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Abstract 3 

Given the variability of seasonal, annual, and in particular longer time-scales, the dispersal and 

fate of the river discharge and its influence On the hydrographical and sedimentological settings 

are the central tasks in understanding the Holocene history of the Laptev Sea shelf. The main goal 

of this study was to investigate short- and long-term environmental changes in the strongly 

coupled land-shelf System of the Laptev Sea using isotopic evidence in sediments and biogenic 

carbonates. 

In order to trace the modern spatial distribution of terrestrial organic matter, which is strongly 

affected by the riverine input and the thermal erosion of the ice-rich permafrost coast, stable 

carbon isotope ratios of total organic carbon in surface sediments were analyzed. The stable 

carbon isotope composition of surface sediments reveal a dominant impact of terrestrial organic 

matter on the modern depositional environment of the Laptev Sea shelf with distinct south to 

north and east to West gradients. Based on downcore 6 Â °  records in radiocarbon-dated 

sediment cores the spatial and temporal deposition of terrestrial organic matter during the past 

12.7 ka is specified and can be related to depositional changes which occurred after the last 

glacial maximum when this region became flooded due to a global rising sea level. The major 

changes in the deposition of terrestrial organic matter occurred between 11 and 7 ka BP and 

comprise the main phase of the southward retreat of the coastline and river depocenters due to the 

postglacial sea level rise. 

Stahle oxygen and carbon isotope profiles from recent and fossil bivalve shells were investigated 

in order to trace modern and past hydrographical conditions and their changes during the 

postglacial history of the Laptev Sea. The serial dissection of bivalve shell valves along their 

growth axis from the umbo towards the ventral margin provides an isotopic record of 

hydrographical and physiological changes during the life of the individual specimen. The oxygen 

isotopic profiles of modern bivalve species of Astarte borealis exhibit amplitude cycles 

interpreted as recording annual hydrographical cycles. Regarding the well-known relationship 

between the carbonate S^O, temperature, and the isotopic composition of water (6^0,,), it is 

possible to relate isotopic phases to seasonal hydrographical phases like summer and winter. The 

within shell isotopic variations are mainly attributed to variations in the isotopic composition and 
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in the salinity of bottom waters in the Laptev Sea. Seasonal temperature changes can be regarded 

of minor iinportance. Using a modern linear relationship between 8'^OW and salinity of 

0.50%0/salinity, salinity records are reconstructed from the oxygen isotope records of the bivalve 

shells and can be directly compared with hydrographical Parameters at the investigated sites. 

Persistent trends towards more negative S^C values are observed in all specimens and appear to 

be  related to metabolic changes of the bivalves during ontogeny. In contrast, short-term 

fluctuations are likely linked to seasonal variabilities of the river water outflow pattems and 

enhanced phytoplankton productivity during summer. This is corroborated by a clear watermass- 

related distinction of the various S^C records made on the basis of water depth and distance from 

the riverine source. 

Given a good conformance between isotope profiles from modern bivalve shells and 

oceanographic observations, oxygen isotope profiles of radiocarbon bivalve shells from a 

sediment core from northeast off the Lena Delta are used to obtain information about passt 

hydrological conditions. Although isotope profiles from fossil bivalves of the Laptev Sea shelf 

reflect only a brief interval of time, they may offer new important insights into the 

paleohydrography during snapshots of the last 8.4 ka and their relation to the Holocene 

transgression. 

A reconstructed bottom water salinity of 29.5 at 8.4 ka BP indicates that the particular site was 

much more affected by riverine water than nowadays caused by the proximity to the coastline and 

to the paleo-river mouth. Due to the continuing southward retreat of the coastline and the Lena 

River mouth relative to the study site an increase in the bottom water salinity at 7.3 ka BP is 

reconstructed. The oxygen isotope shell profile at 7.3 ka BP gives an evidence of a bottom water 

hydrography which is characterized by a high variability of-sumrner and winter conditions on the 

level of modern bottom water conditions. The following time slices at 3.6 ka and 1.6 ka  BP 

reveal that modern hydrological conditions are fully established. 

The presented salinity reconstruction enables us to make further presumptions on the relative 

proximity of the study site to the coast and to the river mouth during snapshot views of the 

Holocene history and thus can be related to the postglacial transgression of the Laptev Sea shelf. 
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Zentrale Aspekte im VerstÃ¤ndni der holozÃ¤ne Entwicklung des Laptev-See-Schelfs sind 

VerÃ¤nderun in Ausbreitung und IntensitÃ¤ des Flusswassers auf unterschiedlichen Zeitskalen, 

sowie dessen Einfluss auf das hydrographische und sedimentologische Milieu. Ein Hauptanliegen 

der vorliegenden Arbeit ist es kurz- und langfristige VerÃ¤nderunge zu untersuchen, wie sie 

sowohl in den Sedimenten als auch in biogenen Kalkschalern Ã¼berliefer sind. 

Zur Ermittlung der rÃ¤umliche Verteilung von terrestischem organischem Material auf dem 

Laptev-See-Schelf wurde die stabile Kohlenstoffsignatur der organischen Substanz in 

OberflÃ¤chenprobe untersucht. Der moderne Eintrag von organischer Substanz ist stark 

terrestrisch beeinflusst und nimmt von SÃ¼de nach Norden, beziehungsweise von Osten nach 

Westen hin ab, Analysen zur Kohlenstoffsignatur in datierten Sedimentkemen konnten fÃ¼ eine 

Charakterisierung der rÃ¤umliche und zeitlichen VerÃ¤nderunge im Eintrag von terrestrischem 

organischem Material wÃ¤hren der letzten 12,7 ka herangezogen werden. VerÃ¤nderunge im 

Ablagerungsmilieu stehen in direkter Beziehung zur postglazialen Ãœberflutungsgeschicht des 

Laptev-See-Schelfs, bedingt durch den globalen Anstieg des Meeresspiegels. Drastische 

VerÃ¤nderunge in der Ablagerung von terrestrischem organischem Material konnten fÃ¼ den 

Zeitraum zwischen 11 und 7 ka BP festgestellt werden. Dieses Zeitfenster beinhaltet die 

Hauptphase der Transgression auf dem Laptev-See-Schelf und ist gekennzeichnet durch das 

sÃ¼dlic gerichtete RÃ¼ckschreite der KÃ¼stenlini und der FlussmÃ¼ndunge und somit auch durch 

eine Verlagerung der Sedimentationsraume der FlÃ¼sse 

Zur Identifizierung und Rekonstruktion von rezenten und vergangenen hydrographischen 

Bedingungen sowie deren VerÃ¤nderunge wahrend der postglazialen Entwicklung der Laptev- 

See wurden stabile Isotopenprofile an Schalen rezenter und fossiler Bivalven untersucht. 

Dezidierte Isotopenmessreihen entlang von Wachstumsprofilen an Bivalven bieten 

hochaufgelÃ¶st Informationen Ã¼be hydrographische und milieubedingte VerÃ¤nderunge wÃ¤hren 

des Lebenszeitraums eines Individuums. Sauerstoffisotopenprofile an rezenten Bivalven zeigen 

deutliche Amplituden, die als saisonale hydrographische VerÃ¤nderunge interpretiert werden 

kÃ¶nnen Aufgrund der AbhÃ¤ngigkei der Sauerstoffisotopenzusammensetzung im Karbonat der 

Bivalvenschale, der isotopischen Signatur des umgebenden Wassers (5180Ã£ sowie der 
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Umgebungstemperatur ist es mÃ¶glic diese Amplituden den winter- und sommerlichen 

hydrographischen Gegebenheiten in der Laptev-See zuzuordnen. IsotopenÃ¤nderunge innerhalb 

der Schale sind hauptsÃ¤chlic den Variationen in der Isotopensignatur des Wassers 

zuzuschreiben, die wiederum eine lineare AbhÃ¤ngigkei zur SalinitÃ¤ aufweisen. Jahreszeitlich 

bedingte Temperaturschwankungen im Bodenwasser kÃ¶nne in der Laptev-See vernachlÃ¤ssig 

werden. Unter der Annahme einer rezenten linearen AbhÃ¤ngigkei von 6^OW und SalinitÃ¤ von 

0,5%o/SalinitÃ¤tseinhei lassen sich aus den Isotopenprofilen SalinitÃ¤tsverlÃ¤u Ã¼be den 

Lebenszeitraum der Bivalve rekonstruieren und mit gemessenen Werten an den jeweiligen 

Fundorten vergleichen. 

Die gute Ãœbereinstimmun der aus rezenten Bivalvenschalen rekonstruierten SalinitÃ¤te mit 

hydrographischen Beobachtungen bietet die MÃ¶glichkei aus Isotopenprofilen von fossilen, 

datierten Schalen in einem Sedimentkern nordÃ¶stlic des Lena-Deltas Informationen uber 

vergangene hydrographische Bedingungen und VerÃ¤nderunge zu erhalten. Obwohl 

Isotopenprofile aus Bivalvenschalen immer nur einen kurzen Zeitrahmen hydrographischer 

Gegebenheiten wÃ¤hren ihrer Lebensdauer wiedergeben kÃ¶nnen so lassen sich daraus doch 

wertvolle Momentaufnahmen der PalÃ¤ohydrographi und ihrer Beziehung zur holozÃ¤ne 

Transgression gewinnen. Eine rekonstruierte BodenwassersalinitÃ¤ von 29,5 zum Zeitpunkt 8,4 ka 

BP zeigt, dass die untersuchte Station zum damaligen Zeitpunkt verglichen mit heute unter 

erhÃ¶hte Einfluss von Flusswasser stand. Dieser erhÃ¶ht Einfluss von Flusswasser ist in der 

damaligen NÃ¤h zur KÃ¼st und zur ehemaligen FlussmÃ¼ndun der Lena zu suchen. Aufgrund des 

kontinuierlichen RÃ¼ckschreiten der KÃ¼stenlini infolge der Transgression verlagerte sich auch 

die FlussmÃ¼ndun relativ zur untersuchten Station nach SÃ¼de und fÃ¼hrt zu erhÃ¶hte 

BodenwassersalinitÃ¤ zum Zeitpunkt 7,3 ka BP. Die fÃ¼ diesen Zeitpunkt rekonstruierte 

BodenwassersalinitÃ¤ ist mit der heutigen vergleichbar, jedoch mit wesentlich grÃ¶ÃŸer 

jahreszeitlichen Amplituden. Die Zeitfenster 3,6 und 1,6 ka BP reprÃ¤sentiere hydrographische 

Bedingungen, wie sie heutzutage an der untersuchten Station zu finden sind. 

Die vorgestellten SalinitÃ¤tsrekonstruktione bieten auÃŸerde die MÃ¶glichkei Aussagen uber die 

relative Lage der untersuchten Station zur KÃ¼stenlini und vor allem zur Lage der FlussmÃ¼ndun 

wÃ¤hren Momentaufnahmen der holozÃ¤ne Transgressionsgeschichte des Laptev-See-Schelfs zu 

treffen. 
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As a part of the Russian-German multidisciplinary research project "Laptev Sea System 2000", 

the present study is focused On short- and long-term paleoenvironmental changes during the 

Holocene history of the Laptev Sea using isotopic evidence in sediments and biogenic 

carbonates. 

It is now widely accepted that freshwater plays an important role in the hydrographical cycle of 

the Arctic Ocean because it is essential for the rnaintenance of the low-salinity surface water 

layer and for the formation of sea-ice (Aagaard and Carmack, 1989) (Fig. 1-1). Changes in the 

Arctic Ocean surface hydrography may be recognized as a major forcing mechanism that can 

perturb a particular climate mode. One of the most likely effects of the Arctic Ocean on global 

climate is the effect On thermohaline circulation through the export of cold freshwater and sea ice 

from the Arctic Ocean. For instance, an increase in freshwater and sea ice export through the 

Fram Strait has a significant impact on the deep-water formation gyres in the Nordic Seas and 

may induce a weakening of the thermohaline circulation (Aagaard and Carmack, 1994), thereby 

influencing the northerly directed heat transfer supplied by the North Atlantic current (Broecker, 

1997). 

In the context of growing concern about the response of Arctic regions to environmental changes 

and its impact on global climate the Laptev Sea and its adjacent hinterland are of particular 

interest. Here, large rivers are discharging freshwater onto the shelf, thereby constituting a key 

source of the Arctic halocline's freshwater budget (Bauch et al., 1995). At present, the annual 

Arctic freshwater input reaches a total volume of 3300 km3, which is equivalent to 10 % of the 

global runoff (Aagaard and Carmack, 1989; Gordeev et al., 1996). About 25 % of the total 

freshwater discharged into the Arctic Ocean is contributed by rivers draining onto the Laptev Sea 

shelf. The major freshwater source of the Laptev Sea is the Lena River, which alone contributes 

75 % of the total annual freshwater discharge (Alabyan et al., 1995). This riverine discharge is 

characterized by a seasonal maximum between May and October with a flood peak period 
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recorded in early summer. In contrast the winter discharge wanes down to only 15 % of the entire 

annual volume (Gordeev et al., 1996). 

Fig. 1-1: Surface ocean circulation and average summer surface salinities in the Arctic Ocean, its shelf seas, and 
adjacent Nordic Seas. The oceanographic Cross section of the upper 500 m across the Arctic Ocean from the 
Norwegian Sea to the Laptev Sea unveils the distinctive Arctic Ocean Halocline (summer average 1950-1990). Data 
from EWG (1998). 

Together with the riverine waters enormous loads of suspended and particulate matter are being 

transported onto the shelf (Alabyan et al., 1995; Gordeev et  al., 1996). While some of the 

terrestrial sediments remain on the shelf, others may be advected by shelf currents andlor 

entrained into sea ice (Eicken et al., 1997). Since these are important processes for the disposal 

and transfer of terrestrial material into the deep Arctic Ocean, the Laptev Sea shelf links the 

Arctic Ocean with the Siberian hinterland through the river discharge. 

To better understand the present-day and past processes in the land-shelf system of the Laptev 

Sea, it seems particularly important to investigate its sediments. Since the modern shelf sediment 

budget is strongly dependent on the input of terrestrial material from rivers (Gordeev et al., 1996) 
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and coastal erosion (Rachold et al., 2000), and on marine productivity (Heiskanen and Keck, 

1996), the organic sediment fraction often comprises a mixture of terrestrial and marine 

components (Fahl and Stein, 1999). Thus, the analyses of the stable carbon isotope composition 

of the total organic sediment fraction ( 8 ^ C )  in surface sediments, which is a widespread 

method to determine the terrestrial origin of the carbon (Sackett, 1964; Hedges and Parker, 1976; 

Naidu et al., 2000), can be used to trace the modern spatial distribution of terrestrial organic 

matter. The shelf sediments do not only contain information about the fluvial mnoff, they are also 

sensitive recorders of those changes that occurred while the Laptev Sea region became flooded 

due to the last postglacial sea-level rise (Bauch et al., 1999; Bauch et al., 2001 [b]). The massive 

environmental changes that occurred, induced by the sea-level rise, such as a gradually southward 

retreat of the river mouths and their depocenters and an increased thermo-erosion of the ice-rich 

permafrost coast, should have affected the deposition of terrestrial organic matter. Using 8"CoÃ£ 

downcore records in radiocarbon-dated sediment cores from the outer and central Laptev Sea 

shelf, this study makes an attempt to investigate temporal changes in the deposition of terrestrial 

organic matter during the transgressional history. 

