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Summary and conchisions 

The poetry of earth is ceasing never. 
John Keats 

Within the scope of a joint Russian-German research project, pedological and botanical studies 

have been carried out in order to investigate carbon fluxes in tundra soils of Central Siberia. 

Turnover of soil organic matter, CO2 and CI& efflux represent biologically mediated processes, 

in which the soil microbiota plays the major part. The goal of this study was the description of 

the microbial pool of the decomposer cycle as well as its spatial variability. 

For this study, field procedures were carried out on Taimyr Peninsula, Central Siberia, during 

July and August 1995 and 1996. The experimental site at Lake Labaz (72ON, 100Â°E is situ- 

ated within the belt of the Southern Arctic Tundra'. The other site at Lake Levinson-Lessing 

(74.5'N, 98.5Â¡E is characterized by the vegetation of the 'Typical Arctic Tundra'. During the 

1995 expedition at Lake Labaz, field procedures were carried out by the IfB (Hamburg) and 

the IPÃ (Kiel). Three tundra soils and two ditterent types of brown earth had been sampled. In 

the following year at Lake Levinson-Lessing, soils were mapped by the author in CO-operation 

with the IfB (Hamburg). The soil sampling technique by the author accounted for variability of 

soil-patterned ground and vegetation complexes and was flirther designed to capture presumed 

successional Stages. Thus, three sites in a polygonal tundra, two at solifluction slopes and an- 

other two in fellfields were selected. All soil profiles were sampled at all depths of the active 

layer. 

A modern technique of direct microscopy (epifluorescence microscopy equipped with com- 

puter based image analysis) was applied to deterrnine iÃ¼nga hyphal length and biovolume, of 

which fÃ¼nga biomass was calculated (BLOEM et al., 1995). Quantification and characterisation 

of the microbial pool was supplemented by bacteriological data by PD Dr. M. BÃ¶lte (PO,  

Kiel). Viable and active micro-organisms were investigated by activity dependent methods such 

as adenosine triphosphate (HOLM-HANSEN & BooTH, 1966; GRAF, 1977; VOSJAN et al., 1987) 

and microcalorimetry (SPARLING, 1983). Basal and substrate-induced heat output provided 

fÃ¼rthe information on the microbial community structure, substrate requirements and inhibi- 

tion (RAUBUCH & BEESE, 1995). Investigation of stnictural and chemical soil properties was 

aimed at fÃ¼rthe characterisation of microbial habitats. 
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The results showed high variability of microbial biomass and activity between sites. Differences 

were mainly restricted to topsoil horizons as the microbiota was. Microbial biomass generally 

decreased with depth This decrease was more prominent for hngi than for bacteria. The latter 

also decreased with depth, but occurred throughout the soil profile and showed a relative in- 

crease above the permafrost table. The soils generally showed high hngi to bacteria ratios 

showing that the microbiota was clearly dominated by fungi. Image analysis had shown that 

bacterial biomass values were rather low because of very small mean cell volumes. Yet, in 

comparison to other arctic soils values of fungal hyphal length were also within the lower 

range. At a depth of 10 to 20 centimetres, profiles generally showed strong increases of hngi 

(and bacteria) due to a rhizosphere effect and soil moisture conditions. 

Vegetation cover was found to account for differences in microbial properties between sites. In 

the soiis of solifluction slopes and in fellfields, the microbiota reflected the presence or absence 

of vegetation. Whereas bacteria predominated in unvegetated soils, hngi were largely re- 

stricted to vegetated sites indicating their importance in soil organic matter decomposition. 

Bacteria were fÃ¼rthe inhibited by the presence of lichens in the vegetation cover. Soil moisture 

conditions accounted for hrther differences in microbial properties. In wet micro-sites, bacte- 

ria were generally more competitive when compared to fiingi. The latter prevailed in the adja- 

Cent drier micro-sites. Although hngi are aerobic micro-organisms, they also showed consid- 

erable biomass values in wet micro-sites, 

In accordance with low microbial biomass values, contents of adenosine triphosphate (ATP) in 

the soils were generally low compared to other biomes. It was hrther hypothesised that proti- 

sta may be an important component in tundra soil ecology as indicated by extremely high val- 

ues at the respective sites. Interference was also suggested from nutrient Status and lichens. 

Lowest ATP to rnicrobial biomass ratios were found in the rhizosphere reflecting lower fbngal 

activity. The ATP to substrate-induced heat output (30) successfÃ¼ll distinguished between 

viable micro-organisms and shifts in microbial cornrnunity composition. 

In accordance with the other microbial properties, values of heat output were within the lower 

range of data from soils of temperate regions. Within profiles, heat output generally decreased 

non-linearly with depth, which was more pronounced in unvegetated inorganic soils. In this 

study, it was concluded that substrate-induced methods were inappropriate to estimate micro- 



bial biomass in tundra soils. This resulted in a misjudgement of the microbiota of the upper- 

most topsoil horizons and in anaerobic subsoils and showed different substrate requirements. 

In addition, the ratio of basal heat output to substrate-induced heat output (i.e., caloric quo- 

tient) fusther elucidated successional Stages of the microbiota as well as exposure to environ- 

mental stress. Yet, the caloric quotient failed to distinguish between the two in tlie polygonal 

tundra soils and in transitionary horizons between top- and subsoil (i.e., 'frontier'), For subsoil 

horizons, it was concluded that the caloric quotient was not applicable. 

Statistical analysis of pedological Parameters and microbial properties allowed a generalised 

view of microbial habitats in tundra soils. Respectively, wet and dry topsoils, 'frontier' hori- 

zons and the subsoil were differentiated. Wet topsoils were charactesized as aquatic habitats 

with a sponge-like stnicture of the peat, which allows organisms to float freely. Compared to 

their dsier counterpart, vvet topsoils showed higher contents of carbon and nitrogen, higher 

Cm-ratios and less acid soil pH. A significant propostion of the energy flux appeared to pass 

through protista and bacteria ('microbial loop'j. Decomposers such as hngi  occurred in wet 

topsoils but were restricted in activity due to water saturation and low temperatures. Dry top- 

soils showed stratification of both edaphic conditions and microbiological propesties. Insulat- 

ing organic mats create a stable environment with respect to temperature and moisture, in 

which highest active microbial biomass was determined. The latter showed high affinity to car- 

bon and nitrogen contents indicating heterotrophic micro-organisms. The data further sug- 

gested microbial succession during soil organic matter decomposition. In transition to the sub- 

soil at wet and dry micro-sites, microbial propeities showed strong gradients leading to a con- 

ception of'frontier' horizons. These gradients were explained by a combined effect of a redox 

potential discontinuity (RPD) and the rhizosphere. Trontier' horizons were marked by the 

interface of iron oxidation bands at the upper boundary and underlying reducing conditions. On 

the one hand, redox potentials temporally allowed aerobic respiration, methane and iron oxida- 

tion to occur. On the other hand, sulphate reduction and methanogenesis had also been deter- 

mined in the namely horizons. Significant greater values of microbial biomass were attributed 

to a rhizosphere effect. Yet, this was accompanied with inhibition of microbial activity. High 

caloric quotients failed to distinguish between environmental stress and a changes in the rnicro- 

bial community stnicture. Subsoil horizons were characterized by anaerobic conditions and 

distinct increases in soil organic matter contents above the perrnafrost. The microbial commu- 

nity was predominated by anaerobic heterotrophic bactesia. It has been discussed that the re- 



spective microbial habitats represent a generalised view. In the field, they are likely to vary 

temporally and spatially and may as well interlock. 

In a changing climate, microbial cornmunities showed a high potential for increasing minerali- 

sation rates at a short-term scale. Evaluation of the long-term response, however, bears more 

uncertainties mainly because of the incalculable response of the vegetation canopy. Yet at pre- 

sent, the Taimyr Peninsula appears to be relatively stable to climate change. 



Zusammenfassung und SchluÂ§folgerunge 

Im Rahmen eines Russisch-Deutschen Verbundprojektes wurden bodenkundliche und botani- 

sche Untersuchungen zu den KohlenstoffflÃ¼sse in TundrabÃ¶de Mittelsibiriens durchgefÃ¼hrt 

Umsatz von organischer Bodensubstanz, C02- und CH.i-AustrÃ¤g steilen hierbei biologisch 

induzierte Prozesse dar, in denen die bodenmikrobiellen Gemeinschaften Hauptmotor sind. 

Ziel dieser Arbeit war es, sowohl die Gesamtheit der an der Mineralisation beteiligten Mikro- 

organismen zu charakterisieren als auch ihre raumliche VariabilitÃ¤ zu beschreiben. 

Die Gelandearbeiten fÅ  ̧ diese Arbeit wurden im Juli und August 1995 und 1996 auf der 

Tairnyr Halbinsel, Mittelsibirien durchgefuhrt. Das Untersuchungsgebiet am Labaz See 

(7ZCN, 100'0) befindet sich in der Zone der Sudlichen Arktischen Tundra. Das andere Unter- 

suchungsgebiet am Levinson-Lessing See ist von Typischer Arktischer Tundrenvegetation 

geprÃ¤gt 

Am Labaz See wurden wahrend der 1995er Expedition die Gelandearbeiten vom IfE3 (Ham- 

burg) und dem IPÃ (Kiel) durchgefi~hrt. Drei Tundrastandorte und zwei verschiedene 

Braunerden waren beprobt worden. Tm Folgejahr am Levinson-Lessing See, wurde die Bo- 

denaufnahme von der Autorin in Zusammenarbeit mit dem IfB (Hamburgj durchgefuhrt. Die 

Bodenprobennahme orientierte sich an Boden-Frostmuster-Vegetationskomplexen und war 

dasÃ¼be hinaus so anlegt, eventuelle Sukzessionsstadien zu erfassen. So wurden drei Standorte 

in der Polygontundra, zwei an den SolifluktionshÃ¤nge und zwei weitere in den Frostschutt- 

flÃ¤che ausgewahlt. Samtliche Bodenprofile wurden in gÃ¤nzliche Tiefe der sommerlichen 

Auftauschicht beprobt. 

Eine moderne Methode der direkten Mikroskopie (Epifluoreszenzmikroskopie mit EDV ge- 

stÃ¼tzte Bildauswertungj wurde zur Bestimmung von Pilzhyphenlangen und -biovolumina 

eingesetzt. Die Pilzbiomasse wurde aus den entsprechenden Biovolumina berechnet (BLOEM 

et al., 1995 j. Die Quantifizierung und Charakterisierung der Gesamtheit der Mikroorganismen 

wurden durch Bakterienkennwerte von PD Dr. M. BÃ¶lte ergÃ¤nzt Zur Untersuchung der le- 

benden und aktiven Mikroorganismen wurden aktivitÃ¤tsabhÃ¤ngi Methoden wie die Be- 

stimmung des ATP-Gehalts (HOLM-HANSEN & BOOTH, 1966; GRAF, 1977; VOSJAN et al., 

1987) und die Mikrokalorimetrie (SPARLING, 1983) eingesetzt. Die basale und substrat- 

induzierte WÃ¤rmeproduktio geben darÃ¼be hinaus Auskunft Ã¼be die Struktur der mikrobiel- 

len Gemeinschaft, Substratanspruche und eine eventuelle Hemmung ihrer AktivitÃ¤ 



(RAUBUCH & BEESE. 1995). Der weiteren Beschreibung der mikrobiellen Habitate diente die 

Untersuchung von strukturellen und chemischen Bodeneigenschaften. 

Die Ergebnisse zeigten eine groÃŸ Variabilitat in mikrobieller Biomasse und AktivitÃ¤ zwi- 

schen einzelnen Standorten. Unterschiede waren in der Hauptsache ebenso wie die mikro- 

bielle Biomasse auf den Oberboden beschrÃ¤nkt Im allgemeinen nahm die mikrobielle Bio- 

masse mit zunehmender Tiefe ab. Diese Abnahme war deutlicher bei den Pilzen als bei den 

Bakterien. Letztere waren fÅ  ̧das gesamte Profil konstatierbar, wiesen jedoch einen relativen 

Anstieg oberhalb der Permafrosttafel auf. Die BÃ¶de zeigten gemeinhin hohe Pilz-Bakterien- 

VerhÃ¤ltnisse was aufzeigt, daÂ die mikrobiellen Gemeinschaften deutlich von Pilzen domi- 

niert wurden. Die bakterielle Biomasse hatte dagegen eher niedrige Werte aufgewiesen, was 

durch kleine Zellvolumina erklart worden war. Irn Vergleich mit anderen arktischen BÃ¶de 

wiesen die PilzhyphenlÃ¤nge jedoch ebenfalls niedrige Werte auf. Eine starke Zunahme an 

pilzlichlicher (und bakterieller) Biomasse wurde in einer Tiefe von 10 bis 20 cm aufgrund 

eines RhizosphÃ¤reneffekte und der BodenwasserverhÃ¤ltniss festgestellt. 

Die Vegetationsbedeckung stellt eine wesentliche SteuergroÃŸ fÅ  ̧Unterschiede in den mikro- 

biellen Eigenschaften dar. In den BÃ¶de der Solifluktionshange und SchuttflÃ¤che spiegelten 

die mikrobiellen Gemeinschaften An- oder Abwesenheit von Vegetation wider. WÃ¤hren 

Bakterien hierbei an unbewachsenen Standorten dominierten, waren Pilze zumeist auf be- 

wachsene Standorte beschrankt, was deren Bedeutung in der Mineralisation organischer Bo- 

densubstanz aufzeigt. Durch Flechtenbewuchs wurden Bakterien limitiert. Eine weitere Steu- 

ergrÃ¶Ã stellen die BodenwasserverhÃ¤ltniss dar. An feuchten Kleinstandorten zeigten sich 

Bakterien im Vergleich zu Pilzen konkurrenzfÃ¤higer Letztere herrschten in den benachbarten 

trockeneren Kleinstandorten vor. Trotz aerober Lebensweise erreichten Pilze an feuchten 

Kleinstandorten beachtliche Biomassewerte. 

Im Einklang mit den niedrigen Werten an mikrobieller Biomasse, waren die Adenosintriphos- 

phat (ATP)-Gehalte im Vergleich zu anderen Biomen ebenfalls gering. Des weiteren wurde 

die Hypothese aufgestellt, daÂ Protisten einen weiteren wichtigen Bestandteil in der Ã–kologi 

von TundrabÃ¶de darstellen konnten, wie Ã¤uÃŸer hohe ATP-Gehalte an den entsprechenden 

Standorten aufzeigten. Der Nahrstoffgehalt und Flechtenbewuchs stellten mÃ¶glicherweis 

weitere EinfluÃŸgrÃ¶Ã dar. Die Rhizosphere wies die engsten VerhÃ¤ltniss von ATP zu mi- 

krobieller Biomasse auf, welches eine weniger aktive Pilzflora widerspiegelt. Das VerhÃ¤ltni 
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von ATP-Gehalt zur substrat-induzierten Warmeproduktion (SIQ) unterschied erfolgreich 

zwischen lebenden Mikroorganismen und Veranderungen in der Gemein- 

schafizusammensetzu~~g. 

Entsprechend der Ã¼brige mikrobiellen Eigenschaften, lagen die Werte der Warmeproduktion 

im unteren Bereich derjenigen fÅ  ̧gemÃ¤ÃŸig Breiten. Innerhalb des Profils nahm die WÃ¤rme 

produktion gemeinhin nicht-linear mit der Tiefe ab, dies stÃ¤rke in unbewachsenen minerali- 

schen Boden. Ein Ergebnis dieser Arbeit ist es, daÂ substrate-induzierte Methoden zur Ab- 

schÃ¤tzun mikrobieller Biomasse fÃ¼ TundrabÃ¶de ungeeignet sind. Dies fÅ¸hr in den obersten 

Zentimetern des Oberbodens sowie im anaeroben Unterboden zu einer FehleinschÃ¤tzun der 

mikrobielle Gemeinschaften und zeigte andere SubstratansprÃ¼ch auf. Das VerhÃ¤ltni von 

basaler und substrat-induzierter WÃ¤rmeproduktio (d.h. der kalorische Quotient) fand eine 

weitere Anwendung in der Beschreibung von Sukzessionsstadien und physiologischem StreÃŸ 

Die jeweilige Differenzierung war jedoch im Falle der Polygontundra sowie in den Uber- 

gangshorizonten zwischen Ober- und Unterboden ('Frontier') nicht mÃ¶glich Irn anaeroben 

Unterboden erwies der kalorische Quotient mangelnde Anwendbarkeit. 

Die statistische Analyse der pedologischen Parameter und mikrobiellen Eigenschaften er- 

mÃ¶glicht eine generalisierte Darstellung von mikrobiellen Habitaten in TundrabÃ¶den Ent- 

sprechend wurden jeweils staunasse und trockene Oberboden, 'Frontier'-Horizonte und Un- 

terbÃ¶de differenziert. Staunasse Oberboden wurden als aquatisches Habitat mit einer 

schwammartigen Struktur der Torfauflage beschrieben, das Organismen freies Schwimmen 

ermÃ¶glicht Irn Gegensatz zu den entsprechenden trockenen OberbÃ¶den waren Kohlenstoff- 

und Stickstoffgehalte hÃ¶her Cm-VerhÃ¤ltniss weiter und pH-Werte weniger sauer. Ein signi- 

fikanter Anteil des Energieflusses passiert mÃ¶glicherweis Protisten und Bakterien ('Microbi- 

al Loop'). Zersetzer wie z.B. Pilze wurden in geringerer Biomasse festgestellt, deren AktivitÃ¤ 

durch WassersÃ¤ttigun und niedrige Temperaturen gehemmt wurde. Trockene OberbÃ¶de 

wiesen eine Stratifizierung sowohl der edaphischen als auch mikrobiellen Eigenschaften auf. 

