We build pseudo-proxy data by calculating the local
speleothemδ18Ocalc values in Bunker Cave (Fig. 3b). This
allows attributing dominant signals of variability in observed
and proxy data of the North Atlantic region to changes in
the forcing. Because the relation ofδ18Oprecip with temper-
ature is much more pronounced than for precipitation on
all time scales (Fig. 2), we find a strong relation with the
large-scale temperature, and only weak for precipitation (not
shown). The decadal SST signature is characterized by a
remote North Atlantic pattern (Fig. 6) on a quasi-decadal
time scale (Fig. 4). This also projects to a European regional
δ18Oprecip pattern (Fig. 7a), which affects theδ18Ocalc with a
lag of 3–4 yr.
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Fig. 5.Lag correlation between the 5-yr low-pass filteredδ18Oprecip

and δ18Ocalc values.δ18Ocalc lags δ18Oprecip by 3–4 yr. Values
above 0.41 are statistically significant taking into account the de-
grees of freedom (t-test).

The mode indicates the propagation of SST anomalies
from the Gulf Stream region along the gyre circulation (Dima
and Lohmann, 2004, cf. Fig. 5). Evidence for the Gulf Stream
SST anomalies to be transferred from mid-latitudes into the
tropics through surface advection is further supported by a
lag correlation analysis ofδ18Oprecip (andδ18Ocalc) with the
SST (not shown). On decadal timescales, localδ18Oprecip
(and δ18Ocalc) is largely determined by the surrounding
SSTs. We note that a moderate correlation (ρ = 0.4) with tem-
perature indicates that other processes than SST also affect
the δ18Ocalc. Besides the effect through the modulation of
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a) 

b) 

Fig. 6. (a) In-phase correlation of the simulated localδ18Oprecip

values and SST.(b) 3-yr lag correlation of the simulatedδ18Ocalc
values and SST. Areas showing a significant correlation (95 % con-
fidence level, t-test) are coloured. The data were detrended, and a
5-yr low-pass filter was applied (see text).

δ18O via temperature, the hydrological cycle shows a spa-
tially coherent pattern (Fig. 7). Thus, we expect a similar
temporal behaviour in the areas showing a positive correla-
tion in Fig. 7, e.g. in eastern North America.

It has been proposed that the quasi-decadal mode re-
sults from ocean–atmosphere and tropics–midlatitudes inter-
actions in the North Atlantic Basin (Deser and Blackmon,
1993; Dima et al., 2001; Dima and Lohmann, 2004). We run
the model with random input and the same lag correlation,
and found no distinct frequency peak (red noise in Fig. 4)
suggesting that other than random processes are responsible
for the quasi-decadal peak.

An important question is the mechanism of the filtering
through the speleothem climate archive. Due to mixing pro-
cesses in the aquifer, theδ18Oprecip signal is smoothed to an
infiltration-weighted meanδ18O value. The extent of mixing
determines the variance of the simulatedδ18Odrip. We find
that the spectrum ofδ18Ocalc in Bunker Cave is dampened
for interannual time scales. We emphasize that this feature

b) 

a) 

Fig. 7.As Fig. 6, but forδ18Oprecip instead of the SST field.

of the recorder system is location-dependent and can be cali-
brated to agree with the observed natural variance in the par-
ticular cave system (Wackerbarth et al., 2010). We admit that
the stalagmite model has a simplified karst hydrology (ef-
fectively an adjustable lag function), and future models may
take into account more complex processes.

For paleoclimate reconstruction, a smoothing of the signal
can be considered as an advantage, because it eliminates un-
wanted stochastic contributions. Werner and Heimann (2002)
found that simulatedδ18O records at ice core sites indicate
year-to-year variations masked by internal atmospheric vari-
ability producing a low signal-to-noise ratio. Indeed, one can
interpret ice core proxy data in terms of the frequency of
weather patterns (Rimbu and Lohmann, 2010). If a proxy fil-
ters out the inherent noise of the climate system, it may be
easier to detect a deterministic response to a large-scale SST
pattern. The smoothing, of course, makes it more difficult to
detect the corresponding mechanism, especially when deal-
ing with relatively short periods (e.g. Baker et al., 2011). We
admit that the actual mixing processes in real caves are more
complex than in our ODSM model (Wackerbarth et al., 2010)
and might be even climate dependent.
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Fig. 8. North Atlantic EOFs using the updated GISST sea surface temperature data set (Rayner et al., 2006).(a) First EOF: 38 % of the
variance,(b) EOF2: 9 % of the variance.(c) Principle component PC1,(d) PC2. The data were detrended, and a 5-yr low-pass filter was
applied (see text).

5 Conclusions

Several attempts to reconstruct reliable climate information
from stalagmiteδ18O values over the last few centuries have
been made to reconstruct large-scale climate patterns for the
last millennium (see, for instance, the review papers by Mc-
Dermott, 2004 and Lachniet, 2009). At present, the modes of
climate variability and their modulation through longer-term
background climate, and how this has varied in the past, are
only known for selected sites with high-resolution proxy data
(e.g. Rimbu et al., 2001; Lohmann and Schöne, 2013). Ac-
cordingly, climate models used to assess potential changes
of these climate modes in the past and future are only poorly
constrained.

On the other hand, cave monitoring programs do not cover
decades yet, which limits their potential to study the environ-
mental processes relevant for climate reconstructions. Using
a pseudo-proxy approach extracted from AGCM simulations
and a proxy module, we analyse the (modelled) reconstruc-
tions in light of variability modes. We find that the regional
response in speleothemδ18Ocalc is sensitive to environmental

changes in terms of temperature and the hydrological cy-
cle. We find a clear signature of the Atlantic quasi-decadal
and multi-decadal variability modes (Deser and Blackmon,
1993; Dima et al., 2001; Dima and Lohmann, 2004, 2007;
Liu, 2012).