Beside the dominant impact of the river supply on the modern and past sedimentological settings, 

the hydrography of the Laptev Sea is itself strongly coupled with the annual river discharge and 

its characteristics. Given the variability of seasonal, annual, and in particular of longer time- 

scales, the dispersal and fate of the river discharge and its influence On the hydrographical 

settings are the central tasks in understanding changes in the Laptev Sea System. 

A second focus of the present study therefore is the reconstruction of hydrographical conditions 

on modern and past timescales on the basis of stable oxygen and carbon isotope profiles of 

bivalve shells. Stable oxygen and carbon isotopic data from carbonate fossils have played an 

important role in paleoenvironmental reconstructions since the pioneering work of Urey et al. 

(1951). The oxygen isotopic composition of calcium carbonate is a function of the temperature 

and the oxygen isotopic composition of the ambient water (Epstein et al. 1953). Stable oxygen 

isotope data of bivalve shells are often used deciphering hydrographical aspects because isotopic 

changes can be related to changes in water temperature andlor salinity (e.g., Arthur et al., 1983; 

Hong et al., 1995; Khim et al., 2001). Because bivalves undergo accretionary growth, a serial 
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carbonate sampling technique along the growth axis of the bivalve shells can provide isotopic 

records of hydrographical and environmental changes during the life Span of the individual 

specimen (Krantz et al., 1987). Thus, isotope records of modern bivalves from the Laptev Sea 

shelf were used as a tool to trace modern temporal changes of hydrographical processes in the 

Laptev Sea System. 

In order to reconstruct the paleohydrography in the eastern Laptev Sea during the Holocene, 

stable isotope profiles of fossil, radiocarbon-dated bivalve shells from a sediment core were 

established. Although reflecting only a brief interval of time during the life of the individual 

specimen their isotope profiles offer new important insights into temporal variability of the 

riverine freshwater discharge and its influence On the hydrography during snapshot views of the 

postglacial transgressional history of the eastem Laptev Sea shelf. 

1.2 STUDY AREA: THE LAPTEV SEA 

1.2.1 Physiography 

The Laptev Sea as a part of the large Siberian shelves is located between the Kara and the East 

Siberian seas and bordered by the Taymyr Peninsula and the Severnaya Zernlya archipelago in 

the West and the New Siberian Islands in the east. Large parts of the Laptev Sea shelf are fairly 

shallow, with averaging water depths less than 50 m. The northern boundary of the Laptev Sea 

shelf is marked by the steep continental slope and the adjacent deep sea (Fig. 1-2). Its topography 

is characterized by a gently northward dipping plain, cut by submarine channels. These channels 

are connected to the mouths of the rivers and are clearly recognized as submerged river valleys 

formed during Late Pleistocene times of lowered sea level (Holmes and Creager, 1974; Kleiber 

and Niessen, 1999). Some channels run along tectonic structures which are related to rift Zone 

extended from south to southeast from the shelf break to the mainland (Drachev et al., 1999). 



Introduction 11 

Fig. 1-2: Shaded relief of the Laptev Sea shelf and the adjacent hinterland, viewed from the northwest. 

1.2.2 Hydrography 

The modern hydrographical situation of the Laptev Sea results from the advection of Arctic water 

masses from the north and the annual river discharges of about 7 14 km3 from the south (Global 

Runoff Data Center, 1998). The rivers Lena, Yana, Anabar, and Olenek drain an area of 

3,643,000 km2 (Treshnikov, 1985). 75 % of the total annual freshwater input to the Laptev Sea is 

contributed by the Lena River. In terms of freshwater discharge the Lena is the second largest 

among the Arctic rivers with a mean annual freshwater discharge of 532 km3 (Global Runoff 

Data Center, 1998). Due to the extreme continental climate of East Siberia the water discharge of 

the Lena River exhibits strong seasonal and interannual variations. The surface waters are frozen 

each year from October to May until the river-ice breakup proceeds from south to north, reaching 

the Lena Delta in the mid of June. The Lena River shows a fortyfold increase from very low 
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winter values to the peak flows of June and July, also the annual discharge is subject to 

interannual variations with 5-20 % of the annual mean (Aagaard and Carmack, 1989). As its 

mouth, the Lena River forms an extensive delta with many tributaries. The largest of these 

tributaries, Trofimovskaya and Bykovskaya, are responsible for -60 and -25 % of the total Lena 

River runoff, respectively, and their waters are discharged mainly to the eastern Part of the 

Laptev Sea (Lktolle et al. 1993; Ivanov and Piskun, 1995). 

The enormous seasonal freshwater pulse has a great impact on the horizontal and vertical 

stmcture of the water column and affects a strong thermohaline stratification of the water in the 

shallow Laptev Sea. Although surface salinities within the shelf may vary yearly (Drnitrenko et 

al., 1999), the lowest values are always found in the southeastern part of-the Laptev Sea. The 

Lena River waters progressively mix with the Laptev Sea waters, forming a large brackish 

surface plume extending northward. With increasing distance to the coastline and the river mouth 

the surface salinity increases and reflects the decreasing influence of riverine water. A typical 

feature for the Laptev Sea is a sharp halocline in water depths of 10 to 15 m, which separates less 

saline surface water from the subjacent colder and more saline bottom water. 

1.2.3 Modern depositional environment 

The riverine outflow is also responsible for a seasonally highly variable transport of significant 

amounts of suspended load onto the shelf. The total amount of suspended matter per year is 

estimated at about 24 rnillion tons (Rachold et al., 2000). The main portion (17.6*106 tonslyear) 

of the sediments is transported by the Lena River (Gordeev et al., 1996). Other major rivers like 

the Yana (3.5*106 tonslyear), Khatanga (1.7 *106 tonslyear), Olenyok (l.1*106tons/year) and 

Anabar (0.1*106tons/year) draining to the Laptev Sea have a less important sediment load 

(Gordeev et al., 1996). The sediments supplied by the rivers are mainly deposited on the Laptev 

Sea shelf (Kuptsov and Lisitzin, 1996), partly incorporated into sea ice and transported across the 

Arctic Ocean and through the Fram Strait via the Transpolar Drift (Eicken et al., 1997; Dethleff 

et al., 2000). 
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The importance of the eastern Laptev Sea as the main depositional Center for modern fluvial input 

by the Lena and Yana rivers is related by the surface current System (HÃ¶leman et al., 1999). In 

general, the western Laptev Sea surface current system is characterized by a southward inflow of 

cold saline water. The current is deflected to the east and mixes with low-salinity river water 

(Pavlov et al., 1996) (Fig. 1-2). The warm, low-salinity surface water leaves the Laptev S e a  West 

of Kotel'ny. Previous investigations show that the surface sediments are relatively fine-grained 

ranging from silty clay to sandy silt (Washner, 1995). In general, the spatial grain-size 

distribution in surface sediments indicates a higher proportion of fine material in the eastem part, 

whereas more sandy sediments dominate the western Part of the Laptev Sea shelf (Lindemann, 

1995). A similar Pattern is recognized in the content of organic matter, showing higher amounts 

in the east as opposed to the West (HÃ¶leman et al., 1999; Stein et al., 1999). Indeed, the  large 

rivers draining into the Laptev Sea transport substantial amounts of organic and other 

sedimentary material onto the shelf, but On the other hand the large amount of sediment input, 

caused by the thermal erosion of the ice-bearing permafrost coast should be taken into account. 

Rachold et  al. (2000) calculated the sediment input by coastal erosion to 58.4*106 tonslyear, 

which is more than twice the riverine input. 

1.2.4 Holocene evolution of the Laptev Sea shelf 

The extent of the Eurasian ice sheets during the Weichselian has recently been revised by 

Svendsen et al. (1999). They pointed out, that the eastern boundary of the large Eurasian ice sheet 

never extended further east than Taymyr Peninsula and the Central Siberian Uplands (Forman et 

al., 1999; Larsen et al., 1999, MÃ¶lle et al, ,  1999; Svendsen et al., 1999). Therefore, sediment 

cores from the western Eurasian shelves (Barents and Kara seas) frequently show widespread 

glaciogenic sediments underneath marine sediments of Holocene age (Polyak et al., 1995; 

Lubinski et al., 1996; Hald et al., 1999) whereas the wide and shallow Laptev Sea shelf further 

east remained unaffected by glaciations and does not show such features. 

The sea level on the shallow Siberian shelf seas, outside the limits of last glacial ice sheets is 

expected to have risen with some regional time differences compared to those shelves which 

came under the effect of postglacial vertical isostatic movements. Because of the inundation of 
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formerly exposed landmasses, sediment records from the Laptev Sea shelf have been used to 

provide characteristic lithological features of the Holocene transgression (Bauch et al., 1999; 

Bauch et al., 2001 [b]). A first detailed insight into postglacial sedimentary evolution came from 

a few radiocarbon-dated cores from the Laptev Sea. They showed a distinctive, sea-level related 

change in the input of terrestrial-derived sediment material due to the gradual retreat of the 

paleocoastline (Bauch et al., 1999; Stein and Fahl, 2000; Mueller-Lupp et al., 2000). Based on 

more sediment cores, recovered from various water depths, ranging from the continental slope to 

the shallow inner shelf region, Bauch et al. (in press) established a chronology of the last 

transgression for the Laptev Sea shelf. On the basis of major changes in the average 

sedimentation rate in sediment cores and other sedimentological Parameters, they reconstructed 

time slices of the postglacial-transgressional history of the Laptev Sea shelf. The observed sharp 

decrease in sedimentation rates is the direct result of the postglacial sea-level rise, which 

gradually dimbished sedirnentation from the outer to inner shelf due to an increasing distance 

between the shelf areas and the coast as the primary sediment source. They conclude that the 

general Pattern in down-core sedimentation rates reflects the southward retreat of the coastline 

during the Holocene flooding of the Laptev Sea shelf. 

Allowing for some uncertainties, they estimate that the inundation of the present 50 m, 43 m, and 

31 m isobaths was concluded by about 11.1, 9.8, and 8.9 ka BP, respectively (Fig. 1-3). The 

Holocene sea-level highstand was reached near 5 ka BP. The rate of sea-level rise between these 

time constraints was calculated to 5.4 m d y r ,  13.3 d y r ,  and 7.9 mdyear.  
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Fig. 1-3: Reconstruction of the Laptev Sea transgression (Bauch et al.. 2001 [b]) showing thc variation in areal 
flooding between each time interval investigated. Thc topographic map 1s based on Russian navigation charts and thc 
bathymetric data obtained during several German-Russian expeditions. Note that the modern shelf topography does 
not reflect the actual paleosurface prior to inundation. 
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1.3 MATERIAL AND METHODS 

1.3.1 Sediment samples 

To Cover a substantial part of the Laptev Sea shelf, at a total of 103 stations surface samples were 

taken from giant box cores during several expeditions to the Laptev Sea (Fig. 1-4). 

Fig. 1-4: Shaded relief of the Laptev Sea and the adjacent hinterland, showing the locations of the investigated 
sediment cores and bivalves. Datasource: IBCAO (International Bathymetric Chart of the Arctic Ocean). 
http:/Iwww.nedc.noaa.~ov/m~~Ibathvmetrv/arctic/arctic.html. Projection: Lambert azimuthal equal-area projection 
(122 EI75 X). 
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The investigated sediment cores were recovered from the central and outer Laptev Sea shelf, 

covering a water depth of 32 to 77 m (Table 1-1; Fig. 1-4). Subsequent sediment samples for 

stable carbon isotope analyses and total organic carbon (TOC) measurements were taken with a 

resolution of 5 cm (KD9502-14) and 10 cm (PM9499-2, PS2725-5), respectively. All sarnples 

were freeze-dried and grinded using a hand-held agate' pestle and mortar to provide a 

homogenized sample for the 6^Corg and TOC measurements. 

Table 1-1: Descriptions of the investigated sediment cores. 

Core Device Long. [Â¡E Lat. [Â¡N Water depth Recovery Cmisel Reference 

Fm1 Fcml 
PS51192-12 Kasten corer 130.140 74.592 32 589 PS5 1 ARK-XIVb / 1 

KD9502-14 Vibro corer 133.1 17 76.192 46 230 KD95 / 2 

PS2725-5 Gravity corer 144.135 78.657 77 478 PS27 ARK-XI11 / 3 

PM9499-2 Kasten corer 115.545 75.501 48 235 PM94 1 4 

References: 1 Kassens and Dmitrenko (in press), 2 Kassens et al. (1997), 3 Rachor (1997), 4 Kassens and 
Dmitrenko (1 995) 

1.3.1.1 Stahle carbon isotope analyses of the organic sedimentfraction 

The use of stable carbon isotope analyses of the total organic carbon in marine sediments to 

specify the provenance of the organic fraction is based on the general enrichment of "C by a few 

per mil on the delta scale in marine organic matter compared with terrestrial derived organic 

material. During photosynthesis carbon becomes depleted in "C. Plants using the C, 

photosynthesis pathway have a mean 6^C of about -26 to -29%0 (Mook and Tan, 1991). Grasses 

and other plants using the C4 pathway have 6^C values between -10 and -20 (review by Deines, 

1980). 

The marine fraction of the sedimentary organic carbon is about -20%0, with some variation 

related to the oceanic province. Due to the dominance of C, plants in the catchment area of the 

Laptev Sea rivers, the terrestrial source is expected to provide a well defined isotope signature 

which reliably helps to identify the contribution of the terrestrial source of organic matter to the 
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surface and downcore sediments of the Laptev Sea shelf. In contrast to more temperate regions 

the source of TOC from terrigenous C, plants to the drainage area of the Siberian rivers is 

insignificant because these plants do not exist in the northern latitudes (Teeri and Stowe, 1976; 

Teeri, 1988). 

For stable carbon isotope measurements of the organic matter in the bulk sediments ( 6 ^ ~ )  in 

the surface sediments as well as in the samples from the sediment cores, the samples were 

acidified with 2 % HC1 (lh) at 40Â°C Afterwards the samples were washed on a pre-combusted 

fiberglass filter to remove the carbonates. The filter was dried at 60 'C and combusted for 10 

min. at 900Â° in an excess of 4.5 grade oxygen. The yield of CO, was determined volumetrically 

and analyzed on a FINNIGAN-MAT Delta E isotope ratio mass spectrometer. The Instrument 

was isotopically calibrated through the NBS 20 (carbonate) isotope standard (Ŝ C = -1.06%0). 

The accuracy was checked using the IAEA NBS22 (oil) isotope reference material. The precision 

of the 6^C results is 0.2%0 PDB or better. The isotope composition is given in the SI3C vs. PDB 
13 notation: SnC [%o] = [(13C/12Csamp1e- C/12Cstm) / (13C/12Cm)] 1000. 