Die isolierende Wirkung der organischen Auflagen schafft ein temperatur- und feuchtestabiles 

Habitat, fÅ  ̧ das HÃ¶chstwert an aktiver mikrobieller Biomasse ermittelt wurden. Diese wies 

eine hohe AffinitÃ¤ zu den Kohlenstoff- und Stickstoffgehalten auf, was ihre heterotrophe 

Natur aufzeigt. DarÅ¸be hinaus lieÃ die Datengrundlage auf mikrobielle Sukzession wÃ¤hren 

der Mineralisierung von organischer Bodensubstanz schlieÃŸen Sowohl an staunassen als auch 

an trockenen Kleinstandorten wiesen die mikrobiellen Parameter im ~ b e r g a n g  zum Unterbo- 



den starke Gradienten auf, welches zur Auffassung von 'Frontier'-Horizonten fÅ¸hrte Diese 

Gradienten wurden mit der gekoppelten Wirkung einer Redoxsprungschicht (RPD) und der 

Rhizosphare erklart. 'Frontier'-Horizonte stellen die Grenzschicht zwischen EisenoxidbÃ¤n 

dem an der oberen Grenze und den unmittelbar darunter befindlichen anaerob geprÃ¤gte Ho- 

rizonten dar. TemporÃ¤ sind einerseits aerobe Atmung, Methan- und F.isenoxidation mÃ¶glic 

sowie andererseits temporar auch Sulfatreduktion und Methanbildung nachgewiesen worden 

waren. Signifikant hÃ¶her W-erte mikrobieller Biomasse resultierten aus einem Rhi- 

zosphÃ¤reneffekt der jedoch von geringer mikrobieller AktivitÃ¤ begleitet war. Hohe kalori- 

sche Quotienten konnten hierbei jedoch nicht zwischen physiologischem StreÃ oder VerÃ¤nde 

rungen in der Gemeinschaftszusammensetzung unterscheiden. Der Unterboden war durch 

anaerobe VerhÃ¤ltniss und einen deutlichen Anstieg an organischer Bodensubstanz Ã¼be der 

Permafrosttafel gekennzeichnet. Die mikrobiellen Gemeinschaften wurden hier in der Regel 

von anaeroben heterotrophen Bakterien dominiert. In der Diskussion wurde darauf hingewie- 

sen, daÂ es sich bei den namentlichen Habitaten lediglich um eine generalisierte Darstellung 

handelt. Unter naturlichen Bedingungen variieren diese in zeitlicher und rÃ¤umliche Hinsicht 

und konnen sich darÅ¸be hinaus Ã¼berlagern 

Im Hinblick auf globale Klimaveranderungen, weisen die mikrobiellen Gemeinschaften kurz- 

fristig ein hohes Potential fÅ  ̧ eine erhohte Umsetzung an organischer Bodensubstanz auf 

Eine EinschÃ¤tzun des langfristigen Wandels birgt hohe Unsicherheiten, da die Resonanz der 

Vegetation schwer zu ermessen ist. Dennoch gilt die Taimyr Halbinsel gegenwÃ¤rti als ver- 

hÃ¤ltnismÃ¤Ã stabil gegenÃ¼be globalen Klimaveranderungen. 
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Abbreviations 

a.s.1. 

AEC 

ATP 

BP 

C f 

C02 

d.wt. 

DIN 

e.g. 

EFM 

FDA 

HT 

1.e. 

ibid. 

I fB 

PO 

Mg 

m+ 
0 

P 

PC 

altitude above sea level 

adenylate energy Charge is the adenine nucleotide pool made up 

of adenosine triphosphate, adenosine diphosphate and adenosine 

mcnophosphate and characterizes the metabolic Status 

adenosine monophosphate 

acridine orange is a fluorescent stain and used for epifluores- 

cence microscopy 

adenosine triphosphate 

before present 

confer (comparej; used for quotations 

chemical sum formula of carbon dioxide 

dry weight 

German Institute for Standardization (Deutsches Institut fÅ̧  

Normung) 

example given 

Epifluorescence microscopy 

Fluorescein diacetate is enzymatically hydrolyzed by metaboli- 

cally active hngi 

hummock tundra 

id est (Latin: that is to sayj 
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1. Introduction and approach 1 

1. Introduction and approach 

And if I have prophetic powers, and understand all 
the mysteries, and all the knowledge, and if I have all 
faith, so as to remove mountains, but do not have 
love, I am nothing. 

1 Cor 13,2 

Tundra is commonly referred to as the treeless landscape nosth of the arctic treeline. The geo- 

graphic region is further defined as an area with pesmafrost, which include tree-covered areas 

called 'forest tundra' in Russian tesminology. Tundra Covers 7.34*106 km2 world-wide and 

represents some 10 % of the land-cover (MATTHEWS, 1983). Its importance is based On its 

functioning as a carbon sink in the global carbon cycle. Soil carbon stocks and turnover time 

are related to mean annual air temperature by negative exponential functions (SCHIMEL et al., 

1994). As a result decomposition in the Arctic is slow and arctic soils contain 12 to 33 % of 

the total world soil carbon pool within the active layer and the permafrost (OECHEL & 

VOURLITIS, 1995; 1997). Within tersestrial systems, 90 to 98 % of the primary production 

passes through the decomposer cycle of the soil microbiota (BLISS, 1997; GOKS0YR, 1975), 

which therefore link to trace gas effluxes from soil to the atmosphere. Retarded decomposi- 

tion is usually indicative for low biological productivity. Yet, PARINKINA (1974) has already 

suggested that relative microbial productivity must be gseater in tundra than in temperate re- 

gions because of the shost gsowing season. It is therefore assumed that tundra soils have a 

gseat potential for enhanced soil organic matter mineralisation. In a changing climate, they 

may therefore become a carbon source. 

In the early 1970s, microbial studies in tundra soils have been carried out during the compre- 

hensive tundra biome studies of the International Biological Programme (IBP). The IBP data 

are the most extensive available, but since then, little new infosmation has been gained and 

techniques in soil microbiology have progsessed. The present study is past of the Joint Rus- 

sian-German Research Project 'Late Quatemary Enviromnental Development of Central Sibe- 

ria' (German Federal Ministry of Science and Technology (BMBF) gsant 03PL014B), in- 

volving the Arctic and Antarctic Research Institute (St. Petersburg), the Alfred Wegener In- 

stitute of Polar and Marine Research (Potsdam), the Depastment of Soil Science (University of 

Hamburg) and the Institute for Polar Ecology (Kiel). This investigation was embedded in the 

research fields investigating actual processes in soil organic matter tumover, C02 and CH4 

effluxes in two different study areas on Taimyr Peninsula. The experimental site at Lake La- 
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baz (72ON, 100Â°E is situated within the belt of the 'Southem Arctic Tundra'. The other site at 

Lake Levinson-Lessing (74.SGN, 98.S0E) is characterized by the vegetation of the 'Typical 

Arctic Tundra'. 

The overall objective of this study was to characterize the microbial pool of the decomposer 

cycle in the context of site vasiability. Fusther emphasis was given to the microbial fitness for 

the environment. The following questions formed the background of this study: 

What is the order of magnitude and the microbial community stsucture, and what are the 

differences between sites? 

e To which extent is microbial activity inhibited, and what are the controlling factors in mi- 

cro-sites? 

e What is the potential for enhanced mineralisation at these sites? 

Does a generalised view of microbial habitats contribute to hture research in tundra soils? 

At Lake Labaz, three tundra soils and two different types brown easth were sampled. At Lev- 

inson-Lessing three polygonal tundra soils, two sites at the solifluction slopes and another two 

in fellfields were sampled. Profile description provides the data base on both abiotic and bio- 

logical propesties of the microbial habitats. Within profiles, sampling techniques were de- 

signed to capture small spatial differences. 

Direct obsesvation methods quantify fungal and bacterial biomass. The fimgi to bacterial ratio 

varies between different ecosystems and is used as an index for the microbial community 

structure. Studies at the IBP Tundra Biome sites of the 1970s draw different conclusions with 

respect to importance of fungal OS bactesial components of the microbiota. Activity dependent 

indirect methods provide fusther estimates of microbial biomass and thus verifj data by direct 

obsesvation methods. Quotients of microbial Parameters fiisther elucidate the comrnunity 

stsucture and environmental Stress. Analyses of soil stsuctural and chemical propesties aimed 

at the abiotic charactesisation of the habitat. 

I wish to end this introduction with a personal remark: 

Within this joint CO-operation many Papers, Ph.D. and M.%. theses were wsitten. The plethora 

of research interests becomes evident by the reposts on the three expeditions to Taimyr 
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Peninsula (MELLES et al., 1997; BOLSHIYANOV & HUBBERTEN, 1996; SIEGERT & 

BOLSHIYANOV, 1995). Scientific exchange by joint publications as well as during conferences, 

workshops and the expeditions themselves make this interdisciplinary approach so fruitiÃ¼l 

After all, science is meant to be about the exchange of knowledge. 

The study of microbial habitats and properties, as any ecosystematical approach, ideally 

includes any information available On both abiotic and biotic factors. One advantage of 

research projects of this magnitude is the availability of many data sets. The present study 

attempted to make iÃ¼l use of extemal data in order to enhance the synergistic effect. Hence, 

extemal data were included in a separate Section 4.4 and only in full appreciation of my 

colleagues' work. For readability, some extemal data were partly cited in the result chapter, 

where the reader would expect to find the respective information. These, in particular, 

comprise bacterial biomass data as well as data on the experimental site at Lake Labaz, of the 

expedition in which I did not participate. 

Quotations have been indicated as usual. However, some of these data, have not been 

published yet or publication is in preparation. In these cases the source has been stated as clear 

as possible. Furthermore, many valuable references and a lot of research by Russian scientists 

is naturally published in Russian, only Part of which was available in English or Gennan. Due 

to my extremely restricted knowledge of the Russian language, I often relied On translations 

by colleagues having command of the language. These sources generally have been indicated 

as personal communication and, if applicable the source of reference has been added. 
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2. Study area and experimental sites 

Wenn der Mensch mit regsamem Sinne die Natur 
durchforscht oder in seiner Phantasie die weiten 
RÃ¤um der organischen SchÃ¶pfun miÃŸt so wirkt 
unter den vielfachen EindrÃ¼cken die er empfÃ¤ngt 
keiner so tief und mÃ¤chti als der, welchen die 
allverbreitete FÃ¼ll des Lebens erzeugt. Å¸berall selbst 
nahe an den beeisten Polen, ertÃ¶n die Luft von dem 
Gesang der VÃ¶ge wie von dem Summen 
schwirrender Insekten. 

Alexander V.  Humboldt 

2.1 Taimyr Peninsula 

2.1.1 Location 

Taimyr Peninsula is located in northem Central Siberia and stretches from the Putorana 

Plateau (70Â°N to the Arctic Ocean (Cape Chelyuskin, approximately 77ON). The peninsula is 

bordered by the river Jennesej (86OE) in the west and by the river Khatanga (1 15OE) in the 

east. FRANZ (1973) even defined the river Olenjok as the eastem border (1 15OE). Taimyr 

Peninsula thus comprises a total area of about 400,000 km2 and equals thus Great Britain in 

size. 

Taimyr may hrther be subdivided into three geomorphological units: the northem coastal 

plain, the Byrranga Mountains and the North Siberian Lowland in the south (FRANZ, 1973). 

The coastal plain in the North stretches into the Kara Sea on the westem and the Laptev Sea 

on the eastern side. The Byrranga Mountains stretch approximately 1000 km from SW to NE 

with a width of 50-180 km. East of the Jenessej Gulf in the westem part of the range, 

mountains start with low elevations of 300 to 400 m a.s.1. and gradually rise reaching heights 

up to 1100 m a.s.1. in the eastern part. Partly enclosed by the Byrranga and partly adjacent to 

the southem flanks, Lake Taimyr Covers an area of 6000 km2, thus representing the largest 

arctic fresh water lake. 50% of the total area, however, are the North Siberian Lowland in the 

South. These represent a gently rolling homogenous plain with an elevation exceeding rarely 

150 m a.s.1.. The landscape is characterized by numerous shallow lakes, thermokarst lakes, 

meandering rivers and polygonal tundra soils. 
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Taiga Southern Tundra ypical Tundra Northern Tundra Arctic Desert 

Fig. 2.1.1: Map of Taimyr Peninsula showing geographical and geobotanical units. The study areas at 

Lake Levinson-Lessing and Labaz are encircled. Borders of geobotanical units refer to 

ALEKSANDROVA (1980), See Section 1.4 for details (modified from SOMMERKORN, 1998) 
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2.1.2 Climate 

The climate of Taimyr Peninsula represents a cold dry-continental regime. Continentality 

increases from north to south. The main characteristics are the lack of heat, low temperatures, 

short frost fsee periods, low precipitation and a high relative air humidity (CHERNOV & 

MATVEYEVA, 1997; WALTER & BRECKLE, 1986). 

Solar radiation 

On average the total annual solar radiation is approximately 70 kcal y''. It shows a 

seasonal peak from May to July, when 25 to 30% of the total radiation is received (CHERNOV 

& MATVEYEVA, 1997). Insolation increases in summer due to longer day length (up to 24 

hours = polar day). Yet, a low radiation angle results in low heating. In addition, the albedo is 

generally very high. 80 to 95% of the solar radiation are reflected in snow-covered areas. The 

highest amount of radiation is absorbed in July. Thus, solar radiation already declines, when it 

can be used by organisms. 

Temperature 

As a result of low solar radiation, the frost-free period in the tundra may range between 55 and 

1 18 days (WALTER & BRECKLE. 1986). Yet, on Taimyr Peninsula at Agapa, longest fsost fsee 

period is 65 days at the border of southern tundra to forest tundra (VASSILJEVSKAYA et al., 

1975). Thus, the growing season, which is marked by the frost free period, is 1.5 months in 

the polar desert increasing to 2.5 months the southern tundra. The mean air annual 

temperature ranges between -14. 1Â° at Cape Chelyuskin in the north and -13.5OC at Khatanga 

in the south (WALTER & BRECKLE, 1986). Along this sequence, climate varies particularly in 

mean July temperatures reflecting increasing continentality. Mean January temperatures are 

only 4OC higher in the north (-29.6OC at Cape Chelyuskin) than in the south (-33.8OC at 

Khatanga), whereas mean July temperatures vary more than 10Â° (1.5OC at Cape Chelyuskin, 

13OC at Khatanga) (ibid.). The July isotherm is the main criterion for further subdivision of 

the vegetation zones (see below). Furthesmore, winter is accompanied by high wind speeds (8- 

8.6 m s") compared to 5.3-5.6 m s" in summer (BARRY et al., 1981). 

precipitation 

The annual amount of precipitation range from 150-200 mm in the arctic desert to 300- 

350 mm in the typical and southern tundra (see Sect. 2.1.3 and 2.1.5 for nomenclature). The 

Byrranga Mountains with 450-500 mm y'' clearly show an orographic effect. A third of the 

annual precipitation falls as rain during July and August of which 30% is lost by 

evapotranspiration. The snow Cover ranges between 10 and 50 cm in thickness but is usually 
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20 to 30 Cm. Massive snow-drifts are common because of strong winds. 

Taimyr Peninsula is characterized by high relative air humidity typically 80%, which is a 

common feature in the Arctic. In the Summer relative air humidity is some 20% lower in the 

southem tundra reflecting higher temperatures. Yet, this hardly represents a decrease in 

absolute humidity since there is abundant melt water (BARRY et al., 1981). 

2.1.3 Tundra vegetation 

World-wide the Taimyr Peninsula is unique in that respect that it shows the whole 

geobotanical sequence from the arctic desert to the taiga. As can be Seen from Figure 2.1.1 

vast areas are covered by tundra vegetation. Tundra conventionally represents the vegetation 

zone north of the arctic treeline and south of the arctic desest. By definition, its borders 

coincide with the 12OC July isotherm in the south and the 2OC July isotherm in the north. Yet, 

a unique subdivision of the vegetation Zone is somewhat lacking and depends very much on 

the underlying criteria and individual points of view (ALEKSANDROVA, 1980; ANDREEV & 

ALEKSANDROVA, 1981; WALTER & BRECKLE, 1986; BLISS & MATVEYEVA, 1992, 

MATVEYEVA, 1994; CHERNOV & MATVEYEVA, 1997). Subzones were distinguished either 

along the July isotherm or floristic elements (presence of charactesistic species; coverage). In 

this study, the geobotanical zonation of the Taimyr Peninsula by ALEKSANDROVA (1980) and 

the terminology of WALTER & BRECKLE (1986) will be adopted, the latter because of the 

significance of the ecological factors (SOMMERKORN, 1998). 