Furthermore, we show that the speleothem climate archive
can significantly reduce the interannual variability through
natural low-pass filtering. This feature is distinct from
the random error represented by reconstruction uncertainty
ranges. We admit that our analysis might depend on the
choice of the speleothem calcite model and the climate model
simulation used to provide the pseudo-proxies. However,
our model simulations suggest that the stalagmiteδ18Ocalc
is a sensitive recorder on decadal and longer time scales.
As a next step, several other locations will be studied and
compared to each other in order to study the underlying
physics for different regions. Our correlation maps sug-
gest that other Central European caves should show a sim-
ilar spatiotemporal behaviour at least on decadal to mul-
tidecadal timescales. Furthermore, we will extend our ap-
proach to multi-centennial timescales by using long-term
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numerical experiments (Herold and Lohmann, 2009; Wei and
Lohmann, 2012; Dietrich et al., 2013) in combination with
our proxy modules. Such experiments can help to interpret
long-termδ18O variability in stalagmites.
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M., Dümenil, L., Esch, M., Giorgetta, M., Schlese, U., and
Schulzweida, U.: The atmospheric general circulation model
ECHAM4: Model description and simulation of present-day cli-
mate, MPI Report 218, Max-Planck-Institute for Meteorology,
Hamburg, Germany, 90 pp., 1996.

Scholz, D. and Hoffmann, D. L.:230Th/U-dating of fossil reef
corals and speleothems, Quaternary Sci. J., 57, 52–77, 2008.

Scholz, D., M̈uhlinghaus, C., and Mangini, A.: Modelling the
evolution of δ13C and δ18O in the solution layer on stalag-
mite surfaces, Geochim. Cosmochim. Acta, 73, 2592–2602,
doi:10.1016/j.gca.2009.02.015, 2009.

Sutton, R. T. and Allen, R. M.: Decadal predictability in North At-
lantic sea surface temperature and climate, Nature, 388, 563–
567, 1997.

Sutton, R. T. and Hodson, D. L. R.: Influence of the ocean on North
Atlantic climate variability 1871–1999, J. Climate, 16, 3296–
3313, 2003.

von Storch, H. and Zwiers, F. W.: Statistical Analysis in Climate Re-
search, Cambridge University Press, Cambridge, 484 pp., 1999.

Wackerbarth, A.: Towards a better understanding of climate prox-
ies in stalagmites – modelling processes from surface to cave,
Dissertation, Ruprecht-Karls-Universität, Heidelberg, 2012.

Wackerbarth, A., Scholz, D., Fohlmeister, J., and Mangini, A.: Mod-
elling theδ18O value of cave drip water and speleothem calcite,
Earth Planet. Sc. Lett., 299, 387–397, 2010.

www.clim-past.net/9/89/2013/ Clim. Past, 9, 89–98, 2013

http://dx.doi.org/10.1016/j.epsl.2011.08.049
http://dx.doi.org/10.5194/cp-5-441-2009
http://dx.doi.org/10.5194/cp-6-325-2010
http://dx.doi.org/10.1175/2011JCLI3980.1
http://dx.doi.org/10.1016/j.palaeo.2012.08.006
http://dx.doi.org/10.1002/joc.1054
http://dx.doi.org/10.5194/cp-5-489-2009
http://dx.doi.org/10.5194/cp-7-1089-2011
http://dx.doi.org/10.1175/2010JCLI3556.1
http://dx.doi.org/10.1016/j.gca.2009.02.015


98 G. Lohmann et al.: Simulated European stalagmite record and its relation to a quasi-decadal climate mode

Wackerbarth, A., Langebroek, P. M., Werner, M., Lohmann, G.,
Riechelmann, S., Borsato, A., and Mangini, A.: Simulated oxy-
gen isotopes in cave drip water and speleothem calcite in Euro-
pean caves, Clim. Past, 8, 1781–1799,doi:10.5194/cp-8-1781-
2012, 2012.

Walker, G. T.: Correlation in seasonal variations of weather IX,
Mem. India Meteor. Dept., 24, 275–332, 1924.

Walker, G. T. and Bliss, E. W.: World weather V, Memoir. Roy.
Meteorol. Soc., 4, 53–84, 1932.

Wang, Y. T., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen,
C.-C., and Dorale, J. A.: A high-resolution absolute-dated late
Pleistocene monsoon record from Hulu Cave, China, Science,
294, 2345–2348, 2001.

Wei, W. and Lohmann, G.: Simulated Atlantic Multidecadal Os-
cillation during the Holocene, J. Climate, 25, 6989–7002,
doi:10.1175/JCLI-D-11-00667.1, 2012.

Werner, M. and Heimann, M.: Modeling interannual variability of
water isotopes in Greenland and Antarctica, J. Geophys. Res.-
Atmos., 107, 4001,doi:10.1029/2001JD900253, 2002.

Yuan, D., Cheng, H., Edwards, R. L., Dykoski, C. A., Kelly, M.
J., Zhang, M., Qing, J., Lin, Y., Wang, Y., Wu, J., Dorale, J.
A., An, Z., and Cai, Y.: Timing, Duration, and Transitions of
the Last Interglacial Asian Monsoon, Science, 304, 575–578,
doi:10.1126/science.1091220, 2004.

Clim. Past, 9, 89–98, 2013 www.clim-past.net/9/89/2013/

http://dx.doi.org/10.5194/cp-8-1781-2012
http://dx.doi.org/10.5194/cp-8-1781-2012
http://dx.doi.org/10.1175/JCLI-D-11-00667.1
http://dx.doi.org/10.1029/2001JD900253
http://dx.doi.org/10.1126/science.1091220