1.3.1.2 TOC measurements 

Measurements of 6 '3Cg  of the organic sediment fraction can provide an indication of the 

terrestrial origin of the total organic matter (TOC). Consequently TOC accumulation rates may 

give some indication of terrestrial or riverine input of organic matter through time. 

The TOC contents (weight percentage) of the samples from cores PM9499-2 and KD9502-14 

were measured at GEOMAR, Kiel, using a LECO C-200 carbon determinator. For TOC analyses 

the samples had to be decalcified prior to measurement. For this purpose a few drops of 

hydrochlorid acid were added until all the calcium carbonate was removed and no further 

reaction took place. Afterwards the sample was combusted at 1800Â° and organic carbon, in 

terms of CO2, was measured by an infrared detector. Each sample was measured twice to reduce 

measurement errors. 



Introduction 19 

The TOC measurements for core PS2725 were taken from Fahl and Stein (1999) and were 

deterrnined by the means of a Heraeus CHN-analyzer. 

1.3.1.3 Chronology und accumulation rates 

The age models of the core PM9499-2, KD9502-14, and PS2725-5 are based on established 

chronological frameworks (Bauch et al., 1999; Stein and Fahl, 2000) (Table 1-2). The  age 

deterrninations were primarily based on radiocarbon dates of marine bivalves, obtained by means 

of an accelerator mass spectrometer (AMS) at the Leibniz Laboratory in Kiel (Germany). The 

lower part of core PM9499-2 contained no biogenic carbonate. Therefore, radiocarbon analyses 

were performed on bulk plant material (Bauch et al., 1999). The chronology of core PS51192-12 

is based on radiocarbon AMS-dates measured on marine bivalve shells at the Leibniz Laboratory 

in Kiel (Table 1-2; Fig. 1.5). A reservoir effect for the Laptev Sea shelf of 370249 yrs was taken 

into account (Bauch et al., 2001 [a]) and was subtracted from each of the dated marine shells. All 

radiocarbon dates were converted into calendar years BP using the intercept method (Stuiver et 

al., 1998) in the program CALIB rev, 4.3 (Stuiver and Reimer, 2000). 

Between the age tiepoints, the sedimentation was assumed to be constant and linear Interpolation 

was applied to produce the depth-age relation of the measured proxies TOC and 6 ^ C .  

Taken into account for compaction of the sediment, the dry bulk density (DES) was determined 

and multiplied with the linear sedimentation rate (LSR), according to the standard method of van 

Andel et al. (1975) to compute the total sediment accumulation (ARlÃ£ta,) 

ARlÃ£, [g/cm2/ka] = LSR [cdka ]  * DBS [g/cm3] 

The accumulation rate (AccR) of TOC was calculated as a product of the total accumulation rate 

and the content of TOC: AccRTor [g/cm2/ka] = (TOC [%I 1100) AccRS,,,,.,~,,, [g/cm2/ka] 
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Table 1-2: Radiocarbon dates and calibrated calendar years of the investigated sediment cores from the Laptev Sea 
shelf. 

Corel Depth "C age Cal. age BP Corel Depth "C age Cal. age BP 

Lab# [cml [F] [yrs] Lab# [cml iyrsl [Y~s] 

PM9499-2" 0 

KIA-1794 24 

KIA-3115 29.5 

KIA- 1793 122 

KIA- 1799 149 

KIA-1817 157 

KIA-1884* 184 

KIA-3 120* 234 

2140230 

65 10250 

8660250 

10090Â±5 

10140Â±5 

103 10270 

10650Â±11 

bomb 

6420230 

6440250 

6630Â±5 

7340250 

7610270 

7700270 

7900240 

8300260 

bomb 0 

8340~60 8891 

9170Â±9 9828 

9280260 9903 

9340260 10073 

0 

590225 273 

1505235 1078 

1680235 1267 

3810235 3809 

6725240 7270 

7280245 7754 

7950255 8408 

KIA-551 225 8420280 8936 

* plant material 

'"C ages were taken from: 1) Bauch et al. (1999); 2) Fahl and Stein (1999) 
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Fig. 1-5: Original radiocarbon dates and the reservoir-corrected age models as calculated in 103cal yr. BP (gray line) 
of the investigated cores. 
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1.3.2 Bivalves 

1.3.2.1 Bivalve species 

While five modern bivalve specimens of Astarte borealis and Macoma calcarea were collected 

alive from the Laptev Sea for detailed stable isotope analyses, the four fossil bivalves of Macoma 

calcarea were obtained from a sediment core (PS51192-12) northeast off the Lena Delta 

(Fig. 1-4). Collection sites, bivalves species, state of collection, collection date and age, 

respectively, of the investigated bivalves are presented in Table 1-3. The fossil bivalve shells 

were well preserved with no obvious signs of reworking. They were either found in situ with both 

valves in place, or the periostracum was still preserved, implying no significant lateral transport. 

Tablel-3: Description of the bivalve specimens used for the detailed stable isotope analyses. 

Sample IDI Bivalve species State of Collection datel Water depthl 

Lab # collection Age ["C years] Core depth 

Astarte borealis 

Astarte borealis 

Astarte borealis 

Astarte borealis 

Macoma calcarea 

Macoma calcarea 

Macoma calcarea 

Macoma calcarea 

Macoma calcarea 

alive 

alive 

alive 

alive 

alive 

fossil 

fossil 

fossil 

fossil 

05.08.1998 

03.08.1998 

19.08.1993 

Summer 1984 

03.08.1998 

3810Â±3 

6725+40 

7950+55 

32 m 1 surface 

32 m I surface 

22 m 1 surface 

11 mf surface 

32 m 1 surface 

3 2 m l 1 2 0 c m  

32ml2 lOcm 

We acknowledge 
1) M Schrnidt (Institute for Polar Ecology, Kiel Un~versity) 
2 )  I Richling and V Wiese (Malacological Museum "Haus der Natur-Cismar") 
3) A Gukov (Hydrometeorological Department TiksiIYakutia) 

for providing the bivalves 
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Modern bivalve species of Astarte borealis show a geographically widespread distribution in the 

Laptev Sea because of their tolerance to certain salinity and temperature environments (Gukov, 

1999). The typical habitat is infaunal in waters with a salinity range of 15-34 and water depth of 

15-50 m (Petryashov et al., 1999; Richling, 2000). Macorna calcarea is one of the typical 

representatives of deposit feeders in the Laptev Sea (Gukov, 1999). Burying themselves in the 

bottom by some centimeters, M a c m  calcarea uses a tendril-like siphon to suck up fine-grained 

sediments and organic matter from the sediment-water interface. 

1.3.2.2 Stahle Isotope analyses of bivalve shells 

If the isotopic compositions within a shell are to be compared with environmental conditions, the 

samples must be taken along a profile in the direction of growth. Bivalves are suitable for  this 

purpose because new material is added at the outer rim during their growth. 

A serial sampling technique similar to that used in other studies (Erlenkeuser and Wefer, 1981; 

Krantz et al., 1987; Krantz et al,, 1988; Bemis and Geary, 1996; Andreasson and Schmitz, 1998) 

was applied to derive high-resol~~tion records from the shells. Prior to taking carbonate samples, 

the exterior of each shell was cleaned to remove the periostracum and any surficial 

contarnination. Individual carbonate powder samples (>I5 pg) were obtained from each specimen 

by milling consecutive grooves sequentially from the outer layer along the growth axis with a 

spatial resolution of approximately 0.15 to 0.3 mm (Fig. 1-6). Sample positions [mm] are 

reported as the distance from the umbo towards the ventral margin along the axis of maximum 

growth. To  avoid a mixing of the sample with subjacent shell layers, the sample was milled 

surficially from the surface of the outer layer by using a diamond millingcutter under the 

microscope. The resulting carbonate powder sample was vacuumed on a little fiberglass filter. 

For isotope analysis, the carbonate powder on the filter was reacted with 100 % orthophosphoric 

acid under vacuum at 73OC in the Kiel carbonate device, which is coupled online to a Finnigan 

MAT 251 gas isotope mass spectrometer. Isotopic analyses of the CO, gas are recorded in 

standard delta (5) notation in per mil (960) relative to the PDB standard (NBS 20). The external 

error amounts to less than Â±0.08% and +0.05%0 for Sl8O and S1^C, respectively. 
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distance betweeti adjoining samples 0.2 - 0.35 mm 

Fig. 1-6: A) Exemplary sample position along the growth axis. B) Schematic cross section of a bivalve shell 
illustrating that carbonate powder samples are millcutt only from the outer shell layer. 

Having isolated the material, which was formed during a certain time under certain 

hydrographical and environmental conditions, that time must also be identified. Of Course, the 

length of the period which corresponds to a sample is a function of growth rate and sample size. 

In the ideal case, the time period represented by a sample can be exactly dated in terms of 

calendar months, seasons, or years. This method is well established using the stable isotope 

profiles from corals and counting backwards the visually determinable growth layers from the 

time of collection. Unfortunately growth bands in the investigated bivalves shells are not clearly 

visually discernible, we tried to identify isotopic cycles and compared them to the seasonal 

hydrographical changes. Taking into account the relationship between the isotopic composition 

of the bivalve shell carbonate, the temperature, and the isotopic composition of the water, which 
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is often related to salinity, the isotopic cycles can be interpreted as annual hydrological cycles 

with heavier iS^O values indicating winter and lighter values indicating Summer. The light values 

at the margin represent the summer in the year of collection. Because the modern bivalve 

specimens were collected alive, calendar years may be addressed directly by counting the annual 

isotope cycles backward from the margin. Since no hydrographical long-term monitoring exists 

so far, we are not able to establish a time scale with a resolution of days or months from the 

isotope profiles. But on the other hand seasonal hydrological conditions can be identified in the 

isotope profiles and give the possibility to reconstruct the hydrographical settings from the 

isotope profiles of the bivalve shells with a resolution of years. 

1.3.2.3 X-ray diffraction 

The mineralogy of the shell samples is important, because calcite and aragonite have slightly 

different fractionation factors as a function of temperature (Horibe and Oba, 1972; Grossmann 

and Ku, 1986). 

Carbonate samples from the outer and inner shell layer were ground by hand in an agate mortar, 

homogenized and subsequently pressed into an aluminium sample holder. The X-ray diffraction 

analysis (XRD) was performed with a Phillips PW 1700 X-ray diffractometer with a Cobalt K- 

alpha anode at 40 kV and 35 mA. All samples were scanned with a scanning speed of O.O1Â per 

second from 20Â to 40Â° The generated X-ray diffraction files were analyzed using the program 

Mac Diff 3.1.5 (Petschik, 1996) in order to determine whether the shell sample consists of 

Aragonite or Calcite, by measurement of peak areas (Milliman, 1974). All diffractograms only 

show a prominent Aragonite peak, whereas no Calcite peak was observed. 
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1.4 INDIVIDUAL STUDIES 

This thesis comprises three manuscripts (CHAFTER 2-4) which have been published or submitted 

to peer-reviewed scientific Journals. A short overview will be given in the following. Together 

with the references from CHAPTER 1 the references from each of this manuscripts have been 

merged into one reference list. 

Chapter 2: 

Changes in the deposition of terrestrial organic matter on the Laptev Sea Shelf during the 
Holocene: evidence from stable carbon isotopes. 

In this study the stable carbon isotope composition of the total organic matter i n  surface 
sediments of the Laptev Sea was used to trace the modern spatial distribution of terrestrial 
organic matter. Downcore 6 '^Co records in AMS-dated sediment cores specify the spatial and 
temporal depositional changes of terrestrial organic matter during the past 12.7 ka and their 
relation to the Holocene history of the Laptev Sea shelf. 

Chapter 3: 

Seasonal and interannual variability of Siberian river discharge in the Laptev Sea inferred 
from stable isotopes in modern bivalves. 

The purpose of this manuscript was to use the stable isotope profiles of bivalve shells as a tool to 
reconstmct the hydrographical conditions and changes in the Laptev Sea. The 6% and S^C 
cycles from growing profiles of recent bivalves of Astarte borealis indicate a correspondence to 
seasonal hydrographic changes and can be compared with synoptical data. 

Chapter 4: 
Paleohydrography of the Laptev Sea (Siberian Arctic) as recorded in stable isotope profiles 
of bivalve shells. 
In this study, oxygen isotope analyses of shells from living and fossil bivalves were carried out to 
reconstruct hydrological changes and their correspondence to the Holocene history of the Laptev 
Sea shelf. Oxygen isotope profiles of AMS-dated bivalves of Macoma calcarea provide us an 
insight into the evolution of the bottom water salinity and temperature during snapshot views of 
the transgressional history of the Laptev Sea shelf. 
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2 CHANGES IN THE DEPOSITION OF TERRESTRIAL ORGANIC MATTER ON THE 

LAPTEV SEA SHELF DURING THE HOLOCENE: EVIDENCE FROM STABLE 

CARBON ISOTOPES 

Stahle carbon isotope ratios in the organic fraction of surface sediments from 

the Laptev Sea shelf were analyzed in order to study the modern distribution 

pattern of terrestrial organic matter. The 6 ^ C  signature of surface sediments 

range from -26.6%~ near the coastal margin to -22.8%~ in the north towards the 

outer shelf. Characterizing the possible sources of organic matter by their 

SI3Corg signature reveals that the terrestrial influence reaches further north into 

the eastern than in the Western Laptev Sea. 

Downcore records of the 6 ^ C ,  measured On three AMS '"C-dated cores from 

water depths between 46 m and 77 m, specify the spatial and temporal changes 

in the deposition of terrestrial organic matter on the Laptev Sea shelf during the 

past 12.7 ka. The major depositional changes of terrestrial organic matter 

occurred between 11 and 7 ka BP and comprised the main phase of the 

southward retreat of the coastline and of the river depocenters due to the 

postglacial sea level rise. 
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The depositional environment of the broad and shallow Siberian shelf areas exert a strong impact 

through the vast river System and their discharge and particulates. More than 20 % o f  the total 

Arctic continental runoff (3300 km3) is supplied by the rivers draining into the Laptev Sea 

(Aagaard and Carmack, 1989). About 520 km3/yr of the total freshwater discharge of 7 0 0  km3Iyr 

to the Laptev Sea is contributed only by the Lena River (Alabyan et al., 1995). Approximately 

21*106 tons per year of suspended particulate material (Alabyan et al., 1995) and up t o  l.2*106 

tons per year of particulate organic carbon (POC) (Rachold and Hubbesten, 1999) are transported 

by the rivers, most of it by the Lena. However, the actual amount of sediment reaching the 

Laptev Sea is still under discussion because the portion of sediment that is deposited i n  the river 

deltas is not well-known. Furthermore, the amount of material released by thermal erosion of the 

ice-sich permafrost coastline has only been partially quantified (Are, 1999). The shelf sediments 

of the Laptev Sea do not only contain evidence of the modern fluvial runoff but also record the 

depositional changes in the past. Whereas most of the shelf was exposed during the last glacial 

maximum (LGM), the postglacial sea level rise led to a transformation of the shelf from a 

periglacial permafrost landscape into the modern shallow shelf sea (Bauch et al., 1999). 