Within subzones, abiotic factors vary leading to hrther differences in the composition and the 

structure of the vegetation Cover. Hence, ALEKSANDROVA (1980) assigned the 'plakor' 

concept to the zonal type of vegetation. The zonal vegetation hlly reflects the climatic 

conditions of the respective zone. 'Plakor' vegetation species inhabit mesic habitats on level 

to gently sloping grounds that are neither too wet nor too dry and show average Snow 

accumulation. Riverbank teiraces, wet depressions at hillocky and polygonal tundra sites, feil 

fields or southfacing drier slopes represent intrazonal or azonal vegetation stands (CHERNOV 

& MATVEYEVA, 1997). Thus, tundra vegetation pattems may also be described along an 

ecohydrological gradient (DE MOLENAAR, 1987). Intrazonal or azonal stands 'smooth out' 

climatic factors and are therefore of gseat ecological significance. Fusthermore, their spatial 

proportion may also be impostant. 
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Southertz tundra 

The southem tundra represents a narrow belt of 100 to 150 km width in the North Siberian 

Lowland. Its limits coincide with the 10 and 12'C July isotherms. 'Plakor' vegetation consists 

of bushes like A h s  jkuctiosa and Salix lanata reaching heights of 1 to 2 m and 0.5 to 0.8 m 

respectively. The lower layer of the vegetation is characterized by subarctic dwarf shrubs, 

namely Vaccinium spp., Ledum decunibens, Empetrum nigrum, Arctostaphylos alpinus. The 

vegetation Cover shows a mosaic structure enhanced by a hummocky ground. In wet 

depressions non-'plakor' species like Eriophorum spp. and Carex spp. occur. Trees (e.g., 

Larix sibirica) only occur extrazonally on river terraces. Boreal species still represent 20% of 

the vegetation whereas typical tuncira species represent 10%. 

Typical tundra 

Typical tundra dominates the Taimyr Peninsula. Its belt is 300-350 km wide and coincides 

approximately with 10Â° July isotherm in the south and the 5Â° July isotherm in the north. 

This subzone covers a vast area of the Nosth Siberian Lowland as well as the shores of Lake 

Taimyr and the valleys of the Byrranga Mountains. 

The'typical tundra is characterized by the absence of trees, tall bushes and close bush thickets. 

The latter comprise Salix spp. reaching heights of 20 cm, many develop semiprostate growth 

forms (Betula nana, Salix pulc/~ra). These inhabit intrazonal habitats like river valleys and 

lake depressions. The 'plakor' vegetation is dominated by mosses (Aulacomnium turgidum, 

Hylocomium alaskanum, Torment/zy'ptiz~/n nitens and Ptilium ciliare). Thus, the typical tundra 

truly is a 'kingdom of mosses' (CHERNOV & MATVEYEVA, 1997). Yet, these occur associated 

with sedges (Carex ensifolia spp. arctosibirica, Carex globularis and Carex lugens). 

Northern tundra 

The nosthem tundra only covers a narrow belt along the nosthem coastal belt of the peninsula. 

Its southem border coincides with the 5OC July isotherm. In the north, it is either limited by 

shores of the Arctic Ocean or by the 2OC July isotherm at Cape Chelyuskin. 

For the vegetation, the adverse climatic conditions show its main impact on the coverage. 

Bare ground may thus represent more than 50%. Plants are restricted to favourable micro-sites 

formed mainly by cryogenic processes. The vegetation furtherrnore impoverishes in diversity 

within and between sites. Growth fom~s  change to tufted grasses and herbs, cushions and 

mats. Sedges and cotton grass are replaced by grasses (e.g., Dupontia fisheri) and forbs 
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(Cardaminepratensis, Cerastium regelii, Saxifraga cernna). Dwarf s h b s  are represented by 

Salix polaris. Dryas spp. only inhabit extrazonal habitats as for example feil fields. Mosses 

are still very abundant (Aulacotnnium tz~rgidum, Hylocomium alaskanum, Tormenthypnum 

nitens). Yet, moss Covers can only be found adjacent to brooks. 

2.1.4 Geology and geomorpholgy 

2.1.4.1 Geologie history 

Central Siberia is located between the West Siberian megasyncline in the west and the Lena- 

Anabar-Trough and Anabar-Saddle (anticline) in the east. The area is fusther subdivided into 

the southem craton of the Central Siberian Plateau, the Jenessej-Khatanga-Trough iÃ¼sthe 

nosth and the Taimyr-Sevemaja Zen~lja-Fold. Taimyr Peninsula tectonically belongs to the 

Taimyr-Sevemaja Zemlja-Fold changing into and Jenessej-Khatanga-Trough in the south. 

The Bysranga Mountains belong to the Taimyr-Sevemaja Zemlja-Fold and were formed 

during the Pliocene (KHAN, 1985). The rock massif embodies Triassic basalt, Carboniferous 

carbonates and Pesmian sandstone (Greywacke). These resulted fsom a sedimentation trough 

during the Carboniferous to Triassic. The thickness of these sediments is 5000 to 8000 metres. 

Flows of Pre-Cambrian schist and gneiss are also common. The glacial and interglacial 

pesiods of the Pleistocene were impostant to hsther landscape fosmation. Thus, glacial till of 

at least two glaciations has been suggested. Yet, glacial history is subject of dispute and object 

within the present research project (e.g., M0LLER et al., 1997; SIEGERT et al., 1996; SIEGERT et 

al., 1995; FRENZEL, 1992; FLINT, 197 1). In the interglacial periods, marine transgressions 

formed marine-built terraces of sand and gravel at altitudes of 200 m and abrasion platforms 

are found as high as 300 m a.s.1.. A comparison of these terraces with those at Severnaja 

Zemlja suggests that the Byrranga Mountains are still being uplifted. The last transgression 

occusred during the Kazantsev interglacial pesiod (= Eemian (NW-Europe)) (BOLSHIYANOV & 

ANISIMOV, 1995; FRANZ, 1973). Since the Pleistocene, the geomorphology of the Byrranga 

Mountains is fusther being fosmed by pesiglacial processes. 

The North Siberian Lowland south of the Bysranga Mountains belongs to the Jenessej- 

Khatanga-Trough and is separated fiom the southem Altaides (= Vasiscan (Central Europe)) 

of the Central Siberian Plateau by fault lines. The depression was filled with 4000 to 5000 

metres thick Mesozoic and Cainozoic sediments. These consist of mixed layers of sandy- 

clayey shallow water sediments and continental-sandy deposits. Dusing the Quatemary 

washed-up moraines and littoral sand, silt and gravel deposits were added, partly by marine 
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transgression, partly by glaciation (SUSLOV, 1961). The ice-sheets of the Pleistocene in the 

area are believed to have been thin (FLINT, 1971). The North Siberian Lowland was 

presumably ice-free during the Sartan-Glaciation, the last stage of the Valdai-Glaciation 

(= Weichsel (N-Europe)). 

The overall ice-sheet in Siberia diminished fsom West to East supposingly reflecting the 

strong continental climate. The only areas capable of supporting glaciers were the maritime 

Arctic and mountains of the interior. At maximum glaciation (Saale glacial in N-Europe) a 

single ice-sheet is believed to have covered the mountain areas (Putorana Plateau, Byrranga 

Mountains) as well as the intervening Lowland. Yet, the sheet was nowhere thick enough to 

bury the mountain summits. Furthern~ore, it moved little and thawed slowly having little till 

on its bed and leaving no boulders behind (SUSLOV, 1961). At the last glacial maximum (i.e., 

Valdai) the ice-sheet was less extent and disconnected. As a consequence the glaciation 

history of the Taimyr Peninsula particularly during the Sartan phase (last maximum of the 

Valdai glacial) is still object of scientific research and discussion. GROSSWALD (1989) and 

ARKHIPOV (1997) support the hypothesis that the entire peninsula was glaciated. On the 

contrary, VELICHKO et al. (1997a, b) argue that ice-caps were restsicted to the mountain areas 

and the Nosth Siberian Lowland were ice-free because of lacking moraines and the supposed 

aridity. The North Siberian Lowland had thus been a periglacial area subjected to deposition 

of glaciofluvial material, formation of glacial lakes and spillways (SLSLOV, 196 1). 

2.1.4.2 Periglacial processes 

The geomorphology is characterized by periglacial freeze-thaw processes in the active layer. 

These result in solifluction and formation of patterned ground which is mainly a hnction of 

texture, slope position, drainage and temperature (WILLIAMS & SMITH, 1989; WEISE, 1983). 

Freeze-thaw processes 

Driving force of all fseeze-thaw processes is the particular property of water inasmuch that it 

expands during freezing. Because of its dipole character, water furtherrnore is attracted by 

other water or ice molecules. The enlargement of 9% during freezing applies a prying force 

(frost wedging) which is complemented by the directional growth of ice crystals (TABER, 1929 

cf. WASHBURN, 1979). This growth may be horizontal (e.g., ice lenses) or vertical (ice veins). 

Thus, physical weathering of rocks and rock forming minerals is mainly induced by frost 

wedging (frost shattering). Frost shattering not only depends on temperature and moisture 
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variations but also on the susceptibility of the rock (LAUTRIDOU, 1988; DOUGLAS et al., 1983). 

In unconsolidated material such as soils or fell-fields, frost wedging induces frost heave which 

is to say the upfreezing of objects (e.g., stones) or soil (frost stimng). Frost heave thus directly 

relates to the amount of water in the freezing Zone (SCHENK, 1955). At subfreezing 

temperatures thermal contraction of ice is fracturing at the surface (frost-cracking). The initial 

crack is filled by surnrner meltwater and grows to form ice-wedges which are the shape of 

polygons. 

Repeated freezing and thawing has a size sosting effect on soil due to the migsation of water 

and the freezing front. This is accompanied by upfreezing of stones, mass displacement, 

cryostatic pressure and gsavity movement of stones into polygonal cracks (WASHBL'RN, 1979). 

The movement of pasticles also shows involutions and turbulent pattems (cryoturbation). 

Thus, the rate of movement of particles also depends on the rate and direction of freezing 

(TEDROW, 1977). Sorting and csyoturbation are the main underlying processes of the 

formation of pattemed gsound (see below). 

In the Arctic, solifluction is also a major geomorphological process. The seasonally thawed 

topsoil is often water saturated above the pesmafsost and instable in sloping positions. 

Gravitational forces cause the soil to flow from higher to lower gsound with the pesmafrost 

table undemeath as a 'glide plane' (gelifluction). 

Some forms ofpatterned ground 

A gseat amount of pattemed gsound features (some 1500) were descsibed by TROLL (1944). 

WASHBURN (1 956 cf. WASHBURN, 1979) classified the fosms of pattemed gsound based upon 

the geometsic shape (circles, polygons, nets, steps, and stripes) and presence or absence of 

sosting. 

Ice-wedge polygons (Taimyr Polygons) 

Frost cracking (see above) is supposed to be initial stage of ice-wedge polygon forrnation. The 

border of the polygons coincides with the ice-wedge. This may be elevated or depressed with 

respect to its centre. Raised borders characterize low-centred polygons and often have ponds 

in their centre during the thawing period. High-centred polygons show a higher centre and 

depressed borders in which they often hold water (WASHBURN, 1979). Ice-wedge polygons are 

common in level or undulating areas being largest in old landscapes such as nosthem Alaska 

and Siberia (FITZ~ATRICK, 1997). 

Circles, post  boils, mudpits, GÃ¤h~lehmbeule (e.g., HOGBOM 1905 cf. TROLL, 1944) 
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Circles are formed by an upward mass displacement in disruption of the vegetation Cover. 

They are common in centres of polygons. As a result of upfreezing stones tend to accumulate 

at the surface. Due to the lacking vegetation they have a different thermal regime than the 

surrounding. 

Hummocks (thufur) 

Earth hummocks are mounds formed by csyoturbation (squeezing-up effect) of fine textured 

and (nearly) stone-free soil material. They occur in level or undulating areas that have an 

imperfect drainage. The initiation of hummock formation is unknown and has been discussed 

in detail by SCHUNKE & ZOLTAI (1988). 

Steps 

In sloping areas, csyoturbation and sorting is super-imposed by a downslope mass 

displacement (solifluction). Fine-textured soils form terrace-like fonns consisting of lobes or 

steps. Because of higher movement in the upper steeper part, this process also results in 

overtuming and involution of topsoil material. The downslope vegetation border encompasses 

bare ground upslope. Non-sorted steps are common on slopes with 5-15' inclination. 

Stripes und nets 

Nets are comparable to circles and polygons but are less distinct in their symmetrical form. At 

slopes with an inclination of 6O nets turn into stripes. 

Further description of the inter-relationship of patterned ground and soil formation is found in 

FITZPATRICK (1 997), RIEGER (1 983), TEDROW (1 977), SCHENK (1 955). 

2.1.5 Soils and pedogenetic processes 

These is no unique concept of the geography of arctic soils. In addition, the terminology not 

only differs but is also somewhat confusing (see Tab. 2.1-1). The conventional geographical 

conception of the Arctic comprises the area within the Arctic Circle (66'32'N). Since the 

early times of Dokuchaev at the end of last centusy, the Russian conception of soil zonation is 

vesy much linked to the soil genesis and the vegetation zones. Thus, in the concept by 

IVANOVA et al. (1 969) arctic soils only represent the soils of the arctic desest. On the contrary, 

GORYACHKIN et al. (1998) and TEDROW (1977) define the arctic treeline as the southem 

demarcation of the arctic soil Zone, which stretches as far to the south as 55ON at Hudson Bay 

(Canada). This definition thus includes the soils of the tundra and arctic desert vegetation Zone 

Le. ,  geobotanical units by ALEKSANDROVA, 1980; WALTER & BRECKLE, 1986). BREBURDA 

(1 987) stated that the presence of pesmafrost was the most important feature of the respective 
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soils. He thus suggested the term 'permafiost soils'. In the northern hemisphere, these would 

include soils from the taiga to the arctic desert and would stretch as far to the south as 52ON 

near Irkutsk in Siberia (WEISE, 1983). A further subdivision of arctic soils was generally 

tackled according to the predominating soil forming processes. Again this has led to differing 

classification systems. 

Tab. 2.1-1: Zonation of arctic soiis and important pedogenetic processes by IVANOVA et al. (1969); 
TEDROW (1977) and GORYACHKIN et al. (1998).- 

South North 
3eobotanical Forest Southern Typical Northem Arctic desert 
inits tundra tundra tundra tundra 

Frozen Tundra soils Arctic soils VANOVA 

;t al. (1969) 

EDROW 

1977) 

JORYACHKIN 
t al. (1 998) 

taiga soils 
Accumulation of soil organic matter 

Acidification 

Decalcification 
Desalinisation 
Mobilisation and accumulation of 
sesquioxides 
Gleying 
Little mineral weathering (feldspars) 

Tundra soils 

Accumulation of soil 
organic matter 
Acidification 

Decalcification 
Desalinisation 
Podzolisation 
Gleying 

Subpolar desert soils 

+ decreasing - 

- decreasing -+ 

+-+ 
+-+ 

- decreasing -+ 
- decreasing -+ 

Physical 
weathering 
Upward movement 
of solutes: 
Calcification 
Salinisation 
Accumulation of 
sesquioxides 

Polar desert 
soils 

Physical 
weathering 

Upward 
movement of 
solutes: 
Calcification 
Salinisation 

Subarctic tundra soils Northern tundra High arctic soils 
soils 

decreasing accumulation of soil organic matter -- -+ 
decreasing gleying -+ 

decreasing acidification - 
Decalcification Calcification 
Desalinisation Salinisation 
Podzolisation 

Clay forrnation 
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One explanation for this ambiguity is that according to GORYACHKIN et al. (1998) almost any 

soil forming process in the Arctic may occur in any subzone, which is also the reason for their 

objection to current nomenclature in soil zonation. 

Humus accumulation 

The presence of vegetation results in humus accumulation. The humus form depends on the 

composition of the plant canopy and rates of decomposition. Peat formation occurs under 

water-logged conditions. At well-drained site mull-moder organic horizons may be formed. 

Mull to moder is found in the humid Arctic as well as in the more southem tundra areas of the 

continental Arctic (ibid.). On Taimyr Peninsula peat formation was observed up to Cape 

Chelyskin. In the mountain tundra soils the annual phytomass production was lower than the 

lowland tundra (GUNDELWEIN, 1998). Yet, according to BAZILEVICH (1995), little difference 

was found with respect to the net phytomass input (phytomass annual production, dead plant 

matter and its degradation rate). 

Acidzjkation 

In the presence of decomposing organic matter, roots, microbial activity, acidification occurs 

as a result of the formation of carbonic and organic acids. These lead to a depletion of basic 

cations. Acidification thus decreases from the southem tundra towards the arctic deseris. 

Calc$cation - decalcz$cation und salinisation - desalinisation 

The movement of solutes is deterrnined by soil moisture and the orientation of the soil water 

movement. Leaching (i.e., downward movement) thus diminishes northward the soils 

sequence as precipitation decreases. Low soil moisture accompanied with high base saturation 

results in precipitation of carbonates and an accumulation of salts. Often precipitation can be 

observed macroscopically as calcareous pendings under stones and thin salt coatings. 

Calcification and salinisation are therefore characteristic for the arctic deseri soils but may 

also be found locally in southern tundra soils at drier vegetation-free sites (see also Sect. 

5.1.2.2). It may further be a temporal phenomenon where puddles (in lower micro-sites) 

periodically dry out. 

Weathering und secondary minerals 

In the Arctic biogenic weathering is probably more imporiant than in most other parts of the 

world (FITZ~ATRICK, 1997). Biogenic weathering here is understood as biogeochemical 
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weathering brought about by lichens and mosses. Lichens are known to exude organic acids 

(particularly oxalic acid) and liehen compounds that release cations from rock forming 

minerals (SCHMIDT, 1993; ISKANDAR & SYERS, 1972; JONES & WILSON, 1986). 

Sesquioxides are being formed as a result of geochemical weathering. At well-drained sites 

brunification ('Verbraunung') occurs. Under wet conditions iron stays in a reduced state 

(ferrous iron) and gives soils grey or bluish colour (i.e., gleying). Sesquioxides rarely 

crystallise but remain in hydrosol phase (IVANOVA et al, 1969). Yet, findings by ALEKSEEV et 

al. (submitted) also suggest that ~ e ~ ^  migrates downwards and crystallises as lepidocrocite 

above the permafrost table where it was found to accumulate. 