The "C/^C ratio of the organic carbon in marine sediments has been used to specify the 

provenance of the organic fractions either derived from a terrestrial or a marine source (Hedges 

and Parker, 1976; Erlenkeuser, 1988, Tan and Edmond, 1993). This method is based upon a 

general enrichment of ^C, by a few per mil on the delta scale, in marine organic matter compared 

to terrestrial material. Land plants using the C, pathway of photosynthesis reveal 8l3C values 

about -25 to -25700 (Mook and Tan, 1991), while the marine fraction of the sedimentary organic 

carbon is about -20760, with some variation related to the oceanic province. The intention of our 

studies is to trace the terrestrial organic matter using the organic stable carbon isotope 

composition in the sediments and to identify the depositional changes of terrestrial organic 

material during the Holocene history of the Laptev Sea. Due to the dominance of C, plants in the 

catchment area of the Laptev Sea rivers, the terrestrial source is expected to provide a well 

defined isotope signature which reliably helps to identify the contribution of the tesrestrial source 

of organic matter to the surface and downcore sediments of the Laptev Sea shelf, 
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2.3 MATERIALS AND METHODS 

2 .3 .1  Sediment material 

Stahle organic carbon isotope analyses were carried out on a total of 103 stations that Cover a 

substantial part of the Laptev Sea shelf (Fig. 2-1). Three investigated sediment cores were 

obtained from the central (KD9502.PM9499) and outer shelf (PS2725). Core KD9502 from 46 m 

water depth and core PM9499 from 48 m water depth are located within the submarine channels 

of the Lena-Yana and Khatanga-Anabar rivers, respectively (Kassens et al., 1997; Kassens and 

Dmitrenko, 1995). Core PS2725 was recovered from 77 m water depth north of the New Siberian 

Islands (Rachor, 1997). 

For organic carbon isotope analyses the bulk sediment samples were acidified with 2% HCl (Ihr, 

40Â°C to remove carbonates, washed on a pre-combusted glass fiber filter, dried (60Â°C) and 

combusted for 10 min. at 900Â° in an excess of 4.5 grade oxygen. The isotopically interfering 

NOx were reduced over copper at 450Â°C The yield of C0,was determined volumetrically and 

analyzed on a FINNIGAN-MAT Delta E isotope ratio mass spectrometer. The instrument was 

isotopically calibrated through the NBS 20 (carbonate) isotope standard (6% = -1.06%0). The 

accuracy was checked using the IAEA NBS22 (oil) isotope reference material. The precision of 

the @-^C results is 0.2%0 PDB or better. The isotope composition is given in the 6^C vs. PDB 

notation: 5Â° [%o] = [("C/'2Csa,,,D,e - "C/'2Csla,,dard) / ( ' ~ I n C s l M ) ]  1000. 

To Interpret the downcore carbon isotopic records in terms of paleoenvironmental changes, 

established chronological frameworks were used (Bauch et al., 1999; Stein and Fahl, 2000). The 

conventional l4C ages were calibrated to calendar years (ka BP) using the intercept method in 

CALIB rev. 4.3 (Stuiver and Reimer, 2000; Stuiver and Reimer, 1993; Stuiver et al., 1998). A 

reservoir effect of 370Â±4 years for the Laptev Sea was applied (Bauch et al., 2001 [a]). 

Accumulation rates of total organic carbon (AccR TOC) were calculated on the basis of linear 

interpolation between the age points and consideration of the dry bulk density variations in the 

sediments. 
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Fig. 2-1: SI3C ratios of the organic fraction of the surface sediments from the Laptev Sea shelf. The distribution 
Pattern was generated by gridding and linear interpolation between the data points (black dots). 



Changes in the Deposition of Terrestrial Organic Matter ..... 3 1 

2.4.1 8 Â °  composition of the surface sediments 

The 8 Â °  values of the surface sediments range from -26.6%0 near the Lena Delta to -22.8%0 on 

the continental slope, revealing a consistent trend towards isotopically heavier values from the 

south to the north (Fig. 2-1). The 8Â° signature is lightest near the river mouths and gradually 

increases northward following to some extent the submarine valleys, which run in a south to 

north direction (Kleiber and Niessen, 1999). The distribution Pattern also reveals that lighter 

8I3Con, values extend further north in the eastern part of the Laptev Sea than in the Western part. 

This obvious east-west gradient in 8I3Coro values reflects the larger input of organic matter to the 

east (Rachold and Hubberten, 1999) as compared with the Western Laptev Sea, where marine 

conditions are more dominant (Dmitrenko et al., 1999). 

The lightest values of S^C observed near the mouths of the rivers Lena and Yana are in good 

agreement with the Ŝ C composition of the river-born particulate organic matter (POM). For the 

Lena River, Rachold and Hubberten (1999) report an average value of -27.1%~ k 0.8%0, which is 

close to the values found east off the Lena River delta (-26.6%0), where the main branches 

discharge. Samples from north of the Yana River yield -26.2%0, also matching the average 

isotopic composition of the riverine POM (-25.9%0 k 0.4%0) (Rachold and Hubberten, 1999). 

2.4.2 Accumulation of TOC and 8 Â °  composition during the Holocene 

The 8 Â °  records in the two sediment cores from the central Laptev Sea (PM9499, KD9502) 

shelf show a distinct shift from isotopically lighter to heavier Si3COrg values (Fig. 2-2a), which is 

dated back in both cores to approximately 7 ka BP. This suggests a thorough change of the 

depositional conditions on the central Laptev Sea shelf during this time. A dominantly terrestrial 

source of organic matter, indicated by low 8 ^ C  values, is obvious in both cores prior to 7 ka 

BP. The increasing I3C/^C ratio coupled with decreasing accumulation rates of TOC underlines 

the decline of terrestrial organic matter supply to the central Laptev Sea shelf after 7 ka BP. 
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Also in the record of core PS2725 from the deeper outer shelf, this shift towards isotopically 

heavier S ' ^ C  values and decreasing accumulation rates of TOC becomes evident 2 ka earlier. 
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The development towards heavier 613C,,g values seems to increase after 4 ka B P  (Fig. 2-2b). 

However, a more precise dating of this younger change in the Holocenc suffers f rom agc 

uncertainties in this part of the core. 

Prior 10 ka BP on the outer shelf, core PS2725 shows relatively heavy 6 I 3 C  values. Although 

this section is not dated, our data and those of others (Stein and Fahl, 2000) indicate that this part 

of the core must have been deposited under different environmental settings cornpared t o  the 

remaining part. According to the heavy 6 ^ C  values this core section may contain much older, 

reworked marine deposits. 

2.5.1 Distribution of terrestrial organic carbon in surface sediments 

As revealed by our surface sediment data, the S'̂C signature seems a feasible method to trace the 

deposition of the terrestrial organic matter on the Laptev Sea shelf (Fig. 2-1). By this rnethod it 

may also be  possible to identify the main sources of organic matter by their 6^C signature. On 

the basis of our data, the terrestrial source of organic matter is isotopically identified by a S^COrg 

of -26.6%0, which conforms to the average signature of POM, discharged by the main source, the 

Lena River. The river data of Rachold and Hubberten (1999) show that the signature of POM in 

the Siberian rivers is a mixture of two components, a detrital organic fraction with a 8'^Cm,, of - 

2 5 . 0 % ~  and an isotopically lighter component with an average of -3 1 . 0 % ~  that rnay be attributed to 

autochthonous riverine plankton. Rachold and Hubberten (1999) identified the detrital organic 

material as the main fraction of riverine POM, which is exported by the river runoff onto the 

Laptev Sea shelf. Besides, coastal material as another source of terrestrial input should not be 

neglected. Erosive processes, i.e. thermoabrasion and erosion of perrnafrost-affected coastal soils 

with a high content of organic carbon, should greatly imprint on the 6I3C,,,.., signature in Laptev 

Sea sediments. According to Are (1999), the coastline of the Laptev Sea retreats with a rate of 2- 

6 m/y as a result of shore erosion. The amount of coastal erosion is estimated at 30*1OG tlyr for 

the total coast of the inner Laptev Sea, which is similar to or even higher than the riverine input 
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of sediment. Large parts of the coastal area of the Laptev Sea are dominated by peaty and 

organic-rich permafrost soils including long sections of ice complexes (Rachold and Grigoryev, 

1999). Decomposition and mineralization of ihe organic matter in these soils are kept low by the 

harsh climatic conditions. Thus, the 6^C signature of the original plant material remains well 

preserved (Gundelwein, 1998). Analyses of modern plant material from typical tundra vegetation 

show 6 ^ C  values of -27.2760 to -29.2%~ (Pfeiffer and Janssen, 1993; Gundelwein, 1998) and 

based on data from Carex sp. (-27.2%0), Eriophorum vaginatum (-28.6 %o) and Dryas punctata 

(-29.2%~). 

It is much more difficult to define a marine source of organic matter by its isotopic signature than 

the terrestrial source for the Laptev Sea region. The marine fraction of organic matter in the 

sediments is mainly derived from planktic organisms. Their isotopic composition ranges from 

-20%~ to -30%~ and is controlled by the isotopic fractionation between phytoplankton and the 

various fractions of dissolved inorganic carbon (DIC). The magnitude of this fractionation is 

related to temperature and to the CO, partial pressure in the water (Fortugne and Duplessy, 1981; 

Rau et al., 1992). Considering the generally low water temperature of the arctic waters, the stable 

carbon isotope signatures should be isotopically lighter than in low- and mid-latitude waters. 

However, surface sediments of deep-sea cores from the Central Arctic Ocean reveal 6 ^ C 0  values 

between -21.4760 to -22.9%~ (Erlenkeuser, 1988; Schubert, 1995). The comparatively heavy 

carbon isotope composition found in Arctic Ocean sediments may relate to the influence of 

diatoms in the planktic community, which partially use the C4-cycle for carbon fixation (Voss, 

1991). Also microbial degradation of the planktic organic detritus may lead to an increasing 

6^Con-level in the sediments (Voss, 1991). Despite the relatively heavy 6 ^ C o  values in these 

surface sediments, several investigations of biomarkers and bulk organic Parameters suggest that 

Arctic Ocean sediments have a strong terrestrial overprint (Schubert, 1995, Schubert and Stein, 

1996; Fahl and Stein, 1999; Stein and Fahl, 2000). For the Laptev Sea continental slope, 

Boucsein and Stein (2000) pointed out applying the maceral analysis as a organic-carbon-source 

indicator that only 20 to 40 % of the organic carbon appear to be of marine origin. 

Due to the strong riverine contribution of organic matter to the modern Laptev Sea shelf, the 

marine source seems to play a minor role. This is in coincidence with previous surface sediment 
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studies (Stein and NÃ¼mberg 1995; Stein et al., 1999; Fahl and Stein, 1999; Boucsein and Stein, 

2000) which revealed that the Laptev Sea, especially the eastem part, is characterized by a strong 

overprint of the terrestrial organic fraction on the total organic input. The resulting SI3Corg of the 

sedimentary mixture directly relates to the ratio of the two fractions, marine and terrestrial. The 

latter bears the greater potential of significant variations under the given settings of the Laptev 

Sea environment. Accordingly, we attributed the observed isotope variations to the effect of the 

sea level rise, which induced the southward retreat of the coastline and the depocenters of the 

rivers and accordingly reduced the fluviatile impact on the coring sites. This view is  also 

consistent with the modern findings of the SI3Corg in the surface sediments, which show lightest 

S1'Corg values where the input rates of terrestrial matter are highest. Radiocarbon data from the 

bulk surface sediment of the eastern Laptev Sea reveal average radiocarbon ages of around 7 kyr. 

(Kuptsov and Lisitsin, 1996). Apparently these relatively old ages are due to a mixture of older 

and younger organic carbon, eroded from soils and deposits of the river catchment areas. These 

ages are not indicative for surficial relict sediments because various cores from the Laptev Sea 

shelf which were primarily dated on marine bivalves often reveal recent ages for the surface and 

show a continuous sediment accumulation up to the present (Bauch et al., 2001 [a]; Bauch et al., 

2001 [b]). 

2.5.2 Holocene input of terrestrial organic carbon 

For the paleoenvironmental interpretation it is necessary to consider that significant depositional 

changes occurred on the Laptev Sea shelf after the last glacial maximum (LGM). Because the sea 

level was lowered by more than 100 m during the LGM (Fairbanks, 1989), huge areas of the 

shallow Laptev Sea shelf were exposed. With the postglacial sea level rise, the shelf became 

flooded and the coastline, the river mouths, and their depocenters gradually retreated southward. 

According to the calibrated global sea level curve (Fig. 2-2c), the sea level stood lower at 12.7 ka 

BP by about 70 m than today and rose by about 60 m within the next 6 kyr. 

Based on our S ^ C  studies, the Holocene input of terrestrial organic matter onto the Laptev Sea 

shelf can be interpreted in three phases. An early phase, characterized by mainly terrestrial 
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conditions, is marked in the Western Laptev Sea between 12.7 and 11 ka BP (Fig. 2-2a). The 

generally low SI3Corg values with a high amount of terrestrial plant debris embedded in laminated 

sediment sequences found in this phase reflect a dominantly riverine depositional character 

(Bauch et al., 1999). 

The first appearance of marine bivalves at 11 ka together with a slight increase of S1'CoGmark the 

onset of the second phase. In this transitional phase from 11 to 7 ka BP, the shallow Laptev Sea 

shelf became widely flooded, probably resulting in large-scale shelf and coastal erosion and, 

simultaneously, enhancing the rate of terrestrial organic matter released to the shelf. Large 

amounts of organic carbon accumulated as documented by high accumulation rates of TOC. The 

central shelf environment probably remained influenced by riverine input during this period. This 

is corroborated by low S 1 ' C  values (Fig. 2-2a), indicating continuously terrestrial fraction of 

organic matter and by abundantes of freshwater algae (Kunz-Pirrung, 1998), both indicating the 

proximity to the riverine source of these central sites before 8 ka BP. Palynological investigations 

in northern Siberia indicate a climatic change to warmer and moister conditions at 8 ka BP 

(Naidina, 1995; Melles et al. 1996). Thus, warmer and moisture conditions and an expected 

enhanced river discharge could have additionally increased the input of terrestrial organic 

material. As a result of the continuing transgression and the climate optimum in the Mid- 

Holocene, wave-based erosion and thermoabrasion of the coastal permafrost deposits were 

strong, making more terrestrial organic material available for distribution On the shelf. With the 

retreat of the coastline, the depocenters of the rivers moved further southward, reaching the 

central shelf between 9 and 7 ka BP. During this time when accumulation of organic carbon was 

on maximum, the estimated paleo-water depth, at the site of KD9502, was about 25 m (Fig. 2- 

2c), a depth where maximum sediment accumulation occurs today in the Laptev Sea (Kuptsov 

and Lisitsin, 1996). On the deeper outer shelf the maximum accumulation of organic matter is 

recorded between 10 and 9 ka BP (Stein and Fahl 2000), due to the more northern position of the 

river mouths at this time. 