Clay contents, however, tend to be rather low in Arctic soils. Generally, the clay fraction 

mainly consists of clay size rock forming minerals such as quartz and feldspar (EVERETT et al., 

1981). In the valley of the river Pyasina (Taimyr Peninsula), GRADUSOV & IVANOV (1974) 

found high proportions of smectites and illite in the clay fraction (i.e., 70-80%), which 

decreased towards the Byrranga foot slopes (30-40%). This suggested that the smectites 

originated from parent material that were presumably sediments from the Putorana Plateau 

(IVANOV, Pers. communication). Thus, there is only little evidence for pedogenic clay 

formation (IVANOVA et al., 1969; GORYACHKIN et al., 1998) 

Gleying 

Gleying is a prevailing and prominent feature of soil formation in the Arctic and a principal 

process in the tundra (RIEGER, 1974). The underlying perrnaffost represents a barrier above 

which soil water stagnates. Iron mottling is only formed in the active layer under partially dry 

conditions. During prolonged dry summer periods or in the freezing front during the 

refreezing period, ferrous compounds are converted to hydrated ferric oxides (ibid.). Gleying 

markedly decreases northward the soil sequence (TEDROW, 1977). According to GORYACHKIN 

et al. (1998) this is rather explained by coarse textured and stony substrates than by climatic 

conditions. At Cape Chelyuskin gleying occurs on fine textured, decalcified parent material. 

Podzolisation 

Arctic soils frequently show podzolisation features. Here, podzolisation is understood as the 

mobilisation of iron and aluminium by organic acids and transportation into the B horizon 
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which results in the formation of the diagnostic spodic hosizon (WRB). Yet, there is 

controversy about podzolisation in Arctic soils. Although TEDROW (1977) reported the 

forrnation of podzols on well-drained and coarse textured material in the southern tundra, he 

only refers to iron and manganese transpostation. SOKOLOV & GRADUSOV (1978) described 

the formation of an eluvial hosizon at a micro-scale with lacking precipitation of organo- 

metallic chelates ('ochristye bodbury'). Often it is being argued that podzolisation properties 

(as defined above) represent relic features (LIVEROVSKII, 1974 cf. GORYCHAKIN et al., 1998). 

Yet, moisture was found to be sufficient for podzolisation under present climatic conditions 

(STONER et al., 1983, UGOLINI et al., 1987). In Antarctica, BLUME et al. (1998; 1996) have also 

shown that podzolisation takes place with mean annual precipitation as low as 180 mm. 

Bleached eluvial horizons of 1 to 3 cm thickness had forrned in soils at ancient penguin 

rookeries (ibid) as well as under lichen-moss vegetation Cover (BOLTER et al., 1995). A 

preceding review (BOCKHEIM & UGOLINI, 1990), however, has concluded that podzolisation 

was unlikely to occur in Antarctica. Summing up, there appears to be little doubt about 

sufficient acidity for eluviation of sesquioxides under present Arctic (OS Antarctic) climatic 

conditions (GORYACHKIN et al., 1998). Illuvial horizons of organo-metallic complex on the 

contrary are subject of dispute. 

2.1.6 Human history and impact 

2.1.6.1 Human history 

In Siberia, human history dates back as early as to the Palaeolithic or early Neolithic Periods. 

7,000 to 8,000 years BP, man (which naturally comprises men, women and children) is 

believed to have colonised Taimyr Peninsula (CHERNOV, 1985; ANDREEV, 198 1). During the 

TAYMYR 1996 expedition, archaeological findings represented ceramic fragments, worked 

and fsagmented bones from a reindeer hunting site at the brook Oleny in the upper Taimyr 

river area (PITUL'KO, 1997). These were approximately 1,800 to 2,000 years old (ibid.). The 

name of the brook (i.e., Oleny) translates to reindeer brook and probably suggests sich 

grounds of the respective mammal. Reindeer represented the main food resource although fish 

and birds were also part of the diet. 

Historical records On the Siberia started with the European development after armexation of 

the khanate sibir in the 16* century (POSSELT, 1990). In the following period, all efforts were 

committed to the implementation of the Tsarian power, the collection of taxes in kind (i.e., a 

sable fur tax called Jasak) and trading. Administrative outposts became necessary and 
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settlements of Europeans came into being. Khatanga for instance was also founded in that 

period (1 626). Bondage in the European Part of the Russian empire made poor farmers move 

to the East. First reposts on Siberia were written by trading travellers. Thus, the reports by the 

Dutch trader Nicolaas Witsen, who travelled through Siberia to China from 1697-1701, 

delivered important maps for scientific expeditions later On. 

The indigenous people of Taimyr Peninsula comprise some 3,000 'Dolgans', 1,000 'Ngasans' 

as well as descendants of 'Nentsens' and 'Evenkens'. These peoples were nomads following 

the migrating reindeer herds. In the 1930s the indigenous people were settled in settlements 

and organised in Sowchos leading a modern Soviet life with some remaining elements of their 

original culture (such as hunting and fishing). With certain reservations to modern life style, 

reindeer and fish still represents the main food resource as well as a source of income. 

Taimyr Peninsula has some 350,000 inhabitants, most of which (i.e., 300,000) live in the 

mining town Norilsk. The smelters of Norilsk represent a major source of pollutants. 

2.1.6.2 Scie?tttj'ic history 

Scientific interest in Siberia arose in the period of Enlightenment during the tsardom of 

Peter I. (POSSELT, 1990). Peter I. had founded the Russian Academy of Sciences in 

St. Petersburg which was fi~lly established in 1725 and happened to guide many of the 

Siberian expeditions later On. The new Academy attracted many scientists from Germany 

since it offered many opportunities (and Jobs) that were not found back home due to the 

Gesman pasticularism. Thus, it was the Geman medical scientist Daniel Gottlieb 

Messerschmidt who guided the first scientific expedition to Siberia by appointment of Tsar 

Peter I. (1720-1727). Many expeditions followed. In 1724, the Dane Vitus Bering was put in 

charge of the First Kamchatka Expedition to explore the supposed land-bridge between Asia 

and America. The Second Kamchatka Expedition also by Bering was aimed at the exploration 

of further sea-routes to America and Japan. This expedition hrthermore intended the 

description of the Arctic Sea, the natural history and ethnological studies. It was thus the 

biegest Russian scientific project until 19 17 (ibid.). The material of above mentioned 

Messerschmidt was the basis for this expedition. The Germans Johann Georg Gmelin (natural 

scientist and botanist) and Georg Wilhelm Steller (medical and natural scientist) were past of 

the Pacific and Siberian group (ibid.). Gmelin and Steller described Eurasian peoples, flora 
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( e g ,  Larix gmelinii) and fauna (the legendary Steller's sea-cow, Hydroamalis gigas). In lgth 

century more systematical ecological studies in a modern sense started with the works by 

SCHRENK (1848; 1854 cf. CHERNOV & MATVEYEVA, 1997) and MIDDENDORF ( I  869; ibid.). 

Alexander V. Middendorf was the first h o w n  European who travelled to Taimyr Peninsula. 

His botanical studies introduced previously unknown plant species, which was also 

appreciated by their names (e.g., Betula tiziddendot$i> Oxytropis middendorfii ). He already 

had recognised High tundra (mountain tundra) and Low tundra (wet plains) (TEDROW, 1977). 

This was followed by the Russian Polar expedition of Toll from 1900-1903. Scientific 

expeditions naturally ceased during the sestless times of the Revolutions and World War I and 

11. In the 1950s ecological studies On Taimyr were reinstated. The botanical studies of 

ALEKSANDROVA (195 1; 1956; 1959; 1960; cf. CHERNOV & MATVEYEVA, 1997) fall in this 

period. Her description of the Siberian flora and her assignation of the 'plakor' concept to the 

tundra is still essential to any ecologist working in the Siberian tundsa. In the early 1970s four 

research sites On Tai~nyr Peninsula were included of the International Biological Programme 

IBP (ROSSWALL & HEAL, 1974). The fall of the Iron Curtain in 1989 was a stimulus for 

hrther expeditions with Western participation. Several expeditions were carried out in co- 

operation with the World Wildlife Fund fos Nature with the aim at a better protection of the 

vast breeding grounds of migrating birds (PROKOSCH & HOFKER, 1995). The present joint 

Russian-German research project to study Quatemary Environmental Development of Middle 

Siberia was launched in 1993. Between 1993 and 1997 a total number of fous joint Russian- 

German expeditions were carried out to investigate the pemafiost-soil-hydrosphere-biosphere 

System (MELLES, 1994; SIEGERT & BOLSHIYANOV, 1995; BOLSHIYANOV & HUBBERTEN, 1996; 

MELLES et al., 1997). 

2. I .  6.3 Anthropogenic i~tzpact 

Anthropogenic impact On the tundra ecosystems was mainly reported as induced changes in 

thc vegetational but also in soil microfloral composition (CHERNOV & MATVEYEVA ,1997; 

ANDFEEV, 198 1, KIRTSIDELY et al., 1994). This may be caused by utilisation of biological 

resources, physical disruption of the vegetation cover or input of substances. 

ARer mechanical disturbance by vehicles, aircrafts andlor trampling (the latter particularly 

around settlements) the vegetation cover may restore slowly depending On the degree of 

destmction. Yet, the species composition and the structure will be completely different 
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(CHERNOV & MATVEYEVA 1997). Particularly in the vicinity of settlements the invasion of 

new plant species brought into the system (fos example as a food sousce) leads to the 

fosmation of a different vegetation Cover. Unless the uppes soil is affected by disruptive 

psocesses this may cause the fonnation of meadows. Anothes consequence of the psesence of 

people in both histosical and psesent times was the input of substances. This comprises the 

dumping of domestic sefuse and burial of the deceased. In modern times, garbage certainly 

differs in quality and quantity. Furthermose, soil pollution by coal heaps and oil spillage is a 

more secent phenomenon, which mainly occurs around settlements. Oil spillage also occurs 

locally everywhese in the tundra due to rehelling of vehicles and aircrafts. 

Despite its semote location, Taimyr Peninsula is also affected by ais pollution as for example 

acid deposition and heavy meta1 pollution (WOODIN, 1997; KIRTSIDELY et al., 1994; 1995). 

Although inputs of pollutants may be comparably low, these is evidence that the tolesance of 

arctic ecosystems is exceeded, As elsewhese, soils ase sensitive to acidification where acid, 

shallow and poos in bases, which makes tundra soils particularly vulnerable. Some Arctic 

sivess, as fos example the river Jenessej, ase significant pathways fos contaminants such as 

suspended solids of DDT OS PCB. These enter the food web by birds of psey or fish (AMAP, 

1998). Due to their high sensitivity, the 'tolerance' of Arctic ecosystems is exceeded in the 

sense that sevese distusbances of functioning wese observed (WOODIN, 1997). In contrast to 

ubiquitous air pollution, the above mentioned smeltess of Norilsk represent a located sousce of 

pollutants (i.e., heavy metals) fos the Taimyr Peninsula. Yet, these also contribute sevesely to 

Arctic pollution in genesal (AMAP, 1998). 
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2.2 Sites at Lake Levinson-Lessing 

Lake Levinson-Lessing is situated within the typical tundra Zone in the western Part of the 

Byrranga Mountains at 40 m a.s.1. (Fig. A2.1-1). The lake is 15 km long in its north-south axis 

with 2 km in width and measuses maximum depth of 108 m (BOLSHIYANOV & ANISIMOV, 

1995). The main tributary repsesents the river Krasnaya at its nos-thern shose. Its outflow, the 

]+ver Protochny at the southern shore connects Lake Levinson-Lessing to Lake Taimyr in the 

southwest. The surrounding mountains reach altitudes of 300 to 500 m as.1.' 

The study area is situated at the northern shose of the lake (74S0N, 98.s0E) and encompasses 

a total area of 43.5 km2. There is no meteorological station at or near Lake Levinson-Lessing. 

Thus, local climatic conditions can only be described approximately using data ffom the Lake 

Taimyr Station, about 70 km to the east (see Tab. 2.2-1 DICKSON REGIONAL ADMNISTRATION, 

1993). The climate is goves-ned by cold-dry continental conditions. Mean annual temperature 

is -15OC with a mean January temperature of -33OC and a mean July temperature of 6.SÂ°C 

Annual precipition is 281 mm of which 26% fall as rain in the growing season. The fiost-fiee 

period lasts 35-40 days. Short-term recordings of climatic data during the expedition, 

however, differed inasmuch that mean July and August temperature was 8OC. 

Table 2.2 -1 Clin~atic data for Lake Taimyr Staion (from DICKSON REGIONAL ADMINISTRATION, 1993) and 

Khatanga Station (from NORIN & IGKATENKO, 1975). 

Station Temperature [OC] Days Precipitation 

Mean annual January mean July mean (t > OÂ°C [mm yr-l] 

Lake Taimyr - 15 -3 3 +6.5 35-40 28 1 

Khatanga -13 -34 +13 35-45 243 

(25-year mean) 

In the valleys, the vegetation is characterized by typical tundra plants. 'Plakor' species 

represent dwarf shrubs (Salix reptans, Diyas punctata and Cassiope tetragona) which are 

associated with Carex spp. and mosses. The latter form dense moss carpets and are dominated 

by Tormengpnz~m nitens. At wetter micso-sites Carex stans, Eriophorum vaginatum and E. 

angustiJolium predominate. At the slopes of the surrounding mountains the composition of the 

vegetation changes and plant coverage rasely exceeds 60%. The vegetation community 
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compsises D ~ y a s  punctata, Curex arctosibiricu, Novosiviersia glacialis and mosses. On the 

mountain tops, plant covesage fusthes decseases (< 10%). Typical plants wese Salix arctica, 

Novosiviersiu glacialis, Minnz~artia arctica, Papuver polare, Dqus  punctata. (SOMMERKORN, 

1998; BECKER, 1997) 

The Ksasnaya valley is filled with fluvial silty loamy to sandy sediments but ase psesumably 

mixed with aeolian and solifluidal sediments fsom solifluction slopes. In the level asea of the 

valley polygonal pattemed gsound with high OS low centsed foms  and thesmokasst lakes have 

developed. The diametes of the polygons sanges fsom 6 to 12 m. At the out banks of the river 

the edges ase esoded by thesmokasst. The mosphology at the slopes of the su~~ounding 

mountains is fosmed by solifluction and intensive kost-shattesing. The solid sock consists of 

gseywacke, gneiss and schist. Soils developing hese show little or no pedogenic diffesentiation 

in sesquioxide, silt OS clay content (MULLER-LUPP, 1997). Smectite and illite are the psincipal 

clay minesals. Pasticulasly, in fine-textused soils kaolinite, chlosite and intesstsatified minesals 

ase also common. Yet, very little clay is thought to have fosmed by pedogenesis (HAGEDORN, 

pess. comm.). Geochemical investigations have shown that feldspas and montmosillonite may 

fusthes dissolved undes present thesmodynamic conditions (HAGEDORN et al., SUBMITTED). 
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2.3 Sites at Lake Labaz 

The experimental sites ase at the nosthesn shore of Lake Labaz (72'2'N, 99'4'E) which is 

situated within the southern tundsa Zone in the Nosth Sibesian Iaowland at 47.5 m a.s.1. 

(Fig. A2.1-2). Tlie lake is 30 km in its diametes and measuses a shallow depth of less than 

5 m. The landscape shows a uniform chasactes of a low hill country with polygonal and 

tussock tundsa as well as numesous thelmokasst lakes and watescousses. Elevations sasely 

exceed 150m a.s.1. and the watesshed is i~~egu las  because of the low selief intensity. 

Consequently, the disection of flow of the main two watescousses of the study asea stsongly 

divert. They both finally sepsesent tsibutasies to the rives Khatanga but some 350 km apart. 

The study asea encompasses a total asea of 8 km2. As was the case fos the study asea at Lake 

Levinson-Lessing, these was no ~neteosological station at or neas Lake Labaz. Thus, local 

climatic conditions wese descsibed using data of the neasest station at Khatanga (72ON, 

102OE) (Tab. 2.2-1 modified fsom NORIN & IGANTENKO, 1975) in the fosest tundsa Zone. 

Mean July tempesatuse and the dusation of the gsowing season may differ. In addition 

precipitation is likely to be highes at Lake Labaz (Sects. 1.2 and 1.3). The study asea is 

chasacterized by a cold-dry continental climate. Mean annual tempesatuse is -13OC with a 

mean January tempesatuse of -34OC and a mean July tempesatuse of +13OC. Annual 

precipitation is 243 mm of which 31% fall as sain in growing season. The fi-ost-f?ee penod 

lasts 35-45 days. During the 1994 and 1995 expeditions shost-tesm secosdings did not delives 

differing climatic data (SOMMERKORN, 1995; 1997). 

The vegetation is chasacterized by typical plants of the southem tundsa. 'Plakor' vegetation 

comprises bush thickets of Salix spp., Betula spp. and Larix spp.. Salix spp. in particulas 

reaches lleights of 0.8 metses. Dwasf s h b s  (P'accirzium vitis-idea, Cassiope tetragona, Betula 

nana) and lichens (Cetraria cucullata, Thamnolia ve~micularis) ase a furthes 'plakos' plants. 

At wetter sites, sedges (Carex spp.), cotton gsass (Ei.iophorum spp.) and mosses 

(Tormen~pzum nitens, Drepanocladz~s uncinatus) psedominate (SOMMERKORN, 1998; 1995). 

The mountain tops sepsesent well aerated dry rudesal habitats whese the plant covesage 

decreases (< 80%). The vegetation is dominated by chinophobous (e.g., Certraria nivalis) and 

rudesal species (Carex ?-upestris). 