The obvious decline in accumulation rates of TOC and the shift towards heavier stable carbon 

isotope composition after 7 ka BP on the central shelf (Fig. 2-2a) marks the onset of the third 

phase, which is now characterized by a reduced depositional rate of terrestrial material. At 5 ka 
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BP the sea-level rise reached the Holocene maximum in the Laptev Sea and the modern 

environmental situation became established (Bauch et al., 2001 [b]). 

The depositional history of the Laptev Sea shelf during the Holocene is strongly coupled with tbe 

postglacial sea level rise and the variations in the depositional environment. The 5 ' 3 ~ 0 r g  analyses 

of surface sediments and three radiocarbon-dated sediment cores from the central and outer shelf 

are used as indicators for spatial and temporal changes in the deposition of terrestrial organic 

material onto the Laptev Sea shelf during the past 12.7 ka BP. 

The modern distribution pattern of 6^C0,,, in the Laptev Sea surface sediments is strongly 

influenced by the riverine input of terrestrial organic matter. Compared to the Western Laptev 

Sea the terrestrial influence On the depositional realm of the eastern shelf reaches further 

north due to the high fluviatile discharge and input of terrestrial POM by the Lena and Yana 

rivers. 

In a downcore record from the Western Laptev Sea shelf, the low values of 6 ' ^ C  indicate 

that the source of organic carbon remained mainly terrestrial until 11 ka BP. 

0 The first appearance of marine bivalves, low 6 ^ C  values alongside with high accumulation 

of organic carbon characterize a second interval between 11 and 7 ka BP. This interval 

reflects the main transgressional phase of the Laptev Sea shelf. 

The shift towards relatively low accumulation rates of TOC and a significant increase of 6^cOrg 

on the central shelf marks the onset of a transition towards decreasing deposition of terrestrial 

organic matter at 7 ka BP. After this time the sea level reached its Holocene maximum and. as a 

consequence, the main depocenters of the rivers moved their position southward, leading to the 

modern depositional environment. 
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3 SEASONAL AND INTERANNUAL VARlABILITY OF SIBERIAN RIVER DISCHARGE IN 

THE LAPTEV SEA INFERRED FROM STABLE ISOTOPES IN MODERN BIVALVES 

Stahle oxygen and carbon isotope profiles from modern bivalve shells were 

investigated in order to reconstruct short-term hydrographical changes in the 

river-shelf System of the Laptev Sea. 

Oxygen isotopic profiles obtained from the aragonitic species Astarte borealis 

exhibit amplitude cycles interpreted as annual hydrographical cycles. These 

records reflect the streng contrast between summer and winter bottom water 

conditions in the Laptev Sea. The seasonal variations in 8"0 are mainly 

controlled by the riverine freshwater discharge during Summer with a ratio of 

0.5%0 per salinity unit. Corrected for a defined species-dependent fractionation 

offset of -0.37%0, time-dependent salinity records were reconstructed from 

these 8I8O profiles. They indicate a good correspondence to seasonal 

hydrographic changes and synoptical data. 

Persistent trends towards more negative 8I3C values are observed in all 

specimens and appear to be related to metabolic changes of the bivalves during 

ontogeny. In contrast, short-term fluctuations are likely linked to seasonal 

variabilities of the river water outflow Patterns and enhanced phytoplankton 

productivity during summer. This is corroborated by a clear watermass-related 

distinction of the various 8l3C records made on the basis of water depth and 

distance from the riverine source. 
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An essential part of our climate system is the northward-flowing ocean heat of the North Atlantic 

and its interaction with arctic water masses (Aagaard & Carmack, 1985). The outflow of cold and 

low-salinity surface waters from the Arctic Ocean is regarded a climate-sensitive mechanism 

potentially capable of directly reducing the intensity of thermohaline circulation in the subpolar 

North Atlantic (Rahmstorf 1995; Broecker 1997). As seen in stable oxygen isotope profiles, the 

low salinity content of the uppermost arctic water mass, the halocline, gains a considerable 

riverine freshwater contribution from the large Siberian rivers (Bauch et al. 1995). The Laptev 

sea shelf is a shallow marginal sea with Open access to the Arctic Ocean and is influenced by 

several Siberian rivers with high outflow volumes (Gordeev et al. 1996). Because this riverine 

freshwater is directly fed into the Arctic Ocean, investigating the seasonal and interannual 

variability and the dispersal of this river discharge is a central task in understanding modern and 

past Arctic Ocean environments (Bauch et al. 2000). 

A number of studies have dealt with stable oxygen and carbon isotope profiles of recent and 

fossil bivalve shells to reconstruct environmental and physiological changes (Arthur et al. 1983; 

Jones et al. 1986; Krantz et al. 1987, 1988; Israelson et al. 1994; Bemis & Geary 1996; Khim et 

al. 2000). These studies focused on within-shell variation and its relation to seasonal water 

temperature cycles, water masses, habitat and shell growth characteristics. Because bivalves grow 

accretionarily, 8l80 and S^C profiles along their growth direction provide time series of 

hydrographical and environmental information during a bivalve's lifetime. Thus, obtaining 

oxygen and carbon isotope records from modern marine bivalve shells appears to be a 

particularly feasible method to trace and reconstruct temporal changes of hydrographical 

processes, such as found in the strongly coupled land-shelf system of the Laptev Sea. 

3.2.1 General hydrography of the Laptev Sea 

The hydrographical settings in the Laptev Sea are the result of interaction between an advection 

of arctic water masses from the north and the riverine freshwater discharge from the south, 
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especially from the Lena River. In terms of discharge volume, the Lena River is the second 

largest among all arctic rivers with an annual discharge of 532 km3 (Global Runoff Data Centre 

1998). This runoff is subject to strong seasonal and interannual variations. The Lena River shows 

a fortyfold increase from very low winter values to the peak flows in June and July, whereas 

interannual discharge rates vary between 5 and 20 % (Aagaard & Carrnack 1989). 

Laptev Sea waters are formed due to extreme seasonal contrasts. The surface water generally 

starts freezing in October (Eicken et al. 1997). After river breakup in early summer, a large 

brackish surface plume is formed that extends northward onto the shelf (Drnitrenko et aZ. ,1999; 

Pivovarov et al. 1999). 

Fig. 3-1: Bathymetric map [m] of the Laptev Sea shelf showing the collection sites of the bivalves. 
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TabIe 3-1: Description of bivalve specimens and sites. 

Sample ID Collection date Cruise Water Salinity4' A Temperature4' A 
Istation IReference depth Winter Summer sa15' Winter Summer temp5' 

m l  'C1 W1 
PS511104.32 05.08.1998 PS51 / A  32 m 32.5 31.2 1.3 -1.6OC -1.I0C -0.5 

A) Kassens, H. & Dmitrenko, I,, in press 

B) Kassens & Karpiy 1994 

We acknowlcdge 1) M. Schmidt (Institute for Polar Ecology, Kiel University), 2) I. Richling and V. Wiese 
(Malacological Museum "Haus der Natur-Cismar"), and 3) A. Gukov (Hydrometeorologieal Departement 
TiksiNakutia) for providing the bivalves. 
4) Temperature and salinity data of bottom water obtained from the "Russian Arctic Ocean alias for winter and 

summer period" (1950-1990) of the Joint U.S.-Russian environmental working group (EWG, 1998) 
5) Difference (A) between winter and Summer data (W-s). If the temperature (A temp.) is negative, the water 

temperature is higher in Summer than in winter. If the salinity (A sal.) is positive, the salinity is higher in 
winter than in summer. 

6) Salinity and water temperature data were kindly provided by I. Dmitrenko and S. Kirillov (AARI, St. 
Petersburg, Russia) 

The hydrography of our investigation sites (Fig. 3-1) is affected by strong seasonal variations due 

to the direct influence of riverine freshwater, mainly from the Lena River. While river discharge 

generally decreases over the Course of the Summer period, bottom salinity can slightly increases 

due to wind-driven penetration of more saline water into the middle shelf region from the north 

(Drnitrenko et al. 2001) as well as sea-ice formation processes beginning in October. 

Long-term hydrographical data (1950-1990, EWG 1998) show for all investigated sites on 

average higher bottom water salinity in winter than in surnmer (Table 3-1). Average bottom water 

temperatures remain relatively constant, ranging between -1.1 and -1.6OC. Only at the near- 

coastal site there is a more variable temperature range throughout the year (0.3 to -1.4OC). 
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3.3 MATERIAL AND METHODS 

3.3.1 Sampling techniques and isotopic analyses 

All water samples for stable oxygen isotope analysis were collected in summer 1994, during the 

TRANSDRIFT I1 cruise of RV "Prof. Multanovsky" (Kassens & Karpiy 1994). Usually, two 

samples were taken from each station; one from the surface water at 2 m water depth and one 

from below the pycnocline, which ranged in thickness from a few to more than 20 meters. 

Oxygen isotope measurements of the water samples were carried out at the Leibniz Laboratory in 

Kiel with a Finnigan-MAT Delta E mass spectrometer having a precision of 0.02%0. All results 

are reported relative to SMOW using the conventional 6"O notation. 

Bivalve species of Astarte borealis (Schumacher 1817) were collected alive from 32 to  11 m 

water depth during several expeditions to the Laptev Sea (Table 3-1; Fig. 3-1). While specimens 

104 and 92 were gathered in sumrner 1998, specimens Yansky84 and IK9334 were collected in 

summer 1984 and 1993, respectively. Species of Astarte borealis were selected for isotopic 

analyses because of their widespread geographical distribution in the Laptev Sea, their relatively 

large shell size, and their tolerance to a wide salinity range (Gukov 1999). Their habitat in the 

Laptev Sea is characterized by polyhaline and poly-euhaline waters exhibiting salinities between 

15 and 34 and water depths bewteen 15-50 m (Petryashov et al. 1999). 

Using X-ray diffraction analysis (XRD), the carbonate shell of Astarte borealis was investigated 

for its mineralogic composition. It was found that the outer and inner shell layers consist of pure 

aragonite. 

Because during bivalves' growth new material is continuously added to the ventral margin of the 

shell, samples were taken along a growth profile in order to obtain proper time series of shell 

carbonates deposited during the lifespan of the specimen (Fig. 3-2). Prior to taking carbonate 

samples, the exterior of each shell was thoroughly cleaned to remove any surface contamination. 

Individual carbonate powder samples (>I5 pg) were sequentially millcut under a microscope 

from the outer shell layer along the axis of maximum growth. Spatial resolution of samples was 

approximately 0.15 to 0.3 mm. Sample positions along the profile are reported as distance from 
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the umbo (0 mm) toward the ventral margin. To  avoid possible contamination of the  samples 

with material from subjacent shell layers, each sample was rnilled only from the surface of the 

outer layer. During sampling, the carbonate powder was vacuumed onto a fiberglass filter. 

For isotope analysis, the carbonate powder on the filter was reacted with 100 % orthophosphoric 

acid under vacuum at 73OC in the KIEL carbonate device, which is coupled online to a Finnigan 

MAT 25 1 gas isotope mass spectrometer. Isotope values are reported as parts per mil (%C) in the 

usual 8-notation relative to the PDB standard (NBS20). The external error amounts to  less than 

k0.08%0 and Â±0.05% for 8^O and S'^C, respectively. Experiments were carried out on sample 

replicates. The average difference between replicates was 0.25Â±0.20% (n=55) on the 6^O-scale 

and 0.18Â±0.15% on the 8Â°C-scale 

Distance between adjoining sarnples: 0.2 - 0.35 mrn 

Fig. 3-2: Asfarte borealis, specimen 104 showing thc sampling profile from the umbo to the ventral margin 
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3.4.1 Oxygen isotopes in Laptev Sea waters 

A total of 65 water samples from water depths between 2 and 53 m having a salinity range from 

4.7 near the Lena River mouth to 33.7 in the northem Laptev Sea were used for 8^O analyses 

(Fig.3-3). The significant correlation between salinity and 8^OW (p-value 0.01; n=64; r=0.992) 

documents the mixing between freshwater, discharged by the rivers, and seawater. The resulting 

ratio of 0.50%0/salinity can be used in a two-component mixing model to identify possible end 

members. For Zero salinity, a 8^Ow value of -18.86%0 is obtained. Such a value for the 

freshwater end member is very similar to Snow values of -18.9%0 measured directly on water 

from the Lena River mouth (Lktolle et al. 1993). Thus, the relationship between 6^OW, salinity, 

and the freshwater end member value can be described with the following equation: 

6^OW [%o SMOW] = salinity*0.50 - 18.86 [%o SMOW] (1) 

V surface waters (2 m) 
o near bottom waters between 11 arid 53 rn 

0 5 1'0 15 20 25 30 

Salinity 

Fig. 3-3: S^O versus salinity data of the Laptev Sea water samples taken in August 1994. The relation of 6^OWakr 
and salinity is significant correlated (p-value 0.01; n=63) of r= 0.992 and can be expressed by a linear function: 
S^O [%o SMOW] = sal-0.50-18.86 [%o SMOW] 
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3.4.2 Stahle isotopes in bivalve shells 

Because the oxygen isotope composition of biogenic carbonate is controlled by the isotopic 

composition and temperature of the ambient water (Epstein et al. 1953, Grossman & Ku, 1986) 

the 6IXO results from the investigated bivalves shells should reflect the water mass conditions 

during their lifetime. All 6"0 profiles exhibit a cyclic nature (Figs. 3-4 - 3-7), which probably 

reflect annual cycles of hydrographical and, hence, environmental conditions. Since all 

specimens investigated were collected alive during August-September, the light values at the 

margin of the bivalve shell should represent the conditions of the final summer. Therefore, 

calendar years can be assigned directly by counting back the annual isotope cycles from the 

margin. For instance, in the 6"O profile of specimen 104 there are 9 isotopic cycles recognized 

prior to the year of collection in 1998 (Fig. 3-4). Similarily, the oxygen isotope profile of 

specimen 92 represents hydrographical conditions from 1998 back to 1986 (Fig. 3-5). 

The S^O profiles of specimens 104 and 92 show very similar characteristics (Table 3-2), 

suggesting the comparability of hydrographical conditions at these two sites. In specimen 

IK9334, a total of 10 cycles were identified as annual cycles, reflecting the hydrographical 

conditions between 1983 and 1993 (Fig. 3-6). 

The characteristics of the 8% profile of specimen IK9334 are quite different from those of 

specimens 104 and 92. The mean 6^O value of specimen IK9334 is about 2.20%0 lighter than the 

mean 6"O values of specimens 104 and 92 (Table 3-2), which is in accordance with the 

shallower water depth and lower bottom water salinity at site IK9334. 

Table 3-2: Characteristic S^O values of the bivalve isotope profiles; mean value, mean summer to winter amplitude, 
and the minimum and maximum of the Summer and winter S^O values. 