During the last glaciation maximum, a glacial lake had fosmed a Pse-Labaz lake of which the 
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present and neighbouring lakes developed as relicts (SIEGERT & BOLSHIYANOV, 1995; 

ISAYEVA, 1984). The northern shore of Lake Labaz consists of marine terraces (Sect. 1.4.1) 

and deposits of the Kazantsev interglacial (= Eemian interglacial N-Europe) and the Karginsk 

interstadial (FISHER et al., 1990). These deposits generally show silty-loamy texture. Peat 

lenses with thickness of up to 2 m occurred in mixed layers and were dated to the Karginsk 

interstadial as well as to the Holocene (SIEGERT, pers. comm.). 
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3. State of the art 

Wohin der Blick des Naturforschers dringt, ist Leben 
oder Keim zum Leben verbreitet. 

Alexander V. Humboldt 

3.1 Microbiota in arctic soils 

Soil microbial ecology is concemed with the structure and function of soil micro-organisms. 

Microbial communities are considered to inhabit microhabitats in soil. Yet, the terminology is 

rather ambiguous and invariably subject of dispute (HARRIS, 1994). At its simplest, 'microbial 

cornm~inity' is regarded as the coincident occurrence of micro-organisms. As such the term is 

used in this study, aware of insufficient information on interactions between components of 

the community. 'Microbial habitat' is also poorly defined but suggests a spatial and even time 

dimension. It is therefore a question of scale, which will be elucidated in a separate section of 

this chapter. 

3.1.1 Community structure 

In the Arctic, comprehensive studies of the soil microbiota were carried out at the 

experimental sites of the IBP Tundra Biome Programme (HOLDING et al., 1974, ROSSWALL & 

HEAL, 1975; BLISS et al., 1981). Since then very little new infoimation on the cornmunity 

structure has been gained (ROBINSON & WOOKEY, 1997). Within terrestrial ecosystems, soil 

microbiota represents the main component of the decomposer cycle thsough which between 

90 to 98% of the primary production passes (BLISS, 1997; GOKS~YR, 1975). Soil micro- 

organisms not only govem decomposition processes but they furthermore pasticipate in 

psimary production processes (COLEMAN & CROSSIEY, 1996). 

Primary production 

Symbiotic associations between micro-organisms and plants enhance the nutrient acquisition 

of the host. In exchange the involved micro-organism receives assimilates. In tundra 

basidiomycetes for instance form ectomycosshizal associations with Betula and Salix spp. but 

are also reposted with ericaceous shrubs and D y a s  spp.. The diversity of mycosshizae is 

interwoven with the vegetation Cover but is generally lower than in other biomes (MILLER & 

LAURSEN, 1978). In the Arctic, ectomycorrhizal enzyme Systems appear to be adapted to cold 

(TIBBETT et al., 1998a) and nutrient deficiency (TIBBETT et al., 1998b). Endomycosshizae (i.e., 

vesicular-arbuscular mycosshizae) are also common and found in association with Ranunculus 

spp., Saxifraga spp. and Graminae (MILLER & LAURSEN, 1978). At drier sites mycorrhizal 

forming kngi  are as common as saprophytic (decomposing) kngi  (BUNNELL et al., 1975). 



3. State of the art 25 

Furthermore nitrogen fixing bacteria are also known to form symbiotic associations with 

plants. The latter occurs as nodules at root hairs, which develop after infection of the host's 

roots by the bactesium Rhizobium (KILLHAM, 1994). In the Arctic, rhizobia were occasionally 

observed in association with Alnus, D~yas  spp., Astragalus alpinus, Lotus croniculatus and 

two species of Oxytropis but may also be absent (WALTER & BRECKLE, 1986; GRANHALL & 

LID-TORSVIK., 1975; CHAPIN & BLEDSOE, 1992) and is subject to seasonal variation (NOSKO 

et al., 1994). Although nitrogen fixation by rhizobia may be locally important, it is generally 

of subordinate significance in tundra (HOLDING, 198 1). Detailed description of symbiotic 

microbial-plant associations are given e.g., by TATE (1995), GILLER & DAY (1985), READ 

et al. (1985), and BULL & SLATER (1982). 

However, in tundra soils cyanobacteria (former blue-gseen algae) are by far the more 

impostant taxonomic gsoup of micro-organisms with respect to nitrogen fixation 

(ALEXANDER, 1974a,b; ALEXANDER & BILL~NGTON, 1986; CHAPIN & BLEDSOE, 1992). The 

nitrogen input by fixation may be fourfold gseater (CHAPIN & BLEDSOE, 1992) than fsom other 

sources (as for instance fsom precipitation). The predominant genera (i.e., Nostoc, Anabaena) 

occur in wet depressions and melt ponds (ALEXANDER et al., 1978) as well as associated with 

fungi and soil algae in ci-usts (GRANHALL & LID-TORSVIK, 1975) or with plants (HENRIKSON et 

al., 1987; SOLHEIM et al., 1996). Other nitrogen fixing bactesia are less impostant (DUNICAN & 

ROSSWALL, 1974) or not found in tundra (e.g., MATVEYEVA et al., 1975). In addition 

cyanobactesia, along with gseen algae and diatoms also release other nutrients into the soil not 

only upon the decay of dead cells but also as metabolites (e.g., polysacchasides, polypeptides 

(CAMERON et al., 1978). Because of their ability of photosynthesis, they formerly had been 

sumrnarised as soil algae. Consequently cyanobacteria and soil algae take up and release COz 

by photosynthesis and respiration respectively. Some gsoups are even known to be 'fertilised' 

by CO2 supplied by live and decaying roots (ibid.). Photoautotrophs are largely restsicted to 

the upper few centimetres of soils and decrease logasithmically with depth. In the Arctic, they 

are practically found in all habitats although their biomass, species composition and 

productivity largely depends on moisture (BUNNELL et al., 1975). At wetter sites, the species 

composition was found to approximate that of aquatic environments (ibid.) but was also 

reported to be generally less diverse and more specialised in arctic terrestsial Systems (ELSTER 

et al., 1994). Depending on the author and the methodology, green algae are thought to prevail 

over diatoms or cyanobactesia (BUNNELL et al., 1975). The latter, however, are more difficult 

to culture. Therefore, the relationship was also reported to be inverse (CAMERON et al., 1978). 
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The ecological significance in the Arctic is particularly high because cyanobacteria and soil 

algae represent the first organisms in psimary succession on land. In the high Arctic, they may 

even represent the only life foms. In association with bacteria, they from cmsts on bare rock 

and soil surfaces. During the last decade, intense studies were carsied out on these cryptobiotic 

crusts in high alpine (BELNAP & GARDNER, 1993; BELNAP et al.,1993; BELNAP, 1992; ST. 

CLAIR & JOHANSEN, 1993) and polar desert systems (PARIKKINA & PIIN, 1992; WYNN- 

WILLIAMS, 1985; 1994; BOCKHEIM & WILSON, 1992, FRIEDMANN, 1982). On the contrary, 

algal biocenoses of moist terrestsial ecosystems are largely unknown (SVOBODA & 

FREEDMANN, 1994; ELSTER et al., 1994). 

Symbiotic microbe-plant relationships as well as cyanobactesia and soil algae represent 

primary producers. Microbial aid of nutrient uptake by plants as well as microbial C and N2 

fixation are pathways of nutrient input in soils from above- and belowground and thus primary 

production processes (COLEMAN & CROSSELY, 1996). 

Decomposer cycle 

As mentioned above, pasticular importance of the soil microbiota lies in its predominance in 

the decomposer cycle. Yet, the microbiota is gseatly reduced in the Arctic. In wetter habitats 

bacteria are more numerous than fimgi, and hngi are more abundant in mesic habitats (BLISS, 

1997; SYZOVA & PANIKOV, 1995; BUNNELL et al., 1975). FEDOROV-DAVYDOV (1998) reckons 

about 32% of the microbiota tundra among micro-organisms decomposing fsesh plant 

remains, another 15% among decomposers of organic substances in peat and 52% among the 

microbial population living On decaying roots and root exudates. 

In drier and warmer (mesic) arctic soils, fungi have been reposted to predominate in the 

decomposition of organic matter because of the acid reaction of the humus layer. Bacteria 

have been considered to be of secondary importance (BUNNELL, et al., 1975; WALTER & 

BRECKLE, 1986). In wetter habitats, fungi have been observed to play a subordinate role and 

have only been found as sterile mycelia (SYZOVA & PANIKOV, 1995; MATVEYEVA et al., 1975; 

CHERNOV et al., 1975). Yet, fungal productivity (i.e., production of fbngal biomass per unit 

area and time) is greater than the productivity determined for bacteria (ROSSWALL, 1975). 

Fungi convert between 50-60% of the carbon in litter to COz (HOLDING, 1981). They may be 

subdivided into three groups according to their carbon source. Sugar fungi utilise simple 

Sugars, proteins and organic acids as their carbon source. Cellulolytic fbngi are able to utilise 
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cellulose in addition. Last but not least, xylolytic fungi are capable of decomposing complex 

polymers such as lignin and lignified cellulose. In tundra, cellulose decomposition is mainly 

carried out by fungi (HOLDING, 1981). Fungi are very competitive in (GOKS~YR, 1975) 

utilising structurally intact plant material. Thus, standing dead plant material as well as litter 

and roots are heavily invaded by fungi and by bacteria only to a lesser degree (ibid.). In tundra 

soils, fungi are less divers than in other biomes (BUNNELL et al., 1975; BAB'YEVA & 

CHERNOV, 1982). Species composition is also different and furthermore varies between sites. 

Cladosporium, Mortierella and Penicillium are the most widespread genera. At Tareya (W.- 

Taimyr), cellulolytic species such as Phoma eupirena, Aspergillus versicolor, Penicillium spp. 

(CHERNOV et al., 1975) were isolated. Estimates of yeasts represent up to 17% of the fungal 

biomass (BAB'YEVA & CHERNOV, 1982) but may vary dramatically between years (BWELL 

et al., 1975). They seem to be largely restricted to the upperrnost centimetres of drier soils 

(ibid.; HOLDING, 198 1). Data provide conflicting evidence with respect to the significance of 

sterile mycelia. Many authors (HOLDING, 1981; ROSSWALL, et al., 1975) consider sterile 

mycelia as very widespread fungi. Yet, FLANAGAN & SCARBOROUGH (1974) rarely found 

sterile mycelia in litter or soil. Abundance and diversity also change between tundra types and 

within profiles. Thus, fungal species that were observed to colonise standing plant material 

differed from the rhizosphere with respect to species composition (CHERNOV et al., 1975) and 

physiology (FLANAGAN & SCARBOROUGH, 1974). 

Bacteria become more competitive once the plant material has mechanically been 

disintegrated for example by passing through the gut of an invertebrate (GOKS~YR, 1975). 

Fungi are very much confined to the presence of plant material. Therefore they predominate in 

the upper few centimetres of soil and decrease with depth. Bacteria also predominate in the 

upper horizons and decrease with depth (PARINKINA, 1974). Yet, in contrast to fungi, they 

occur throughout the soil profile down to the permafrost table or even within the permafiost 

(MATVEYEVA et al., 1975; LYSAK & DOBROVOL'SKAYA, 1982, GILICHINSKY et al., 1995). 

Tundra soils are generally marked by moist to very wet conditions. Under these conditions, 

fungi are less competitive and bacteria may represent up to 75% of the microbiota (BUNNELL 

et al., 1975). Nevertheless, compared to dry sites, the bacterial productivity is much smaller at 

wet sites (PARINKINA, 1974). Also, aerobic bacteria are manifold more numerous than 

anaerobic OS facultative anaerobic groups (DUNICAN & ROSSWALL, 1974). Among the 

physiological groups, those involved in nitrogen cycling predominate: utilisers of organic and 

inorganic nitrogen as well as aerobic and anaerobic ammonifying bacteria. Yet, nitrifying and 
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denitrifying bacteria are either rare or absent (MATVEYEVA et al., 1975; BUNNELL et al., 1975). 

Some physiological groups of bacteria participate in carbon cycling. Despite the fact that 

cellulolytic bacteria are generally less common in tundra (DUNICAN & ROSSWALL, 1974), 

bacteria were found to be responsible for anaerobic cellulolytic activity (ROSSWALL et al., 

1975). Under anaerobic conditions in wet habitats, methanogenic bacteria are present (ibid.). 

Methane produced in subsoil horizons may further be oxidised by bacteria in better aerated 

upper or adjacent horizons (e.g., SLOBODKIN et al., 1992; SCHIMEL et al., 1993; WHALEN, 

et al., 1996). Despite the fact that methane oxidation appears to be an obligatory aerobic 

process (SCHIMEL et al., 1993), methanotrophs were also determined in water saturated soils 

(VECHERSKAYA et al., 1993). Methane nlay further be oxidised by nitrifiers due to similar 

shape and size (i.e., tetrahedral molecule and Van der Waals radii) of CH4 and NH3 and low 

specificity of the responsible monooxygenase enzymes (SCHIMEL et al., 1993). Yet in tundra, 

this process is presumably of minor importance since nitrifiers were reported to be less 

abundant. In addition to the just mentioned chemoautrophic bacteria, sulphate oxidising and 

reducing bacteria as well as iron oxidising and few reducing bacteria have been isolated (ibid., 

BUNNELL et al., 1975; DUNICAN & ROSSWALL, 1974; VAINSHTEIN & GOGOTOVA, 1992). 

DUNICAN & ROSSWALL (1974) have concluded that the bacteria present in soils at the IBP 

sites are not specific for tundra (tundraphilic). Yet, the biome provides environrnental 

conditions suitable for autotrophs that are less common in other environments (ibid.). 

3.1.2 Microbial ecology 

In the Arctic, as elsewhere, soil microbiota is controlled by both abiotic and biotic factors. 

Synoptic descriptions are given for instance by COLEMAN & CROSSLEY (1996), TATE (1995), 

KILLHAM (1994) or PAUL & CLARK (1989). 

3.1.2.1 Abiotic factors 

The microbiota is influenced by soil temperature and moisture, redox potential, pH and 

nutrients. In the Arctic, the most important and most evident controlling factors represent soil 

temperature and moisture. They both show independent and interactive effects (NADELHOFFER 

et al., 1997). Having a pergelic soil temperature regime with hard or dry, loose permafiost 

within the soil profile (S.T.), arctic soils insinuate a psycrophilic microbiota although it is 

rather cold tolerant than cold adapted. True psycrophilic micro-organisms represent the minor 

proportion (e.g., 10-20% fungi) (BLISS, 1975; FLANAGAN & SCARBOROUGH, 1974). For 

bacteria, this proportion increases in wetter and colder habitats (VASSILYEVSKAYA et al., 

1975). Also fungi are more affected by moisture than bacteria (BUNNELL et al., 1975). 
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Microbiological and enzyme activities show many temperature optima (FLANAGAN & 

SCARBOROUGH, 1974). Furthermore, micro-organisms may also compensate for lower enzyme 

activities at low temperature by an increase of enzyme production (TIBBETT et al., 1998~) .  

Thus, a complex of functional differences in both microbial community stmcture and 

physiology influence decomposition processes. At any scale, decomposition is generally slow 

and incomplete with increasing moisture and decreasing temperature (NADELHOFFER et al., 

1992). On the other hand. lacking moisture inhibits decomposition independently of 

temperature. Microbiota is influenced by the litter quality and nutrients, particularly nitrogen 

(WALKER; 1996). Nutrient availability influences microbial growth. Although fungal gsowth 

is limited by nitrogen ( K J ~ L L E R  & STRUWE, 1982), hngi are less influenced by nitrogen 

contents than bacteria (HOLDING, 1981). The microbial carbon source may be subdivided into 

two groups: substrates with low molecular weight that are soluble in water (i.e., simple Sugars, 

organic acids) and complex polymer compounds such as starch, cellulose, hemicellulose, 

lignin and pectin (BLISS, 1997). Decomposition of the latter is slow particularly in the Arctic. 

Differentes are enhanced by difference in substrate quality and different combination of soil 

moisiure and temperature regime (NADELHOFFER et al., 1992). Soil pH influences the 

microbial community composition. Most fungi predominate in acid habitats (FLANAGAN & 

SCARBOROUGH, 1974). Actinomycetes occur in soils with neutral to alkaline soil reaction. 

This requirement along with their heterotrophic nature may explain their lower abundance in 

tundra (DUNICAN & ROSSWALL, 1974). Bacteria inhabit soils with more neutral reaction. Yet, 

they predominate in soils with acid pH when the site is water-logged (CLARHOLM et al., 1975) 

which suggests that bacteria are less competitive when hngi are present. In addition to 

cornmunity stmcture, soil pH influences microbial processes as for example methanogenesis 

(DUNFIELD et al., 1993; SCHIMEL et al., 1993). During the last decade, the general interest in 

soil stsucture and microbiota interrelationships increased (e.g., SMILES, 1988; BRUSSAARD & 

KOOISTRA, 1993; MONREAL & KODAMA, 1997). Soil physical properties influence for instance 

substrate location and accessibility, enzyme activity (PAGLIAI & DENOBILI, 1993; KANDELER 

& MURER, 1993) and gsazing pressure (HASSINK et al., 1993). Yet, to date there are only few 

investigation of these relationships in arctic soils (e.g., GEBAUER et al., 1996). 
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3.1.2.2 Biotic factors 

The composition of the plant canopy, roots and fauna are among the biotic controls of the 

microbiota. Detailed descriptions are given for example by FITTER et al. (1985) and COLEMAN 

& CROSSLEY (1 996). 

Symbiotic relationship between micro-organisms of plants have been described above. 