Specimen Mean mean ampl. summer [%o] winter [%o] 

[%ol W o 1  min / max min Imax 

PS5 11104.32 1.47 1.17 0.25 1.62 1.92 2.52 

PS51192.137 1.31 1.23 -0.21 1.62 1.34 2.71 

IK9334 -0.76 1.59 -3.51 -0.65 -0.58 1.29 

Yansky84 -7.98 2.73 -10.97 -7.37 -7.80 -5.17 
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Fig. 3-4: Stahle oxygen and carbon isotope profile of Astarte borealis (104). collected alive at 32 m water depth in 
summer 1998. The horizontal axis indicates the sampling profile in millinicters from the umbo to the ventral margin. 
The shaded subdivisions represent calcndar years, calculated hy counting back the annual isotope cycles from the 
ventral margin. The gray horizontal line indicates the mean S1'O value o f  the profile. 

Fig. 3-5: Oxygen and carbon isotope profile of Astarte borealis (92) collected alive at 32 m water depth in summer 
1998. 
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Fig. 3-6: Oxygen and carbon isotope profile of Astarte borealis (IK9334), collected alive at 22 m water depth in 
Summer 1993. 

Fig. 3-7: Oxygen and carbon isotope profile of Astarte borealis (Yansky84), collected alive at 11 m water depth off 
Ihe Yana Delta in Summer 1984. 
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A total of 15 isotope cycles (from the year 1984 back to 1969) are recognizable in the S^O record 

from Yansky84 (Fig. 3-7). The profile from this site shows the most pronounced seasonal 

amplitudes of all investigated bivalves (Table 3-2). This is the result of a much stronger seasonal 

variation in both bottom salinity and temperature due to the proximity to the Yana Delta 

(Table 1). 

Plotting all isotope data together unveils the watermass-dependent environmental differences 

between the various collection sites (Fig. 3-8). The 6^O data of specimens collected from deeper 

water depth show isotopically heavier values than those from shallower water depth. T h e  8lXO 

difference between the mean 6^0 values of specimen 104 and 92 both from 32 m water depth 

and Yansky84 from 11 m water depth is more than 9%0, and reflects the different freshwater 

content of each site. For the carbon isotopes, a trend towards lighter 8Â° values with decreasing 

water depth and decreasing bottom water salinity is noticeable 

S^C [%o PDB] 

Fig. 3-8: Scatter-plot indicating all stable isotope measure~nents. 
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Although the S"C profiles of all specimens show no seasonal cyclicity, the 8I3C and the  8180 data 

reveal concurrent decreases. Especially in the Yansky84 record (Fig. 3-7), this phenomenon is 

well pronounced showing most of the 8"O peaks to coincide with corresponding decreases in 

8^C. As with the 8^O, the short-term depletions in 8I3C values seem to be related to the  riverine 

water, of which the 8I3C of the dissolved inorganic carbon (DIC) has values of about -5 to -6%o 

PDB (Erlenkeuser 1995). This is in contrast to the general trend towards lighter 8Â° values 

observed in all &'^C records with increasing distance from the umbo (Figs. 3-4 - 3-7). 

As the hydrographic conditions in the Laptev Sea vary considerably during the year, an 

understanding of growth season and habitat of the bivalve species is important. Astarte borealis is 

an infaunal filter feeder with a siphon adapted for extracting food particles from the bottom water 

and water-sediment interface (Khim et al. 2001). In spite of a seasonal biomass production in the 

Laptev Sea (Tuschling 2000), the availability of food for bivalves is by no means seasonally 

restricted because of the permanent existente of a bottom nepheloid layer with high contents of 

particulate organic matter (Gukov 1999; Wegner et al. 2001). It can be therefore assumed that the 

analyzed shells were formed during all season. 

In order to determine the species-dependent fractionation offset for Astarte borealis we 

calculated an expected 8^O value for aragonite percipitated in equilibrium condition using actual 

bottom water temperature and 8180 composition of the porewater at the time of the bivalve 

collection. The porewater 8^O signature of the upper 5 cm in the sediment was used because of 

the infaunal habitat of Astarte borealis. A fractionation offset was calculated by subtracting the 

expected 8"0 value from the measured isotopic values at the ventral margin, i.e., from the 

youngest Part of the shell formed before collection (Table 3-3). The results indicate that the 

oxygen isotopes of shell carbonate of Astarte borealis reveal an average fractionation offset of 

about -0.37%~. 
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Table 3-3: Fractionation offset calculation hy subtracting the S180,c expected from the measured c??'O,~. 8 8 0 Ã  
(expected) is calculated for two bivalve shells of Astarte borealis using equation 2, where S^O,,,,, and T were 
replaced by the porewater 8"O and the bottom water temperature (Bude unpublished data), at the date of collection. 
The 8180Ã (measured) is the S^O value at the ventral margin, which represents the youngest part of the shell, formed 
just before collection 

Station/ T seafloor SMO (porewater) SUO-, (measured) S^O-, (expected) Offset 

specimen ['C] o SMOW] [%o PDB] [%o PDB] [%o PDB] 

104 -1.23 -3.25 1.14 1.46 -0.32 

92 -1.24 -3.26 1.02 1.45 -0.43 

3.5.1 Salinity reconstruction 

To reconstmct the hydrographical environment of the Laptev Sea from oxygen isotope profiles of 

bivalve shells we used the following equation of Grossrnan & Ku (1986) for aragonitic mollusks: 

T [Â¡C = 21.8 - 4.69*(S180Ã£w1 [PDB]) - 8 ' Q J S M O W j )  (2) 

Because the seasonal bottom water temperature variation of 0.3 to OSÂ° would affect the oxygen 

isotopes in aragonite only by 0.07 to 0.10%0, the within-shell variations in the oxygen isotopic 

profiles of Astarte borealis in the Laptev Sea are primarily controlled by variations in 6'80,,,l.;r, 

that is salinity. Therefore, more negative 6l8O values in the shell profiles reflect the less saline 

bottom waters during summer, and more positive values indicate increased salinity during winter. 

After correcting for the species-dependent fractionation offset, a time-dependent salinity record 

was calculated from the oxygen isotope profile of each specimen (Fig. 3-9). The reconstmcted 

annual and interannual variations of bottom water salinity of specimens 92  and 104 show a 

consistent trend and document the affinities of the hydrographical conditions at these two sites. 

Mean winter and summer salinity data (1950-1990) for the investigated stations as well as 

individual bottom water salinity measurements, carried out during several expeditions in the 90's, 

corroborate a good precision of our reconstruction (Fig. 3-9). Similar to the bivalve isotope 

profiles from sites 92  and 104, the S^O record of specimen IK9334 is in good accordance with 

mean annual salinity variations (EWG, 1998). 
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Fig. 3-9: Smoothed (2 point) 6IxO and reconstructed salinity records of specimens 104, 92, and IK9334 between 
1983 and 1998. Mean summer and winter salinities (dashed horizontal lines) for each site were obtained from the 
"Joint U.S.-Russian Arctic Ocean atlas for winter and summer period (1950-1990)" (EWG, 1998); individual salinity 
measurements carried out on several expeditions are marked with a black dash; the data having been kindly provided 
by I. Dmitrenko and S. Kirillov (Arctic and Antarctic Research Institute, St. Petersburg, Russia). Annual Lena River 
discharge data obtained from the Global Runoff Data Centre (1998). 

Although the &^O record of IK9334 is, in general, isotopically lighter than those of sites 92 and 

104 due to lower bottom water salinity, there are some notable similarities. For instance, the 

pronounced peak in 1989 is evident in the salinity records of specimens 92 and IK9334, and 

seems to correlate with a prominent freshwater discharge event from the Lena River recorded in 

the year 1989 (Fig. 3-9). This event in the year 1989 was an absolute maximum in annual Lena 

River discharge (record from 1935-1995) and the result of anomalously high summertime 

precipitation in the drainage area of the Lena River (Semiletov et al. 2000). 

An interpretation of the bottom water salinity record from specimen Yansky84 seems more 

complicated (Fig. 3-10). Here, in the proximity of the Yana Delta, besides salinity also waler 
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temperature shows significant seasonal variations (Table 3-1). While a seasonal temperature 

variation of 1.7OK at this site affects the shell 8^0 variations by 0.35760, the mean seasonal 

salinity change of 4.6 leads to a change of 2.3%0 in the 8lSO of the shell. The resulting cxpected 

seasonal 8IsO amplitude totals 2.65%0, a value which is very similar to the observed mean 

seasonal S^O amplitude of 2.73% (Table 3-2). Therefore, it can be concluded that t h e  8^0  

variations of Yansky84 are also primarily controlled by salinity whereas the effect of water 

temperature changes remains small. 

Although the mean seasonal 6 ^ 0  amplitude is coinparable to the expected ainplitude, ihcrc 

remains a total offset of more than - 3 % ~  between the mean SiSO values in the record of Yansky84 

and the expected values 21s calculated from the hydrographical data (Fig. 3-10). This l u g e  offset 

may be the result of inaccuracies in the S^~,,,/salinity relation for this site in front of the Yana 

Delta. Our 8^0,, to salinity ratio was calculated on the basis of water samples from the Laptev 

Sea shelf and fits well with the freshwater end member 8 1 S ~ , v s i g n a l  of the Lena River water. 

Because of the higher continentality of the drainage area of the Yana River, an isotopically 

lighter 8'80,,, freshwater signal is expected (Dansgaard 1964; Lktolle et al. 1993) and therefore a 

different 8^0,,,/salinity ratio. 

-1 1 
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ijj- -9 
n 

-8 rneasured seasonai 

3 -7 5"0 arnplitude 2.73Â¡i 
0 
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Fig. 3-10: Smoothcd (2 point) S1'O rccol-d of Yansky84 bctween 1969 and 1984, The expected sumincr and Winter 
S'^O values (dashed horizontal lincs) were calculatcd usine mean summer and winter lemperature and salinity data 
(kindly provided by I. Dmitrenko and S .  Kirillov). 
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Since all investigated 8lSO profiles reveal similar trends, a qualitative reflection of the  seasonal 

influence on the bivalves' oxygen isotope profiles in the Laptev Sea is reconstructed in 

Figure 3-1 1. The decreasing salinity and corresponding light 8% values in the oxygen isotope 

profile are the result of the large amount of riverine freshwater output during summer. This trend 

towards lighter 8lS0 values can be wes-kened by the episodical advection of more saline water 

and thus isotopically heavier water from the Arctic Ocean as a result of upwelling currents in the 

near-bottom layer below the pycnocline from the north. During the ice-free season strong 

southerly winds can cause a deformation of the sea level and result in reversal, southerly currents 

in the near-bottom water layer (Dmitrenko et al. 2001). During winter, an enhanced influence of 

water from the Arctic Ocean duc to low riverine outflow may result in slightly heavier 8180 

values. However, the exact tirning and magnitude of these events will vary from year to year 

depending on the volume of riverinc discharge and the specific meteorological conditions in the 

Laptev Sea during summer. Although major seasonal events, like the freshwater input in summer, 

are identifiable in all our records, it is not possible to resolve a more accurate time scale because 

of the uncertainty in the seasonal growth rate of the bivalves. 

freshwater runoff 
-0.5-1 / \ upwelling current 

ection of arctic water rnasses 

Seasons 
Wi =Winter 

Â¥ 

8 , Su = Summer 
Fig. 3-11: Schematic presentation of the 
influence of hydrographic processes On the 
5"0 profiles of a bivalve shell in the 
eastern Laptev Sea. Data are from isotope 
profiles of specimen 92 from 20.25 to 
23.75 mm (distance from umbo). 
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3.5.2 Stahle carbon isotopes 

In contrast to the oxygen isotope composition, the reasons for the differences and variations in 

the S^C records of the bivalve shells are less certain because the shell 6I3C responds to the 

interaction of both, physical and biological processes (McConnaughey 1989; Hong et al. 1995; 

Hikson et  al. 1999). The fact that all our 6^C shell profiles show no clear cyclicity but an overall 

decreasing trend away from the umbo may be best explained with ontogenetic effects (Wefer 

1985; Wefer & Berger 1991). It is reported that during the onset of sexual maturity and 

reproduction a bivalve uses primarily metabolic energy, which is then manifested in light shell 

8l3C (Erlenkeuser & Wefer 1981; Krantz et  al. 1987; Klein et  al. 1996). As all our specimens 

show similar trends during their lifetime other possible environmental factors, e.g., changes of 

bottom water ventilation (C$ Brey & Mackensen 1997) can be disregarded for the Laptev Sea.  

The inherently low 8Â° values of -5 to - 6 % ~  PDB (DIC) inferred for riverine water in the Laptev 

Sea region (Erlenkeuser 1995) implicate that the marked depletion noted in the 8I3C record of the 

bivalves is also associated with river-induced salinity changes. This assumption is corroborated 

by coeval changes noted in the S i 8 0  records. 

Remineralization of "C-depleted riverine organic matter and oxidation of phytoplankton organic 

matter (Arthur et  al. 1983; Krantz et  al. 1997, 1988) are other processes that add to the observed 

decreases in bottom water DIC 8 '^C at our sites (Erlenkeuser 1995). Since most negative shell 

813C values are found in specimen Yansky84 (Fig. 3-8), which was found near the river mouth, 

these values reflect the combined effect of riverine DIC and organic remineralization. In such an 

environment, increased biological productivity and enhanced deposition of fresh organic matter is 

expected (Erlenkeuser 1995). 
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Detailed oxygen and carbon isotope time series taken along the growth direction o f  modern 

bivalve shells of Astarte borealis were used to reconstruct water mass conditions in the shallow 

river-shelf System of the Laptev Sea. 

All 6180 records exhibit a pronounced cyclicity induced by seasonal changes in  riverine 

freshwater discharge. Because the 6% composition of the aragonitic shells is predorninantly 

controlled by the 8I8O composition of the ambient water, for which a high correlation with 

salinity is shown, the variability in the 6I8O records of the shells are interpreted as annual 

hydrological cycles with heavier 6I8O values indicating winter and lighter values indicating 

summer conditions. Compared to salinity, the influence of temperature On the 6"O of the bivalve 

shells is an order of magnitude smaller. Thus, a clear distinction of the hydrological conditions at 

each collection site could be made On the basis of both seasonal 6 ^ 0  amplitudes and mean 6 ^ 0  

values. 

The bivalve shells were also investigated to determine whether their carbonate is precipitated in 

isotopic equilibrium. A mean fractionation offset of -0.37%0 in 8^0 was found for  Astarte 

borealis. Corrected for this species-dependent fractionation offset, salinity records were 

calculated from shell data. The resulting salinity records correspond well with seasonal 

hydrographical conditions and synoptical water measurements, implying that 6180 profiles from 

the shells of Astarte borealis are a reliable tool to reconstruct past salinity changes in the bottom 

waters of the Laptev Sea. 

Short-term fluctuations in the 6^C profiles of the bivalve shells show coeval trends with 6^O and 

therefore seem to be associated with riverine freshwater discharge and increased phytoplankton 

productivity during summer. In contrast, differences in the 6'^C of the shell carbonate between 

the various sites appear to be controlled by the admixture of riverine DIC, while an overall 

decreasing trend observed in all 8Â° profiles is more likely related to the ontogeny of the 

bivalves. 
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Oxygen isotope profiles along the growth axis of modern and fossil bivalve 

shells of Macorna calcarea were established to reconstruct hydrological 

changes in the eastern Laptev Sea since 8.4 ka BP. The variability of the 

oxygen isotopes in the individual records is mainly attributed to variations in 

the isotopic composition (6^Ow) and in the salinity of bottom waters in the 

Laptev Sea. Seasonal temperature changes can be regarded of minor 

importance. Using a modern linear relationship between salinity and S^OW of 

0.50 %o/salinity, seasonal salinity changes are reconstructed and directly 

compared with hydrographical parameters at the investigated site. 

Given the good conformance between isotope profiles from recent bivalve 

shells and modern oceanographic observations, oxygen isotope profiles of 

radiocarbon-dated bivalve shells from a sediment core from northeast off the 

Lena Delta give insight into past hydrological conditions. The changes in the 

data not only provide subdecadal records of seasonal variations, they also 

provide evidence of the Holocene transgression. If, as is assumed, the 

relationship between S^OW and salinity was constant throughout the time, the 

results would suggest that at 8.4 ka BP bottom water salinity at the investigated 

site was reduced by -3. Reconstruction of the inundation of the Laptev Sea 

shelf indicated a sea level - 27 m below present at this time and a proximity of 

the site to the coastline and thus to the paleoriver mouth of the Lena River. Due 

to a rising sea level and a further southward retreat of the river mouth, bottom 

water salinity increased at 7.2 ka B P  showing a high seasonal variation. 

Conditions comparable to the modern hydrography were at last found at 

3.6 ka BP. 
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The Arctic Ocean and its hydrographic structure plays an important role in influencing the  global 

thermohaline circulation through the export of freshwater and sea-ice to the Nordic Seas 

(Aagaard and Carmack, 1989). Changes in the export rates of Arctic freshwater and sea ice could 

result in a perturbation of the thermohaline circulation (Aagaard and Carmack, 1994; Broecker, 

1997) thereby effecting the heat transport towards northem latitudes. 

The low-salinity layer of the Arctic Ocean is mainly fed by riverine freshwater from Siberia and 

within this system the Laptev Sea is recognized as one of the key sources for t h e  Arctic 

halocline's freshwater budget. The shallow Laptev Sea is influenced by large quantities of 

freshwater supplied during summer by several rivers, especially by the Lena River. In terms of 

freshwater discharge the Lena River is the second largest among Arctic rivers with a mean annual 

discharge of 532 km3 per year (Global Runoff Data Center, 1998). This freshwater runoff is 

subject to strong seasonal and annual variations and causes strong stratification in the shallow 

Laptev Sea (Dmitrenko et al., 1999). 

Given the variability of seasonal, annual, and in particular longer timescales, the dispersal and 

fate of the river discharge and its influence on the hydrographical settings are a central task in 

understanding changes in the Laptev Sea System. The major objective in this study is to use stable 

oxygen isotopes from living and fossil carbonates to reconstruct past hydrological changes. The 

oxygen isotopic composition of marine carbonates is controlled by the isotopic composition of 

the water from which the carbonates precipitated and the temperature of the surrounding water 

(Epstein et al., 1953; Grossman and Ku, 1986). By establishing 8'0 profiles along the axis of 

maximum growth of bivalve shells it is possible to obtain substantial hydrographical information 

of the bivalves' habitat (Jenes et al., 1986; Krantz et al., 1988; Israelson et al., 1994; Bemis and 

Geary, 1996; Andreasson and Schmitz, 1998; Khim et al., 2001). Using oxygen isotope profiles 

from modern and fossil bivalves in a sediment core northeast off the Lena Delta, which is the 

largest source of freshwater, this study investigates changes in the bottom water hydrography 

during snapshot views of the last 8.4 ka and how these temporal variations are related to the 

Holocene transgression. 
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4.3 MATERIAL AND METHODS 

4.3.1 Bivalves 

Modern and fossil bivalve specimens of Macoina calcarea were collected from site PS51192 

northeast off the Lena Delta (Fig. 4-1). While the modern shell was collected alive from the near 

surface, fossil shells were well preserved with no obvious signs of reworking. The fossil bivalves 

were either found in situ with both valves in place, or the periostracum was still preserved, 

implying no significant lateral transport. Macoma calcarea shows a Panarctic distribution and is 

found widespread in the Laptev Sea between water depths of 10 to 300 m (Gukov, 1999; 

Richling, 2000). 

Fig. 4-1: Bathymetric chart [m] of the Laptev Sea shelf and location of the studied site 
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A serial sampling technique similar to that used in other studies (Erlenkeuser and Wefer, 1981; 

Krantz et al., 1988; Krantz et al., 1987; Bemis and Geary, 1996; Andreasson and Schmitz, 1998) 

was applied to derive high-resolution isotope records from the shells. Prior to taking carbonate 

samples, the exterior of each shell was cleaned to remove any surface contamination. Individual 

carbonate powder samples (>I5 pg) were millcut under the microscope sequentially from the 

outer layer along the axis of maximum growth with a spatial resolution of approximately 0.15 to 

0.3 mm. Sample positions are reported as distance from the umbo to the ventral margin along the 

sampling profile. To avoid a contamination of the sample with material from subjacent shell 

layers, the sample was milled only from the surface of the outer layer. During sampling, the 

carbonate powder was vacuumed on a little fiberglass filter. 

For isotope analysis, the carbonate powder on the filter was reacted with 100 % orthophosphoric 

acid under vacuum at 73OC in the KIEL carbonate device, which is coupled online to a Finnigan 

MAT 25 1 gas isotope mass spectrometer. Isotope values are reported as parts per mil (%C) in the 

usual h o t a t i o n  relative to the PDB standard (NBS 20). The external error amounts to less than 

Â±0.08%0 Experiments carried out on sample replicates showed that the average (n=38) difference 

between replicates was 0 . 1 7 % ~  on the 6'80-scale. 

4.3.2 Sediment core 

The chronology of core PS51192-12 is based On radiocarbon dates measured On bivalve shells 

using the accelerator mass spectrometer at the Leibniz Laboratory in Kiel (Table 4- 1). 

Assuming linear sedimentation rates between the age tiepoints, an age model was constructed by 

interpolating in between the age tiepoints (Fig. 4-2). The conversion of the given ^C year into 

calendar years (yrs. BP) was carried out using the intercept method of the marine data set (Stuiver 

et al., 1998) from the program CALIB rev. 4.3 (Stuiver and Reimer, 2000). A reservoir effect for 

the Laptev Sea shelf of 370Â±4 yr was taken into account (Bauch et al., 2001 [a]). A total of 7 

bivalves were used for the AMS-datings, which belong to the species of M a c o m  calcarea, 

Leionucula bellotii, and M a c o m  moesta. The radiocarbon-dated bivalves of M a c o m  calcarea 
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from 210, 300, and 500 cm core depth were used for the oxygen isotope profile analysis 

(Fig. 4-2). The age of the specimen at 120 cm core depth was calculated from the age model. 

Bivalve specimens of Macoma calcarea 
>< 
\\ used for oxygen isotope analyses 

0 1 2 3 4 5 6 7 8 9  

Age [ka BP] 

Fig. 4-2: Chronology and age model of core PS51192-12. The bivalve symbol indicates the bivalves of Macoma 
calcarea, which were used for the oxygen isotope analyses. 
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Table 4-1: Bivalve species, radiocarbon dates, calibrated calendar years used for the chronology, and age  model of 
core PS5 1192- 12 from the Laptev Sea shelf. 

Depth Lab# Bivalve species Age Age range l Sigma 

cm1 ['T years] [cal. yr BP] [cal. yr BP] 

0 Macoma calcarea collected alive 0 

2 KIA-6877 Leionucula bellotii 590Â±2 273 301-246 

64 KIA-6878 Leionucula bellotii 1505235 1078 1164-1009 

120 Macoma calcarea no AMS-dating 1188* 

160 KIA-6879 Macoma moesta 1680235 1267 1302- 1223 

210 KIA-12931 Maconm calcarea 3810Â±3 3809 3866-3695 

300 KIA-6880 Macoma calcarea 6725Â±4 7270 7333-7230 

402 KIA-6881 Leionucula bellotii 7280245 7754 7830-7681 

500 KIA-6882 Macoma calcarea 7950Â±5 8408 8515-8361 

"C years were converted (intercept method) into calendar years using the marine data set of Stuiver et al. (1998) in 
the program CALIB rev.4.3 (Stuiver and Reimer. 2000). A local reservoir age of 370249 years was used (Bauch et 
al., 2001 [a]). The bold marked specimens were used for the oxygen isotope analyses. 

* age calculated according to the age model 

4.4.1 Application of oxygen isotope profiles from bivalve shells in the Laptev Sea 

~ h e  oxygen isotopic composition (S"0) of bivalve shell carbonate is controlled by the 

temperature and the isotopic composition of the water at the time of precipitation (Epstein et al., 

1953). Accurate reconstruction of environmental conditions from the S^O records of fossil 

bivalves requires measuring or constraining as closely as possible the analogous modern setting 

of several Parameters. These include the seasonal range-of temperature and salinity, and the 

relationship between salinity and S^O of the water (Khim et al., 2001). 

Further shell mineralogy is important because calcite and aragonite have slightly different 

fractionation factors as a function of temperature (Horibe and Oba, 1972; Grossman and Ku, 

1986). Since XRD-analyses of shells of Macoma calcarea reveal that they consist of aragonite 

we can use the paleotemperature equation of Grossman and Ku (1986). 
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Sk8OW measurements (Erlenkeuser, 1999) in surface and bottom water samples from the Laptev 

Sea document a linear relation ( b 0 . 9 3 )  with salinity, from which a 6^On, to salinity ratio of 

0.50%0/salinity was calculated. This relationship implics a freshwater 6^O end member of 

-18.86%0 [SMOW], which is consistent with measured 5180,Ã values of 18.9%0 (Letolle et al., 

1993) for the Lena River water, the primary freshwater source in the Laptev Sea. 

Temperature data obtained from the "Joint U.S. Russian Arctic Ocean atlas for winter and 

summer period (1950-1990)" (EWG, 1998) reveal that fo, the investigated station 92  the bottom 

water temperature remains relatively constant throughout the year at -1.2 to - l S Â °  with a 

summer to winter variation of 0.36OK. The relative effect of this summer to winter variation on 

the shell 6180 is only -0.08%0 and thus exerts a negligible influence on the shell isotope 

variations. Transferring the mean annual winter to suminer salinity variations to the 6 1 8 0 r g Ã £ Ã  

signal would effect an isotope variation of 0.45%G. Therefore the main forcing factor of the 

within-shell isotope variations is the isotopic composition of the water and according to the 8"O,^, 

to salinity relationship the variations in the bottom water salinity. 

Although most studies that deal with the dependency of carbonate S^O On temperature, salinity, 

and 6180,v have shown that both caicitic and aragonitic mollusks deposit shell carbonate in 

oxygen isotopic equilibrium (Wefer and Berger, 1991), it still seems to be necessary for an 

accurate interpretation of the oxygen isotope profiles in our bivalves to quantify the vital offset of 

the species (Table 4-2). 

We compared the measured 6^Omgonite at the ventral margin, which represents the youngest part 

of the bivalve with an expected 6 1 8 0 g n , t e  value. For the caic~i.lation of the expected ~'80,,,goni,,. we 

used the actual bottom water temperature (S.O. Bude, unpublished data) at the collection date and 

the actual 6I8O signature of the surrounding porewater. The porewater 8^O (H. Erlenkeuser, 

unpublished data) in 2.5 cm core depth was used becan:ie of the infaunal habitat of Macoma 

calcarea. An offset of 0 . 0 1 % ~  reveals that Macoma calcarea appears to calcify near the 

equilibrium (Table 4-2). For the hydrographic reconstruction from fossil bivalves we assume that 
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the vital offset for the modern specimen of Macoma calcarea is equivalent to the vital offset of 

the fossil specimens. 

Table 4-2: Offset calculation by subtracting the S1'0,, measured frorn S1'OÃ expected. The l80.,, expected is 
calculated solving the equation of Grossman and Ku (1986) to S1xO,ragon,te, where temperature is replaced by the 
actual bottom water temperature and S O , ,  by the ~ " 0  of the porewater. 

Station T bottom water SLXO porewater S1'O expected S1'O measured Offset 

["CI [ o  SMOW] 0 PDB] 0 PDB] [%o PDB] 

1) S.O. Bude, unpublished data. 

2) H. Erlenkeuser, unpublished data 

4.4.2 Bivalve oxygen isotope profiles 

Oxygen isotope profiles of modern bivalve specimens from the Laptev Sea exhibit amplitude 

changes that can be addressed to annual cycles with more negative (isotopically lighter) values 

indicating summer and more positive (heavier) values indicating winter season (CHAPTER 3). In 

the modern bivalve from site 92, 2.5 seasonal cycles were identified with mean summer to winter 

variations of 1.3%0 (Fig. 4-3, Table 4-3). The light 8I8O values at 18 mm, which is equivalent to 

the ventral margin, represents the collection date in August 1998. Employing the equation of 

Grossman and Ku (1986) together with an in situ bottom water temperature of -1.24OC and a 

8'80,v to salinity relationship of 0.50%0/salinity, we calculated a salinity record from the oxygen 

isotope values of this bivalve (Fig. 4-3). The variability in the calculated salinity record is 

remarkably consistent when compared with the mean summer to winter salinity range obtained 

from the Joint U.S. Russian Arctic Ocean atlas for winter and summer period (1950-1990) 

(EWG, 1998) (Fig. 4-3). 
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Fig. 4-3: Oxygen isotope shell profiles of modern and fossil bivalve shells collected from site PS51192 from a water 
depth of 32 m. The sample positions [mm] are measured as distance from the umbo toward the ventral margin along 
the axis of maximum growth. The profiles are plotted with the y-axis reversed so that the more negative SiXO values 
visually represent the summer (S). 
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Table 4-3: Core depth, age, mean 6^0 ,  and mean seasonal variations of the investigated 

Core depth Age Mean 6^O Mean seasonal S^O variation 

[crn] [cal. ka BP] %I [%o] 

bivalves. 

The oxygen isotope record of the specimen collected from 120 cm core depth with a mean S^O 

value of 2.06550 (Table 4-3) shows two seasonal cycle; one with a very prominent winter to 

summer variation of -3 %C and a second, less pronounced cycles with an amplitude of -1.2%0 

(Fig. 4-3). In the shell profile from 210 cm core depth 2.5 annual cycles are discernible from the 

6^O profile with a mean of 2.08%~. The 6 ^ O  profile of a M a c o m  calcarea from 300 cm 

sediment depth with a mean 6^0 of 1.78% shows also 2.5 seasonal cycles but reveals a higher 

seasonal amplitude of 2 to 3 .5%~.  The oxygen isotope profile of the lowermost bivalve shows 

reduced seasonal variations and its mean 8 ^ 0  value of 0.58%~ is significantly depleted compared 

to the records of the bivalves in the upper section of the core (Fig. 4-3, Table 4-3). 