Furthemore, cestain fi~ngi and yeasts occur in association with particular plants (CHERNOV et 

al., 1975; BAB'YEVA & CHERNOV, 1982). Tliis relationship is pastly symbiotic (BLISS, 1997; 

BUNNELL et al., 1975; MILLER & LAURSEN, 1974) and partly not well understood. 

An~mensalism that is to say inhibition by toxins, is known for lichens. They exude antibiotics 

that pasticularly suppress bacteria. Plant-microbe relationships may partly be explained by a 

plant specific rhizosphere (see below). Roots exudates (e.g., soluble carbohydrates) enhance 

microbial proliferation (BARBER & LYNCH, 1977). In the Arctic, roots have developed specific 

interactions to exploit the resources of the soil (SCHIMEL et al., 1996). 

Despite the impostance of trophic interactions between fauna and microbiota for soil fimction 

(COUTEAUX & BOTTNER, 1994; LAVELLE et al., 1996), in the Arctic these relationships are 

only partially investigated (BLISS, 1997). Protozoa and invertebrates directly influence the 

microbiota by grazing, inhibition, faeces addition and dispersal (WHITTAKER, 1974). Fauna1 

impact is not restricted to soil animals. As such cyanobacteria on the soil surface for instance, 

are being grazed by herbivore geese (SOLHEIM et al., 1996). An indirect effect results from the 

input of nutrients (e.g., ammonium, nitrate, phosphate) by animal faeces of birds and 

lemmings (CHERNOV & MATVEYEVA, 1997; WU~HRICH,  1994). 

3.1.2.3 Microbial habitats 

The fimctioning of the microbial cornmunity is inteswoven with space, time and food 

resource. These represent the three dimensions of the original 'niche' concept that define the 

role of an organism in a community (LOESCHKE, 1987). Thus, space, or habitat, where 

hnctioning takes place, represents one dimension. The concept was largely applied to the 

understanding of population and its linkage to competition. Its limitation lies in the separation 

of organisms and environmental factors as well as in neglecting scale (ibid.). Tlie microbial 

loop concept elucidated the role of protozoa and bacteria in the oceanic food web (POMEROY, 

1974). Its applicability to soil is subject of discussion (CLARHOLM, 1994). In order to 

determine the hnction of the microbial loop in soil, the investigation of the environmental 

controls led to the forrnulation of a hierarchical concept of 'spheres' of influence (COLEMAN, 

1994; BEARE et al., 1995). This concept was already beyond the microbial loop concept 
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inasmuch that it included soil biota in general. It aims at the explanation of the spatial 

heterogeneity of biotic communities and functioning, one hierarchical level influencing 

another. The 'spheres' of influence include the rhizosphere and detritusphere as well as the 

drilosphere (the region of faunal activity), the porosphere (the Zone of aerated or water-filled 

pores), and the aggregatussphere of macro- and micro-aggregates. In this study, the conception 

of 'spheres' of influence is adopted. Furtherrnore, 'microbial habitat' is used as a more general 

term in awareness of its hierarchical and interlocking nature. The respective habitats are 

investigated to different degrees and so is the evaluation of the significance for biodiversity 

and biogeochemical cycling (e.g., COUTEAUX & BOTTNER, 1994; BOLTON et al., 1993). The 

hierarchical concept narrows the problem of spatial dimension. Yet, as for example 

experienced for the rhizosphere, definition of spatial profiles show experimental constraints 

that may consequently be tackled by mathematical models (e.g., SMITH, 1982, p. 37). In 

addition to the hierarchical approach, ZVYAGINTSEV et al. (1994) and ZVYAGINTSEV (1994) 

suggest a stratigraphic concept that describes changes in microbial communities between 

layers of vegetation and soil. According to the authors, temporal and spatial differences 

elucidate ecosystem functioning at ecosystem level and even between vegetation zones as 

suggested by MISHUSTIN (1975). Further implications of the microbial scale for the ecosystem 

level are discussed by SCHIMEL (1 995). 
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In early studies on soil micro-organisms, culture plates and direct microscopy were common 

tools to characterize the microbial pool. As a consequence, these direct methods were also 

applied for the analysis of the microflora at the IBP sites (HOLDING, 1981). Quantitative esti- 

mates of the microbial pool by culture methods are lo2 to 1 0  smaller than by direct micros- 

copy (PARINKINA, 1974). This is explained by the fact that only a small propostion of soil mi- 

cro-organisms may be cultured. The inaccuracy of culture methods is even more dramatic as 

recent application of molecular techniques has revealed. Thus, the phylogeny of bactesia fsom 

a wide variety of habitats differs substantially fsom characterized bacteria cultured from those 

same environments (DELONG, 1996). The problem of culturability is irrelevant to direct mi- 

croscopy (bright field or fluorescence microscopy). More recently, Computer based image 

analysis has facilitated enumeration and biovolume determination (BOLTER et al., 1993). 

Methods differ depending On the target gsoup of micro-organisms and with respect to staining. 

Procedure protocols are given for instance by BLOEM et al. (1995), TROLLDENIER (1993), ALEF 

(1991), or FEGRI et al. (1977). A constraint of direct microscopy represents lacking differen- 

tiation between dead cells or 'ghost' hyphae (JENKINSON & LADD, 1981; PARINKINA, 1974). 

The use of specific stains as acsidine orange and fluorescein diacetate (SODERSTROM, 1979) 

pastially overcame this constraint. Further sources of inaccuracy are sample homogenisation, 

dilution factors, magnification and conversion factors (BLOEM et al., 1995; RICHAUME et al., 

1993). 

As mentioned before, DNA extraction (SAANO & LINDSTROM, 1995; TORSVIK et al., 1994; 

PIETRAMELLARA et al., 1997) along with determination of specific biomarkers (ZELLES & 

ALEF, 1995) elucidate microbial community stnicture pastially down to the species level. 

However, to date many aspects of specific fimctions remain unknown despite this increasing 

knowledge about structure. 

In studies on mineral cycling and energy flow, the microbial pool has often been considered as 

an undifferentiated whole (NANNIPIERI et al., 1994). Indirect methods provided tools for the 

estimation of microbial biomass. The use of chloroform fumigation methods (JENKINSON & 

LADD, 198 1; JOERGENSEN, 1995; VANCE et al., 1987; HORWARTH, et al., 1996), substrate in- 

duced respiration (ANDERSON & DOMSCH, 1978; SPARLING, 1995) and heat output (SPARLING, 

1983) enabled indirect determination of microbial biomass. As an example given, SPARLING 
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(1983) calculated the relationship between heat output at 22OC and microbial biomass of soil 

amended with glucose to a saturated level. Heat evolution is measured by means of microcalo- 

x-imetsy, which is based on the principles of thermodynamics of irreversible processes 

(GUSTAFSSON, 1991). These are descsibed in classical textbooks about bioenergetics or in re- 

views On microcalosimetsy (e.g., GNAIGER, 1989; FORREST, 1972). This calculation of micro- 

bial biomass only applies to the heat production immediately after substrate amendment and 

before cell proliferation (SPARLING, 1983). The latter is always accompanied with a much 

greater heat production (BELAICH, 1980; LAMPRECHT, 1980). Accordingly, calculation of mi- 

crobial biomass may not always be done accurately. Furthesmore, it has to be bome in mind 

that only the active microbial biomass is measured and the proportion of dosmant micro- 

organisms may be significant. As it is known for substrate induced respiration (SIR), only 

particular micro-organisms are stimulated by substrate amendment whereas others are not 

(e.g., anaerobic micro-organisms). Microbial biomass may thus be underestimated in for in- 

stance forest soils or waterlogged soils (HEILMANN, 1993). Since heat output also (with or 

without substrate amendment) represents biological activity, the tool has proved to be a sensi- 

tive method to investigate the overall microbiological activity in soils (MORTENSEN et al., 

1973; LJUNGHOLM et al., 1979a,b; ZELLES et al., 1990; RAUBUCH & BEESE, 1995). ZELLES et 

al. (1987a;b) even consider heat production (along with ATP analysis and respiration) a better 

Parameter for these purposes than specific activity measurements. Heat output is associated 

with respiration (SPARLING, 198 1 b; BOLTER, 1994) and shows good correlation with enzyme 

activity analyses (ALEF et al., 1988). Equipped with a perhsion System, microcalosimetsy may 

also be designed to investigate anaerobic processes only (ALBERS et al., 1995). High costs of 

microcalosimeters limit the use as a routine analysis. Thus, data for comparability are not 

widely spread. Furtherrnore, data fiom the bibliography have to be read cautiously because 

standardisation of the method is still in its infancy. 

Other methods to determine the microbial pool are based On the extraction of specific cell 

components such as adenosine-triphosphate (ATP). The use of ATP as an index of microbial 

biomass (OADES & JENKINSON, 1979; BROOKES & OCIO, 1989) is based On the assumption 

that ATP is a constant component of diverse microbial cells. ATP is extracted from soil using 

either acid extractants such as trichloracetic acid (JENKINSON & OADES, 1979), sulphuric acid 

(EILAND, 1983), phosphoric acid (CIARDI & NANNIPIERI, 1990) or DMSO (BAI et al., 1988) or 

alkaline extractants such as Tris-EDTA (VAN DE WERF & VERSTRAETE, 1979) or boiling Tris- 
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buffer (HOLM-HANSEN & BOOTH, 1966, GRAF, 1977). The assays differ with respect to ex- 

traction efficiency, recovery of an internal Standard, and quenching effects during measure- 

ment. Comparative studies of different extraction methods are given for example by CONTIN et 

al. (1995), FRIEDEL (1991), ZELLES et al. (1985), VERSTRAETEN et al. (1983) or EILAND (1983; 

1979). SPARLING & EILAND (1983) therefore consider the extraction method as most important 

factor causing differences in ATP measurements. The most appropriate method also depends 

011 the soil material under investigation since soil properties influence the quality of the assay 

(VERSTRAETEN et al., 1983). Thus, most studies have been carried out on agricultural soils 

whereas ARNEBRANDT & BAATH (1991) encountered strong quenching effects when measur- 

ing ATP-contents of forest humus. Since ATP-contents in soil were found to fluctuate under 

field conditions (e.g., BARDGETT & LEEMANS, 1995; WANNER et al., 1994; INUBUSHI et al., 

1989) as well as due to Storage and sample treatment (e.g., SPARLING et al., 1986; AHMED et 

al., 1982), it is being argued that the ATP-contents of soils rather reflect the physiological 

state of the soil micro-organisms (NANNIPIERI et al., in press). Estimation of microbial bio- 

mass is recommended under standardized conditions prior to extraction (i.e., preincubation, 

adjustment of water content). 

Indirect determination methods only provide an estimate and the risk of error is higher than in 

direct methods (NANNIPIERI et al., 1994). Comparative studies or reviews on methods to esti- 

mate the microbial pool are given for instance by BECK et al. (1997), ALEF (1993), OCIO & 

BROOKES (1 990), JENKINSON & LADD (1 98 1) or ANDERSON & JOERGENSEN (1997). 

In addition to deterrnination of the microbial pool, its ecophysiological characterisation gains 

importance in understanding ecosystem iÃ¼nctionin (ANDERSON, 1994; INSAM & Ã–HLINGER 

1993). Relationships between microbial andlor soil parameters describe for instance the state 

of equilibrium of soil organic matter (Cmic:Corg-ratio; ANDERSON & DOMSCH, 1989). The 

metabolic (ANDERSON & DOMSCH, 1993) OS caloric quotient (RAUBUCH & BEESE, 1995) char- 

acterizes the energetic state of soil micro-organisms. 

General books on methods in soil microbiology have been published by ALEF & NANNIPIERI 

(1 995); WEAVER et al. (1994), ALEF (199 1) and SCHINNER et al. (1 993). Synoptic reviews are 

given by NANNIPIERI et al. (in press), NANNIPIERI (1990), SPARLING (1985) or JENKINSON & 

LADD (1 98 1). 
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4. Materials and Methods 

Denn da der Beobachter nie das reine PhÃ¤nome mit 
Augen sieht, sondern vieles von seiner 
Geistesstimmung, von der Stimmung des Organs irn 
Augenblick, von Licht, Luft, Witterung, KÃ¶rpern 
Behandlung und tausend andern UmstÃ¤nde abhÃ¤ngt 
so ist ein Meer auszutrinken, wenn man sich an die 
IndividualitÃ¤ des PhÃ¤nomen halten und diese 
beobachten, messen, wÃ¤ge und beschreiben will. 

J.W. V. Goethe 

4.1 Field procedures 

4.1.1 Soil survey and selection of sites 

Levinson-Lessing 

Soil survey had been started during the expedition TAYMYR 1995 (BECKER, 1997; PFEIFFER 

et al., 1996) and was completed in the subsequent year during the expedition TAYMYR 1996 

in CO-operation with my colleagues H. Becker, A. Gundelwein and Th. MÃ¼ller-Lup 

(GUNDELWEIN et al., 1997). The procedure followed the soil mapping at Labaz (GUNDELWEIN, 

1998, PFEIFFER et al., 1996) and is summasised in Section 4.4.1.1. 

For this study, three predominant groups of soil-pattemed ground-vegetation complexes were 

selected according to their spatial proportion: polygonal tundra, solifluction slope with non- 

sorted steps, and soils of mountain tops with non-sorted stripes. Each of these compound 

mapping units was represented with either two or three profiles. 

4.1.2 Profile description 

Levinson-Lessing 

Profile description followed the procedure as described for the soils at Labaz (Sect. 5.4.1.1). 

As mentioned before a peculiarity of arctic soils represents the presence of patterned ground 

due to freeze-thaw processes. The micro-relief was accounted for by separate profile 

descriptions with affixes to the profile number (e.g., profile 11.1 and 11.2). In addition to the 

assessment of soil drainage according to the Soil Taxonomy (S.T.), site specific soil moisture 

conditions were further described (depth of water table, slope water, supra-permafrost water). 

In this study soil profiles clearly represented the active layer of a particular soil since no 

dsillings of the underlying permafrost were carried out. Besides soil classification according to 

the S.T. (SOIL SURVEY STAFF, 1994; 1998), soil types were additionally classified according to 

the WRB (SPAARGAREN, 1998). 
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Labaz 

Profile description was carried out by my colleague A. Gundelwein (IfB) and is described in 

Section 4.4.1.1. Micro-sites were described separately and differentiated with affixed letters to 

the profile numbers (e.g., 2a and 2b). On the basis of the profile description, soil classification 

was supplemented by soil types according to the S.T. (SOIL SURVEY STAFF, 1998) and WRB 

(SPAARGAREN, 1998). 

4.1.3 Soil sampling 

Levinson-Lessing 

Soil sampling procedure was described in the expedition report (BOLTER & SCHMIDT, 1997) 

Sampling generally followed the horizon notations and ensured mixed bulk samples. When 

topsoil horizons were thicker than 5 cm subsamples were taken. The top 0.5 cm were sampled 

in unvegetated soils. In addition, special features like roots, ferruginated fabric, soil around 

roots and water veins were also sampled. These samples were taken in order to investigate 

whether these spots showed other microbial properties than the ambient soil horizon. 

As far climatic conditions allowed soil samples for pedological analyses were air dried in 

aluminium dishes. Mineral horizons were then sieved thsough a 2 mm mesh size sieve. Fresh 

samples for microbial analyses were stored in a permafsost pit which sesved as a refsigerator. 

During transportation it was ensured that these samples were kept at cool places. In the home 

laboratory they were stored deep-frozen at -20Â° until analysis. 

For determination of bulk density and pore size distribution core samples of the top 4 cm were 

taken with 100 cm3 cores, where feasible (see appendices for details). The cores had been 

driven into the soil by means of a percussion tool that ensured even placement. The core 

samples were stored in special sample cases in the permafiost pit. During transport (by 

helicopter, aircraft, car and on foot) maximum care was taken to minimalize exposure to 

vibrations. 

4.1.4 Statistical considerations 

Due to methodical restrictions, limited time and financial resources as well as restricted 

transportation capacities neither a DIN standardised sampling procedure (HARTGE & HORN, 

1989) nor a randomised plot design were applied. Spatial representativity of a particular soil 
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was decided upon the basis of the soil map (with a grid of 20 to 250 m) and its relative 

proportion of the whole study area. As mentioned before, at Levinson-Lessing two to three 

profiles per unit of soil-patterned ground-vegetation complex were sampled to account for the 

variability within units. For the soils at Labaz, an according selection of sites was not feasible 

because of restricted labour. Yet, the most characteristic and dominant soils were sampled as 

is described in Sections 4.1.1 and 4.1.2. All soils were sampled over the period of the 

respective expeditions during which the vegetation changed from early spring to late autumnal 

aspect. Because of the short vegetation period temporal variability could not be accounted for. 
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4.2 Pedological parameters 

4.2.1 Total and organic carbon (Ct and Cnre) and total nitrogen content 

Total carbon and total nitrogen contents were analysed by a CNS-Analyser. Aluminium cups 

with 5-10 mg of air-dried and ground soil (2 replicates) were combusted at 1050Â° (flash 

combustion). The combustion products (CO2 and N2) were measured by thermal conductivity 

using helium as a carrier gas and metallic copper in the reduction reactor. 

At both experimental sites inorganic carbon content (Cinorg) of the soils was not detectable 

(GUNDELWEIN, 1998), fusther analysis of organic carbon (Corg) thus was neglected. The only 

exception represented the dry uphill soil (profile Lbl/95), where a mean Cmorg content of 

0.2% W.W. had been measured in the mineral horizons (ibid.). In the following Corg is 

considered as being equal to C,. 

4.2.2 Determination of soil pH 

Field analyses 

During the 1996 expedition at Levinson-Lessing, detesmination of soil pH was carried out in 

the field. Fresh soil was measured in a 0.01 M CaCl2 (soil/solution-ratio was 1 :2.5). Soil pH 

was deterrnined potentiometrically in the supematant solution after automatic equilibration of 

the pH meter. 

Laboratory analyses 

The pH of the Labaz 1995 soil samples was measured in the laboratory according to 

SCHLICHTING et al. (1 995). Approximately 10 g of air-dried soil was suspended in 25 ml H 2 0  

and 0.01 M CaClz respectively. Soil pH was determined potentiometrically in the supematant 

solution after 30 min. of equilibration. 

4.2.3 Bulk density and carbon inventory (CI) 

Levinson-Lessing 

After detesmination of the pore size distribution (see below), bulk density was detennined 

according to SCHLICHTING et al. (1995). Dried (at 105OC) core samples (100 cm3) were 

weighed (DW). Bulk density (Dt,) was calculated by the ratio between the mass (DW) and the 

total volume (Vt): 
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Since only the top 4 cm of the soils at Levinson-Lessing were sampled. The carbon inventory 

(Cl) was calculated for the top 4 cm using the equation: 

CI = D,, * depth [CM] * C-content [ g  ~ * ~ " d .  wt.] * 10 (4.2.3.2)' 

where 

CI is the carbon inventory [kg m""] 

Db = bulk density (Equation (2.3. I)) 

depth is either the depth of horizon or core (max. 4 cm) 

C-content [g c * ~ '  d.wt.1 

In cryogenic soils, carbon contents can only be extrapolated to an area if attention is paid to 

ratio of the micro-relief to the total area (GUNDELWEIN, 1998). However, the carbon inventory 

CI is expressed in kg m". 

When the soils contained gravel, the CI values were corrected for volumetric gravel content 

(Vg). The volume of the fine earth (Vf) was calculated by deducting Vg from the total volume 

of the solid phase (Vg): 

The bulk density of the fine fraction (Dbf) was calculated by the ratio of its weight (DWf) 

D,*V,. = DWf (4.2.3.4) 

to the total volume (100 cm3) 

The carbon inventory was then calculated using Equation (4.2.3.2) and the corrected bulk 

density (Dbf) from Equation (4.2.3.5). 

La baz 

For the Labaz samples, bulk density and carbon inventox-y were measured accordingly by my 

colleagues of the Dpt. Soil Science of the University of Hamburg. By courtesy I used their 

data (published by GUNDELWEIN, 1998) and modified (according to Equation (4.2.3.2)) them 

for comparison (see Section 4.4.2). 

' factor was derived from 10,000 cm2/l,000 cm2 
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4.2.4 Pore size distribution 

Pore size distribution in soil was detesmined by drainage at successive suctions applied 

(SCHLICHTING et al., 1995). The method is based on the relationship of volumetric water 

content at a given suction and the neck diameter of pores (Tab. 4.2.4-1). 

Tab. 4.2.4-1: Relationship between suction [n~atric suction; H a ]  and classes of Pore size and their 
biological significance 

Suction Pore size class Biological significance 

Matric suction [m] pF Neck diameter of pores [um] Classes 

l o5 7 Hygroscopic water 

150 4.2 0 . 2  < micro-pores Permanent wilting point 

meso-pores Available water 

macro pores < Field capacity 

Gravitational wate1 

The water saturated core samples (100 cm3) were drained on a sand bed at a constant water 

table of 2 cm below surface (0.04 m suction). This suction drains pores with a neck diameter 

greater than 1000 um. The cores were than placed on to porous ceramic plates at which a 

suction of 0.6 m and then 3 m was applied. The water loss cossesponds to the pore volume 

with a neck diameter of 1000-50 pm and 50-10 pm respectively. 

A suction of 150 m can only be applied in closed high pressure chambers. For practical 

reasons, 0.5 cm subsamples were placed on to the suction plate in the high pressure chamber. 

At constant weight the sampled were weighed and dried at 105OC. The water loss corresponds 

to the pore volume with a neck diameter 10 - 0.2 um. 

The water content [%I at each suction was calculated as follows: 

water corzient Lg] 
water conteni [%] = * 100 

d.wt. [g] 

The volumetric water content [vol.%] was calculated with the water content [%I fsom 

Equation (4.2.4.1) multiplied with the bulk density Db from Equation (4.2.3.1). The pore 

volume of the above given pore size classes was desived by deduction of the respective 

volumetric water content fsom the porosity (Equation (4.2.4.2)). The total pore volume or 

porosity (Vp) is obtained from the volumetric water content after water saturation: 
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where: Dh is the bulk density (Equation (4.2.3.1 .)) 

Dp is the particle density 

i.e., 2.65 g ~ r n ' ~  for mineral horizons, 1.30 g ~ r n ' ~  for organic horizons 

The proportion of the freely draining pores (>50 um) is defined as the air capacity of the soil. 

The proportion of the Pore sizes between 0.2 and 50 pm is the available field capacity. The air 

capacity and the available field capacity were evaluated according to the Gerrnan Soil 

Classification (AG BODEN, 1994). 
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4.3 Microbial parameters 

4.3.1 Total hyphal length and fungal biovolume 

Total hyphal length and fimgal biovolume were deterrnined by epifluorescence microscopy 

and image analysis. The method was described by BLOEM et al. (1995). The procedure was 

modified as follows (SCHMIDT &. BOLTER, unpubl. data): 

The soil suspension (100 mg soil per ml H20) was resuspended for 1 min. with a blender and 

a vortex respectively. 100-500 pl of the soil suspension were added to 5 ml of a acridine 

orange (AO) stain (1:10,000 solution). After 3 min. staining in the dark, the suspension was 

filtered through a 3 pm pore size polycarbonate (PC) filter. The filter was then mounted 011 a 

slide with immersion oil (CargilleTM type A). The slides were analysed by epifluorescence 

microscopy with blue light at a 400X magnification. Total hyphal length and biovolume were 

measured by image analysis (LEITZTM Aristoplan and Quantimed 5OOTM). 

Hyphal length L [m g ]  was calculated from the mean hyphal length per grid and the hyphal 

length per filter as is described for hngal biovolume in the following. 

Based on the assumption that fungal hyphae resemble ideal cylinders, the mean fungal biovol- 

ume per grid was calculated from the length and width using the equation: 

where Vs the mean fungal biovolume per grid 

L the total hyphal length [um] 

W total fungal width [um] 

"8 number of grids counted 

The volume per filter was then calculated as follows: 

V^V* M ,  

where Vf ftingal biovolume per filter 

vg mean ftmgal biovolume per grid (Equation (4.3.1.1)) 

Mf microscope factor 

MC= A(/As 

Ar area of filter (here: 19,231.0 pm) 

Ag area of grid (here: 4,940.8 pm) 
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The hngal biovolume Vper gram soil (d.wt.) was calculated by 

where V fungal biovolun~e [pm3 g"]' 

vr fungal biovolume per filter (Equation (4.3.1.2)) 

frt dilrtion (here: 10 ml) 

v s  volume of Suspension (e.g. 0.5 ml) 

DW dry weight of the soil sample 

Accordingly hyphal length L [m g''] was calculated fsom the mean hyphal length per gi'id and 

the hyphal length per filter. 

The hngal biomass [pg Cf g"] was estimated using a specific carbon content of 

1.3*10"~ g C ( B L O E M ~ ~  al., 1995). 

4.3.2 Microcalorimetry 

Physiological processes are accompanied by production of heat (Q) which can be measured by 

means of a n~icrocalorimeter. Heat output of soils is used to characterize the overall microbial 

activity (LJUNGHOLM et al., 1979a; SPARLING, 1981a,b; ALBERS ET AL., 1995) as well as to 

estimate microbial biomass after glucose amendment (SPARLING, 1983). The evolved heat (0 )  

comprises the heat produced by catabolic (Qcat) and anabolic (Qan) reactions (BELAICH, 1980). 

The contsibution of anabolic processes accounts for 1.5 and 8% of the overall change in heat 

evolved (Q) under aerobic and anaerobic conditions, respectively. Anabolic processes may 

thus be neglected (BELAICH, 1980). Since the heat production due to abiotic reactions is not 

greater than 10% of the Q value (MORTENSEN et al., 1973), it can be concluded that the meas- 

ured heat production mainly represents the catabolic heat production (Qm). 

' In the result section, the fungal biovolume was given in mm3. The result from Equation (3.1.3) [pm3] was devi- 
ded by 1 0 .  
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Microcalorimeter 

The apparatus is arranged as a two channel twin calorimeter (BOLTER, 1994; FORREST, 1972; 

WADSO, 1980) with a closed chamber system. The reaction of the studied sample takes place 

in one chamber whereas the other serves as a reference. The heat produced in the reaction ves- 

sei is transferred to a surrounding heat sink, i.e. meta1 block. By means of a thermopile be- 

tween the reaction vessel and the heat sink, the heat flow is recorded as a voltage signal of the 

thesmopile. The device is equipped with two reaction and two reference vessels. The voltage 

(V) signal is continuously recorded by one nanovoltmeter for each reaction vessel (DMM181 

and DMM 190, Keithley, Germany). V is proportional to the heat flow (dQIdt): 

where s is a electrical calibration constant (here: 7.4 and 8.3 l p ~ p ~ '  respectively) 

Thus, the microcalorimeter acts a Watt-meter (MORTENSEN et al. 1973). Good thermal equi- 

librium is reached after 2 to 3 hours after introduction of the soil sample into the reaction 

chambers (LJUNGHOLM et al., 1979a,b). The voltage signal V of the soil sample [after 3 h] is 

corrected for the baseline and converted into Watt [pW] using Equation (4.3.2.2) and given in 

microwatt per gram dry soil [pW g" d.wt.1. 

4.3.2.1 Basal heat output 

Basal heat output is the heat output without substrate amendment. Sample preparation and 

measurement procedure have been described in detail (ALEF, 1991; 1995; ALBERS et al., 

1995b; MORTENSEX et al., 1973). The following alterations were made: 

Defrosting soil samples causes a flush of activity due to decomposing dead cells (e.g. VAN 

GESTEL et al., 1993). Preliminary tests on the present soil material showed that after defrost- 

ing, the samples had become stabilised after four days at 4OC. As a consequence soil samples 

were loosely capped and defiosted at these conditions. Prior to measurement the soils were 

preincubated at measurement temperature for 24 h to enable heat output and respiration rates 

to stabilise (SPARLING, 1983). The water content was adjusted by percolating an excess 

amount of water through the soil samples. Two replicates of approximately 5 g were put into 

an aluminium envelop and placed in the reaction vessel. 
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4.3.2.2 Substrate induced heat output 

Sample preparation followed the procedure as described for the basal heat output (Equation 

(4.3.2.1)). Glucose was added shortly before measurement. 

SPARLING (1983) calculated the relationship between heat production at 22OC and microbial 

biomass of soil amended with glucose at saturated level: 

1 g CÃ = 180 m W (4.3.2.3) 

At the time, the addition of 5% W.W. or 0.5% W.W. of glucose for organic horizons or mineral 

horizons respectively had been considered as the saturated level. Although more recently prior 

investigation of the best g1ucose:soil-ratio has been recommended (ALEF, 1995), SPARLING 

(1983) also emphasised that the relationship of Equation (4.3.2.3) only applies to the given 

laboratory conditions. 

For the above stated reasons, 5% W.W. glucose (30 vol.% glucose solution) were added to or- 

ganic horizons (S.T. > 12% Corg depending On clay content). 0.5% W.W. glucose (3 vol.% glu- 

cose solution) were added to the mineral horizons. 

Cahlat ion of results 

The heat output of the soil sample in Watt [pW] obtained fiom Equation (4.3.2.2) was given 

in microwatt per gram dry soil [pW g" d.wt.1. Since the microcalorimeter used in this study 

does not provide a temperature control, the actual temperature (T) during measurement was 

therefore recorded. For comparability reasons the actual heat output (Qa) was then extrapo- 

lated to a theoretical heat output at 22OC (Oe) using an Arrhenius correction. The Arrhenius 

Equation (4.3.2.4) calculates the influence of temperature on rate constants for chemical reac- 

tions (SPARKS, 1988). 

k 6 - E I R T  (4.3.2.4) 

where k is the rate constant 

S is a frequency factor 

R is the universal gas constant 

T is the temperature [K] 

E is the activation energy 
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The fiequency factor S was calculated as follows: 

where S is the frequency factor 

Q, is the actual heat output 

T is the temperature during measurement [K] 

E. and T. are regression parameters 

with E. = 308.56 K and T. = 227.13 K from LLOYD & TAYLOR (1994). The heat output at 

22OC (Qe) was then calculated using the Arrhenius Equation (4.3.2.4): 

Q~ = s * e - E , , 1 T 2 2 - ~ ,  (4.3.2.6) 

where Qe is the heat output at 22'C 

S is the frequency factor as obtained from Equation (4.3.2.5) 

TZ2 is temperature T=295 'K 

E. and T. are the regression Parameters as in Equation (4.3.2.5) 

Microbial biomass 

In anaerobic soils substrate induced methods for the determination of microbial biomass are 

troublesome. During measurements this also turned out to be the case for the soils in this 

study. Therefore, further calculation of microbial biomass from the substrate induced heat 

output (Equation (4.3.2.3) by SPARLING, 1983) was neglected. SIQ values were given in 

pW d.wt.. It is left to the reader to use the SIQ values as an indicator of microbial biomass 

(for this purpose Equation (3.2.3) may be expressed as 5.6 pg Cmic per pW). 

4.3.3 Adenosine triphosphate 

The estimation of adenosine triphosphate (ATP) is based on the luciferine-luciferase biolu- 

minscence assay by means of a bioluminometer (e.g., JENKINSON & LADD, 1981). Light is 

emitted during the oxidation of luciferine by ATP, which is catalysed by luciferase in the 

presence of M ~ ~ " .  During this reaction (Equation (3.4. I)), luciferine is first adenylated. In the 

presence of 02, it then iÃ¼rthe breaks down to form adenosine monophosphate (AMP), inor- 

ganic phosphorus (P;) and light. Hence, the emitted light correlates to the ATP content 

(translated from ALEF, 1991): 

ATP + luciferine + 0,'""~leruse+Mg2* > AMP + 44 + C O  + oxylucz~erine + light (4.3.4.1) 
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A TP extruction 

ATP was extracted from soil using boiling Tris buffer solution (HOLM-HANSEN, 1966; GRAF, 

1977; VOSJAN et al., 1987). 

One gram of triplicate samples of fresh soil were extracted with 50 ml of boiling 0.02 M Tris 

buffer solution (pH 7.8) for one minute. For determination of the recovery rate, 50 p1 of stan- 

dard solution (equivalent of 1 pg ATP) were added to two more replicates and extracted ac- 

cordingly. Extracts were kept frozen until analysis. 

Assu.y 

Prior to analysis, extracts were defiosted and kept at room temperature. 100 pl of the extract 

were pipetted into a cuvette containing 150 (il of assay solution (0.02 M Tris-7.5 mM MgS04- 

solution). Inside the bioluminometer (Lumac BV), 100 pl crude luciferine-luciferase enzyme 

solution (firefly lantern extract, Sigma FLE 50TM) were added to the diluted soil extract. The 

light emission is integrated over a period of 10 s. The relative light units (RLU) are converted 

into ATP contents against a calibration curve. In this manner, three replicated cuvettes were 

measured. For deterrnination of the inhibition rate, an intemal standard of 0.5 ng ATP was 

added to another three replicated cuvettes of the diluted soil extract and measured accordingly. 

Culculation of results 

The ATP contents of the soil extract (A-value), the soil extract with standard in the extract 

(C-value) and the soil extract with standard during measurement (B-value) were read from the 

standard curve. A- and C-values were corsected for inhibition (obtained from B-value). The 

measured ATP content of the soil (A-value) was given in micrograms per gram dry weight of 

soil and corrected for recovery of added ATP (obtained from C-value). See appendices (Al. l -  

A l  .5) for equations. 
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4.4 External data 

4.4.1 Field procedure at Labaz 

4.4.1.1 Soil survey und profile description 

Soil susvey had been started during the expedition TAYMYR 1994 (PFEIFFER & HARTMANN, 

1995) and was completed in the subsequent year during the expedition TAYMYR 1995 

(PFEIFFER et al., 1996). The procedure was descsibed in detail by GUNDELWEIN (1998) and is 

summarised here as follows: 

The study area comprised a total area of 6 km2. Prior to mapping and site selection the area 

was walked thoroughly to achieve an ovesview. First, units of pattemed gsound and vegetation 

complexes were marked off since these reflect the edaphic conditions particularly well 

(THANNHEISER, 1989). Soils and soil boundasies were confismed by control diggings. De- 

pending On site specific propesties (mosphology, pattemed gsound) distance between two 

controls ranged from 20 to 250 m. Thus, compound mapping units of soil- pattemed gsound 

and vegetation complexes were established in accordance with the topography. For each map- 

ping unit representative soil pits were selected and profiles descsibed in detail. Soil profiles 

were dug up to the pesmafsost table. 

Profile description was casried out using the US Soil Taxonomy, 6th edition (SOIL SURVEY 

STAFF, 1994). Supplementary characteristics (texture, gravel content, structure, rooting inten- 

sity) were described according to the Gennan Soil Survey Manual (Bodenkundliche Kartier- 

anleitung, 4th edition, AG BODEN, 1994). Soil colour was given in hue and chsoma values by 

the MUNSELL SOIL COLOR CHART (1 988). 