I 3 

0 1 2 3 4 5 6 7 8 9 1 l  
Aqe [ka BP] 

Fig. 4-4: Mcan 5"0 in ihe shell profiles and their seasonal variations 
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A comparison of all 6^O shell profiles as snapshot views of the Holocene hydrographical history 

at site 92  is shown in Figure 4-4. It is obviously seen that the average 6^O value of t h e  shell 

profiles at 3.6 ka BP, 1.6 ka BP, and of the modern bivalve are rather similar. In comparison the 

average 6lsO value of the shell profile at 7.3 ka BP is slightly depleted. Furthermore a distinctive 

increase of the seasonal amplitudes in the 6"O profile is observed in this bivalve implying more 

pronounced hydrographical variations between the summer and the winter regime at this time. In 

contrast to all younger bivalves the isotope shell profile at 8.4 ka BP reveals a mean value of 

0.58760 and a weak seasonal variation of 0.36% (Table 4-3). When comparing the mean S^O 

value of the modern and of the oldest bivalves, a depletion of -1.35%~ is discernible (Fig. 4-4). 

Because of the uncertainty whether this depletion of -1.35% is induced by changes in bottom 

water temperature andlor salinity, we present a rnodel in which we calculated possible salinity 

and temperature combinations to obtain the mean SiSO value of the investigated bivalve shell 

profiles (Fig. 4-5). 

4.5 PALEOHYGRAPHICAL IMPLICATION 

Our temperature and salinity model (Fig. 4-5) suggests two extreme possibilities to interpret the 

observed isotopic shift of -1.35%~, either a warmed bottom water by 6.3OK at 8.4 ka BP or a 

salinity reduction of 2.8. Both interpretations require that either of the two factors. temperature.or 

salinity, would rcmain constant. Although this time marks the onset of the Holocene climate 

Optimum in the Laptev Sea region (Laing et al.. 1999; Pisaric et  al.. 2001) it is hard to accept a 

bottom water temperature increase by more than 6OK without a change in salinity. Water 

temperatures of -5OC are found today only in surface waters near the Lena River mouth during 

summer, where salinity remains < 6 (Dmitrenko et al.. 1995: Dmitrenko et al.. 1999). Therefore 

we favor the latter possibility of reduced bottom water salinity. If we assume bottom water 

temperatures of -1.2 to -1.5OC (EWG. 1998: Bude, unpublished data). which are rather typical 

modern bottom water temperatures on the eastern Laptev Sea shelf (S. Kirillov. pers. com.> 

2001). we can reconstruct a bottom water salinity of 29.4 to 29.6 at 8.4 ka BP (Fig. 4-5). In the 

case of a relatively warm bottom water temperature of -0.6OC. which is only found in direct 

proximity to the Lena Delta the reconstructed salinity increases only by 0.2 (Fig. 4-51, This 
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indicates, that in comparison with a modern salinity of -32 (EWG, 1998; Kirillov, unpubl. data) 

site 92 was more influenced by freshwater than at present. 

1 - modern 

Fig. 4-5: Temperature and salinity model for the interpretation of the different bivalve shell S^O values. The lines 
are representing the possible salinity and temperature combinations to obtain the mean 6"O value of the dated 
bivalves. The gray shaded box indicates the reliable reconstructed temperature and salinity range for the 8.4-ka-old 
bivalve. 

Because the Laptev Sea region evolved into a shallow shelf sea only during the postglacial sea 

level rise, the southward transgressing sea had a major impact on the shelf environment (Bauch et 

al., 1999). On the basis of major changes in the average sedimentation rate in sediment cores and 

other sedimentological parameters Bauch et al. (in press) reconstructed time slices of the 

postglacial-transgressional history of the Laptev Sea shelf and estimated that the inundation of 

the present 31 m isobath was concluded by about 8.9 ka B P  whereas the Holocene sea level 

maximum was reached near 5 ka BP. Using this time frame of the sea-level rise between 8.9 and 
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5 ka BP a sea level 27 m below that of today is estimated for site 92 at 8.4 ka BP. This means that 

the site 92 was located close to the paleocoastline and in a valley which Kleiber and Niessen 

(1999) identified as the main paleovalley of the Lena River (Fig. 4-6). On the assumption of a 

linear sedimentation up to the present in core 92, which Bauch et al. (2001) pointed out for a core 

further east on the inner Laptev Sea shelf, we can estimate a paleo water depth of - 10 m at 8.4 

ka BP for site 92. For the verification of our reconstructed salinity for site 92 with a paleo water 

depth of -10 m at 8.4 ka BP we compared the reconstructed salinity to modern bottom water 

salinities of stations with a water depth of 10 m, which were located in the proximity of the Lena 

Delta. Modern bottom water salinities do not exeed values of 26 to 27 (Kirillov, unpublished 

data) and are thus reduced by 3.5 to 2.5 salinity units in comparison to our reconstructed salinity. 

A paleohydrological Interpretation on the basis of reconstructed bottom water salinities remains 

incomplete without discussing possible changes in surface water salinities. On the basis of a 

correlation between freshwater diatoms in core top sediments and summer surface water salinities 

from the Kara Sea, Polyakova and Bauch (subm.) reconstructed surface water salinities for core 

92. Their reconstructed surface water salinity of 8 to 9 in combination with our estimated bottom 

water salinity of 29.5 reveals that at 8.4 ka BP the water column of site 92 was likely under the 

influence of strong stratification, which is rather more intensive than found today in the Laptev 

Sea. 

The modern topography in the area of site 92 1s characteriz 

clearly recognized as the submerged Lena River valley forme 

(Holmes and Creager, 1974; Kleiber and Niessen, 1999 

the modern bathymetry at site 92 that no delta system existed at a time 

Because of the channel-like su y the Lena paleoriver 

resembled an eastuarine system. bably caused a southward re 

current of more saline water below low-density river water and could explain our relatively high 

bottom water salinity reconstructed. Such reversed currents are also registered today in the 

submerged Yana and Lena valleys. They occur occasionally and are caused by wind forced 

deformations of the sea level due to strong offshore winds from the southeast (Dmitrenko et al., 

2001). 
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The distinct increase in the mean 6180 of the shell profiles from 8.4 to 7.3 ka BP gives evidence 

for significant changes in the bottom water salinity due to increasing distance of the site 92 

relative to the Lena River mouth. According to our reconstruction mean bottom water salinity 

changed from 29.5 to 32, which is quite the actual mean bottom water salinity for site 92 today. 

This time interval with increasing bottom water salinity is also time-coeval with a major decrease 

in freshwater diatom abundance in this core (Polyakova and Bauch, subm.) and with major 

changes in the depositional environment recognized in other cores, obtained from a similar water 

s the site of core PS5 1/92-12 (Bauch et al., 2001 [b]). 

In dependence of the southward re . . of the coastline, the river depocenters also shifted, both 

leading to a stepwise decrease in WL. xntation and accumulation rates and in riverine influence. 

A decrease of the accumulation of total organic carbon contemporaneously with a significant 

increase of 613C0g in the sediments of the central Laptev Sea shelf marks a transition from a near- 

coastal and fluvial environment to the modern depositional environment between 8 and 7 ka BP 

(Mueller-Lupp et al., 2000). The reconstructed bottom water salinity of 32 at 7.3 ka BP gives 

clear evidence of the end of this trani is-ial phase, as this bottom water salinity is already similar 

to the modern one. But a higher sumi Y to-winter variation in the bottom water salinity at 7.3 ka 

BP probably provides an indication of st xmger seasonal climatic contrasts. Several paleoclimatic 

reconstructions pointed out more conu;ryntal climatic conditions for the Laptev Sea region during 

that time (Monserud et al., 1998; Mar'..'onald et al., 2000). Unfortunately, no isotope shell profile 

exists for the time between 6 and 4 ka BP when the sea level reached its Holocene maximum. But 

the paleohydrological reconstruction at 3.6 ka BP reveals that modern hydrographical conditions 

were fully established at this time. This is in accordance with paleoclimatic reconstructions that 

also indicate stable modern conditions in the Laptev Sea region during the last 3-4 ka BP (Laing, 

1999; MacDonald et al., 2000; Pisaric et al., 2001; Naidina and Bauch, in press). 
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Fig. 4-6: Paleoenvironmental scenario at 8.4 ka BP of the Laptev Sea region. The sea level was 27 meter below that 
of today. Note that the topographical data obtained from the IBCAO (2000) and does not reflect the actual 
paleosurface prior to the inundation. 

Paleohydrographical changes on the eastern Laptev Sea shelf during the last 8.4 ka were 

reconstructed from oxygen isotope profiles of bivalve shells collected from a well-dated sediment 

core from northeast off the Lena Delta. Detailed profiles of fossil shells are compared with an 

isotopic record of a modern specimen of Mucoma calcareu, which reflects the modern 

hydrographical conditions of the bottom water at the investigated site. 
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Although isotope profiles from fossil bivalves of the Laptev Sea shelf reflect only abrief interval 

of time, they may offer new important insights into the paleohydrography during snapshots of the 

last 8.4 ka and their relation to the Holocene transgression. 

The isotope profile of the 8.4 ka old specimen shows SnO values that are On average by 1.35%0 

depleted in comparison to the modern specimen from the Same site. Under the assumption that 

the SHOW to salinity relationship in the Laptev Sea remained constant throughout the time, we can 

interpret this depletion as the result of a reduced salinity at 8.4 ka BP, indicating a near coastal 

and fluvial environment. A reconstructed bottom water salinity of 29.5 in comparison with the 

reconstmcted surface water salinity of 8 (Polyakova and Bauch, subm.) shows a clear evidence 

for a stronger stratification of the water column at 8.4 ka BP. 

Because of the Holocene transgressional history of the Laptev Sea shelf, the increasing sea level 

was the most influencial factor on the paleoenvironment, with prominent ~ I X ~ Z S ~ S  0.i the localiLy 

of the paleoriver mouth and thus On the hydrographical conditions. Due to the continuing 

southward retreat of the coastline and the Lena River mouth relative to the study site an increase 

in the bottom water salinity at 7.3 ka BP is reconstructed. The oxygen isotope shell profile at 7.3 

ka BP gives an evidence of a bottom water hydrography which is characterized by a high 

variability of summer and winter conditions on the level of modern bottom water conditions. The 

following time slices at 3.6 ka and 1.6 ka BP reveal that modern hydrological conditions are fully 

established. 

The presented salinity reconstruction enables us to make further presumptions on the relative 

proximity of the study site to the coast and to the river mouth during snapshot views of the 

Holocene history and thus can be related to the postglacial transgression of the Laptev Sea shelf. 
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The rationale of this study was to give insights into hydrographical and sedimentological changes 

on the Laptev Sea shelf on annual, decadal, and in particular longer timescales and their 

connections to the riverine input and its characteristics, 

I n  order to deterrnine variations in the deposition of terrestrial organic matter on the Laptev Sea 

shelf, which are strongly affected by the riverine input and the thermal erosion of the ice-rich 

permafrost coast, stable carbon isotope ratios of the organic matter in surface sediments and 

radiocarbon dated sediment cores were analyzed. 

The modern distribution Pattern of 8 " C o  in surface sediments reveals a strong impact of 

terrestrial organic matter on the modern depositional environment of the Laptev Sea shelf 

with distinctive south to north and east to West gradients. Although there are some 

uncertainties in defining a marine source of organic matter from the stable carbon isotope 

ratios for the Laptev Sea, the terrestrial isotope signals contributed by the river discharge and 

coastal erosion can be identified and traced in their distribution over the shelf. 

Given the modern distribution of terrestrial organic matter on the Laptev Sea shelf, changes in 

the sediment cores can be related to the input of terrestrial organic matter during the 

postglacial transgression and can be divided into three major phases. 

- Until 11 ka BP: the source of organic carbon the was mainly terrestrial, implying that the 

central Laptev Sea shelf was not flooded until that time. 

- 11 - 7 ka B P :  a significant shift in the stable carbon isotope ratios and decreasing 

accumulation rates of TOC mark the transition towards decreasing deposition of terrestrial 

organic matter. It is interpreted that these drastic changes in the deposition were caused by 

the erosion and redistribution of formerly terrestrial shelf sediments and by the 

contemporaneous southward retreat of the fluvial depocenters. 
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- aj?er 7 ka BP: the main depocenters of the rivers moved their position southward, leading to 

the modern depositional environment after the sealevel reached its Holocene maximum at 

5 ka BP. 

The study suggests that the isotopic composition of sediment TOC has potential application in 

reconstructing changes in delivery and accumulation of terrestrial o'rganic matter resulting from 

postglacial changes in sea level and environment. 

F o r  the reconstruction of short-term hydrographical changes in the modern, strongly coupled 

land-shelf System of the Laptev Sea, stable oxygen and carbon isotope profiles of from recent 

bivalve species of Astarte borealis were investigated. 

Their oxygen isotope profiles exibit amplitude cycles, which can be interpreted as recording 

annual hydrographical cycles. Thus in a first step it was necessaq to unveil the factors that 

control the isotopic composition in bivalve shells. The main forcing factor of within shell 

oxygen isotope variations is the isotopic composition of the habitat's water and its salinity 

changes. Because of the relatively constant bottom water temperature on the Laptev Sea shelf, 

the effect of temperature On the carbonate percipitation can be neglected. For the accurate 

Interpretation in terms of hydrographical changes a vital offset for the species Astarte borealis 

of -0.37%0 was calculated. 

Salinity reconstructions carried out from oxygen isotope profiles of modern bivalve shells 

reveal good correspondence to seasonal hydrographical conditions. 

Given the good conformance between isotopic profiles from living bivalves to modern 

hydrographical conditions, the oxygen isotope profiles of fossil bivalve shells can be used to trace 

past hydrographical changes. 

The salinity reconstruction from the oxygen isotope shell profiles at 8.4 ka BP, would suggest 

that the investigated site was under stronger riverine influence than at present. 

The fossil bivalve at 7.3 ka BP reveals an increased bottom water salinity with strong 

seasonal variations. 
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Conditions comparable to the modern hydrographical settings were established at 3.6 k a  BP. 

The presented salinity reconstructions enable us to rnake further assumptions on the relative 

proximity of the study site to the coast and to the river rnouth during snapshot views of the 

Holocene history and thus can be related to the postglacial transgression of the Laptev Sea. 

All presented results suggest that the increasing sea level, caused by the Holocene transgression 

of the Laptev Sea shelf, was the mpst influencial factor on the paleoenvironment, with prominent 

irnpacts On the locality of the paleoriver mouth and thus On the hydrographical and 

sedimentological conditions. 
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