Finally, the soils were classified according to the soil taxonomy (S.T.) to the subgsoup level. 

The S.T. represents the most commonly used classification system for arctic soils. 

4.4.1.2 Soil sampling 

During the expedition TAYMYR 1995 (BOLSHIYANOV & HUBBERTEN, 1996), soil sampling 

was carried out by my colleague M. Sommerkom (IPO) at Labaz in July 1995 (SOMMERKORN, 

1998). Soils were sampled in steps of several centimetres. Topsoils were sampled in steps of 

2, 3 and 5 centimetres, whereas subsoil hosizons were sampled in steps of 10 centimetres. 

Samples were air-dsied immediately after sampling. At the laboratory in Kiel, subsamples for 

microbiological analyses were kept frozen at -20Â°C Bulk soil samples were sieved thsough 

2 rnm mesh size sieve and stored under dry and cool conditions. 
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4.4.2 Bulk density and carbon inventory 

For the Labaz samples, bulk density and carbon inventory were determined by my colleagues 

of the Dpt. Soil Sciencc of the University of Hamburg. The procedure was the same as was 

described for the Levinson-Lessing sarnples in Section 4.4.2.3. Data were used for carbon 

inventory (Section 5.2.3) and microbial inventory (Section 5.4.3). 

4.4.3 Total bacterial number and bacterial biovolume 

Total bacterial number and bacterial biovolume were determined by means of epifluorescence 

and image analysis by M. BÃ¶lter IPO Kiel (BOLTER, 1998, SCHMIDT & BOLTER, unpubl. data). 

Sample preparation and analysis followed the procedure as described for deterrnination of 

hngal biomass in Section 4.3.1 with the following alteration: 

The soil suspension was resuspended for 1 min with a vortex and filtered through a 0.2 um 

pore size PC filter after AO staining. The slides were analysed by epifluorescence microscopy 

with blue light at a 800X magnification. Cells were counted and biovolume was measured by 

image analysis (LEITZTM Aristoplan and Quantimed 5OOTM) and calculated according BOLTER 

et al. (1 993). 
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4.5 Statistics 

4.5.1 Regression analyses 

The relationship between microbiological data sets (i.e., parameters of microbial biomass, 

basal and substrate induced heat output, ATP content) was tested by linear regression analysis. 

In these pairs of obsesvation of y and X, y was assumed to depend on X, the independent 

variable. A relationship was accepted when r220.70. 

4.5.2 Testing of equality of two populations 

In the soils of this study, populations showed non-normal distribution (difference of variance 

si2 + sZ2). For the comparison of two data sets, equality of means (u,, p2)  was thus tested using 

a Computer package ( S t a t ~ i e w ' ~ ~ )  based significance Mann-Whitney U-test when random 

sample size n,, n2 2 7. Difference of means (u,, fit) was accepted as significantly different at 

the following significance level p: p 5 0.01, p < 0.05, p < 0.10 and p < 0.15. Difference was 

rejected at significance level p > 0.15. 

4.5.3. Correlation between parameters 

For investigation of the general relationship between Parameters, the degree of association 

was investigated by calculating the sample spearman cosselation coefficient p (SystatTM). 

Cosselation was accepted when p < -0.6 or p 2 0.6. Positive values show that variables are 

positively associated, the dope of the line being positive. Accordingly values are negatively 

associated when p values and thus the slope of the line are negative. 



5. Results 
"The Answer to the Great Question (...) Of Life, the 
Universe and Everything (...) 1s (...) Forty-Two," said 
Deep Thought, with infinite majesty and calm. (...) "So 
once you do know what the question actually is, you'll 
know what the answer means." 

D. Adams, The Hitchhiker's Guide to the Galaxy 

Levinson-Lessing 

The distribution of soils in the study area at Lake Levinson-Lessing can be Seen in Figure 

A2.1-1. The soil map Covers an area of 24 km2. At Levinson-Lessing the soils were generally 

characterized by very little or no profile differentiation and water-logging. Accumulation of 

organic matter generally occurred where vegetation was present. 

About a quarter of the total area represented the valley of the river Krasnaya where polygonal 

tundra soils formed. These soils developed on alluvial loamy-sandy sediments and were 

characterized by accumulation of organic matter and gleying due to wet conditions. Thus the 

vegetation was adapted to wet environments. Accordingly, these were classified as Typic 

Aquorthels, Typic or Ruptic Historthel (Histic Cryosol, WRB) depending On the thickness of 

the organic horizons. At the end of the field season 1996, maximum thickness of the active 

layer was 48 centimetres (ANISIMOV & PANASENKOVA, 1997). 

At steeper slopes east and West of the river Krasnaya, non-sorted steps and mud pits 

developed. These were formed in silty-loamy colluvial sediments of Greywacke. The 

thickness of the active layer was Â 50 cm and showed thixotropic properties. Due to slope 

water at a depth of k 40 cm, these soils were rather wet. Yet, gleying features were not 

discernible (e.g., iron mottling) although reduced iron ( ~ e ~ ' )  was determined in subsoil 

horizons. As was described before, non-sorted steps and mud pits here also represented pits of 

bare and raw earthy material surrounded by vegetation rings. Mud pits were also partially 

overgrown from the vegetation ring at further Stages of successional development. Due to 

solifluction, profiles also showed involution of topsoil organic matter. Thus, the soils of the 

solifluction slopes were weakly developed though physically highly dynamic. Accumulation 

of organic matter and occasional gleying were the only pedogenic processes. Accordingly, 

these soils were classified as Ruptic-Histic Aquiturbel (TurbicIHistic Cryosol, W). The 

respective soils were associated with drainage ditches, where no patterned ground was 

forrned. Further downhill, organic matter content increased. The soils of the solifluction 

slopes covered about 12% of the total area. 
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In valleys on top of the 300 to 500 m (a.s.1.) high surrounding mountains, weakly developed 

soils were found. These soils developed on frost-shattered rock debris of Greywacke and 

generally showed high contents of gravel and coarser fragrnents. Sorted and non-sorted forms 

of stripes and nets developed. The soils were comparably dry and showed maximum thaw 

depths of > 70 cm (MULLER-LUPP, 1997). The water table was at k 30 cm below surface. 

Vegetation cover was sparse (usually 10-20%). When vegetation was present, mats of weakly 

decomposed organic matter and roots covered the rock debris. Accordingly, these soils were 

classified as Typic Aquorthel (Leptic Cryosol, WRB) and covered approximately 8.8 km2 of 

the area. 

A peculiarity of the study area represented a lime-stone ridge with a length of 2.5 km that 

stretches north-east from Lake Levinson-Lessing. On top and at upper slopes, shallow soils 

developed on frost-shattered rock debris. These soils thawed to a depth of > 80 cm and water 

table was found at a depth k80 cm (GUNDELWEIN, 1998). Pattemed ground did not develop 

although features of solifluction processes were found. As for the soils of other mountain tops, 

vegetation coverage was < 20% and accumulation of organic matter only occurred in 

vegetated soils. These soils were classified as Carbonatic Pergelic Cryorthents (S.T. 6 Ed.) 

(Cryic Leptosols, WRB). At the footslope of this ridge, vegetation cover increased (80% 

coverage) and humus rich A-horizons developecl in carbonatic colluvial sediments. These 

soils were classified as Pergelic Cryoboroll (Gelic Cambisol, WRB) but only represented 

0.6% of the study area. 

The soils of this lime-stone ridge were not included in this soil microbiological study because 

of their small proportion of the total study area. 

Labaz 

At Labaz the soil map Covers approximately 8 km2 (see Fig. A2.1-2). The study area was 

subdivided into six landscape compartments according to the meso-relief and was described in 

detail by GUNDELWEIN (1998). 90% of the study area were covered with clayey-loamy 

sediments resulting in poor drainage. Thus, typical tundra soils developed showing weak 

profile differentiation, gleying properties and accumulation of organic matter. Thaw depths 

were < 50 cm and shallow. Accordingly, the soils were classified as Typic Haplorthel, Ruptic- 

Histic/Typic Aquorthel or Typic Historthel (S.T.) and Typic, Haplic, Histic or Gleyic Cryosol 

(WRB). 
Differentes were due to the meso-relief, the form of patterned ground, and the vegetation 

cover. At sloping sites, non-sorted circles (hummocks) were formed (profile Lb2195). The 

vegetation of the wetter micro-site was dominated by mosses whereas at the drier elevated 

micro-site liehen species gained in significance. The hummock tundra also showed features of 

cryoturbation (i.e., mudboils). The presence of tussock forming sedges and grasses resulted in 

a micro-relief at an even smaller scale. Tussocks also occurred superimposed on the 
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hurnrnocks (Lb3195). These tundra soils were associated with drainage ditches where any form 

of pattemed ground was lacking. The loamy substrate was covered with distinct mats of 

organic matter (Lb4195). 

A minor part of the study area at Labaz (i.e., 10%), represented the dry soils of the exposed 

tops of mountains or spurs. These showed generally high contents of gravel and coarser 

fi-agments. Thaw depths reached maximum values of 80-1 10 cm. Pattsrned gsound was less 

common. At these sites, more advanced pedogenetic processes occurred and profile 

differentiation was more discernible. For instance, the fosmation of cambic hosizons and 

podzolisation was observed. Gleying features occasionally occurred in subsoil horizons. Thus, 

Aquic Umbriturbel (Turbic Cryosol, WRB) and Typic Haploturbel (Turbic Csyosol, W B )  

developed. However, soils with vesy less or no profile differentiation were associated with 

those just described. 

5.1.2 Soll profile description 

5.1.2.1 Solls at Levinson-Lessing 

Po[ygonal tundra 

The valley of the river Krasnaya was covered with polygonal tundra soils. These comprised 

low centred polygons (profiles LL1196 and LL2/96), high centred polygons (profiles LL3196 

and LL4196) as well as transitionary fo rm (profiles LL5196, LL6196 and LL7196). Along the 

banks of the river and its affluents, degsaded forrns due to thennokarst were also found. 

Figure 5.1.1 shows a transect of a typical low centred polygon and profiles (LL1196 and 

LL2196). The diameter of the polygon was approximately 10 m. The depression of the lower 

centre (LL2196) covered two thirds of the area whereas the apices (LL1196) only one third. 

The apex was some 15 cm higher than the wet depression and in comparison relatively dry. 

Profile LL1196 showed exceptionally thick organic ho~%zons with sandy loam deposits up to 

the permafrost table. Usually organic topsoil horizons were 6 to 12 centimetses (GUNDELWEIN, 

1998). The whole profile was very densely to densely rooted and was stseaked with water 

bearing veins. The subsoil showed gleying features (i.e., Fe3--mottling). 

In contrast to the drier apex, profile LL2196 of the wet centre was usually below the water 

surface. Thaw depth was gseater than in the apex. The soll was charactesized by thinner 

organic horizons overlying the mineral subsoil. The subsoil did not show any gleying features 

although reduced iron (Fe2-) was determined. The weakly silty sand of the subsoil was 

intensely interwoven with weakly decomposed plant debris. 



Low centred poly~on 

Profile LL1196: 

Profile LL2196: 

Relief: 
Altitude: 
Vegetation: 

Substrate: 
Drainage. 

Ruptic Historthel (Pergelic Cqlofibrist) (S.T.) 
Histic Cryosol (WRB) 
Typic Aquorthel (Histic Pergelic Cryaquept) (S.T.) 
Histic Cryosol (WRB) 

Valley floor of river Krasnaya 
50 m a.s.1. 
Arctic and arctic-alpine vegetation: 
Apex: dwarf shrubs ( D y a s  punctata, Salixpu!clira), mosses (Hylocolomium 
splendens, Tor17ie1it/1j'pt;iit1; nitens), sedges (Carex arctosibirica), lichens (Cetraria 
cucdlata, Tliamnolia vernuciilaris, Dactylitia arctica} 
Trough: segdes (Carex stans, DupontfaJ?sheri), rnosses (Drepanodadus revolvens, 
C a l l i e ~ o i i  sonnentosum, Plagomnium elatiim,) ( I  OO?" coverage) 
fluviatile sands 
Apex: moderately drained, centre: very poorly drained 

(Draft N. Schrnidt) 

Profile LL1196 (apex): 

Depth (cm) HorizonDescription 
-26 - 16 Oi Weakly decomposed plant debris, < 1 vol.% gravel, sandy deposits, very 

densely rooted, pH (CaCl;,] 6. l 
1 6 - 0  Oe Moderately decomposed plant debris, reddish black (2.5 Y 2.5/1), sandy loam 

deposits. < 1 vol.% gravel, brown mottling (7.5 YR 4/4), dipyridyl [+I, 
coherent structure, densely rooted, pH [CaCI;] 6.0 

> 0 ~ f t  Permafrost table 

Profile LL2/96 (centre): 

Depth (cm) Horizon Description 
-6 - 4 Oi Weakly decomposed plant debris, sandy deposits, < l vol.% gravel, weakly 

rooted, pH [CaC12] 5.2 
4 - 0  Oe Decomposed plant material, sandy deposits, < l vol.% gravel, moderately 

rooted, pH [CaCl;] 5.5 
0 - 20 Bg Black (10YR2.11) weakly silty sand, decomposed organic matter, < 1 vol.% 

gravel, weakly rooted, dipyridyl [+I, pH [CaCl;] 5.2 
> 20 pft Permafrost table 

Fig. 5.1.1: Profile description low centred polygon (Profile LL1196 and LL2/96), Levinson- 

Lessing. 
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The high centred polygon showed an inverse relationship (see Tab. A2.2-1) for profile 

description). The centre (Profile LL3196) was some 40 to 50 centimetres higher than the 

adjacent frost crack (LL4196). The diameter was 16 m. The soils of the apex covered 87.5% of 

the total area whereas the wet frost cracks covered 12.5%. As was described for the low 

centred polygon, profile 3 and 4 showed organic horizons (6 to 8 cm thickness) over a mineral 

subsoil. In the subsoils reduced iron (~e*') was deteimined whereas unly in the drier centre 

iron mottling could be found. Profile 3 showed water bearing veins as well as thick (< 5 cm) 

ice veins and oriented stones. Profile 4 was below the water table. Thaw depth was some 2 cm 

greater in the wet frost crack. 

The polygonal tundra soils of profiles LL5196, LL6196 and LL7196 took an intermediate 

position (see Tab. A2.2-2 for profile description). The centre of the polygon (LL5/96) was 

clearly elevated in comparison to the frost crack (LL7196). Yet, the apex (LL8196) represented 

the most elevated micro-site. A peculiarity in the subsoil of the intermediate polygon was the 

presence of silty loamy band (< 6 cm thick) overlying a buried organic horizon. Water in the 

upper horizons was found to stagnate due to this loamy band. Roots did not penetrate this 

barrier. The diameter of this intermediate polygon was 13 m. Soils of profile 5 covered 40%, 

soils of profile 6 covered 54% and soils of profile 7 covered 6% of the total area of this 

polygon. 
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Non-sorted steps 

Profile LL8/96: 

Relief: 
Altitude: 
Vegetation. 

Substrate: 
Drainage: 

Ruptic-Histic Aquiturbel (Pergelic Cryaquept) (S.T.) 
Turbic Cryosol (WRB) 

Upper slope, moderately steeply sloping ( 1  5") ,  east exposition 
90 m a.s.1. 
Arctic and arctic-alpine vegetation (100% coverage) around bare mud pits: dwarf 
shrubs (Dtyaspunc~ata, Salixpolaris, Salix reiicula), Astragalus spp., Polygonitm 
vivp'inim, sedges (Carex spp.), mosses, lichcns (Thamnolia vermicularis) 
Kolluvium of fine-grained greywacke 
mperfectly to poorly drained, dope water above permafrost 

crn 

(Draft N. Schmidt) 

Profile LL8.1196 (mud pit): 
Depth (cm) Horizon Description 
0-40 AC Sandy loam, 2-10 vol.% gravel, very dark grey (2.5Y 3/1), no humus, no 

roots, pH [CaC12] 5.5, dipyridyl [-I 
40-46 Cg Sandy loan~,  2-10 vol.% gravel, black (5Y 2.5/1), no humus, no roots, pH 

[CaCl,] 5.3 , dipyridyl [-] 
>46 ~ f t  Permafrost table 

Profile LL8.2196 (dry vegetation ring): 
Depth (cm) Horizon Description 
0- 5 A Loamy sand, 50-75 vol.% gravel, very dark grey (7.5YR 3/1), wealdy humic, 

pH [CaC12] 5.7 
5-42 Cg 1 Loamy sand, 10-25 vol.% gravel, very dark grey (2.5Y 3/1), no humus, 

weakly rooted, pH [CaC12] 5.3, Fe3-oxides, dipyridyl [-] 
42-46 c g 2  Loamy sand, 2-10 vol.% gravel, black (5Y 2/1), no humus, no roots, pH 

[CaCM 5.3, dipyridyl [+I 
>4 6 ~ f t  Pemiafrost table 

Profile LL8.3 196 (wet vegetation ring): 
Depth (cm) Horizon Description 
-5 - 0 Oi Weakly decomposed plant debris, densely rooted, pH [CaCl;] 4.6 
0 -22 Cg 1 Loamy sand, 10-25 vol.% gravel, very dark grey (2.5Y 3/1), no humus, 

weakly rooted. pH [CaCL] 5.3, Fe"'-oxides, dipyridyl [-I 
22-30 Cg2 Loamy sarid, 2-10 vol.% gravel, black (5Y 2/1), no humus, no roots, pH 

[CaC12] 5.3, dipyridyl [+] 
>30 ~ f t  Permafrost table 

Fig. 5.1.2: Profile description non-sorted step at the solifluction slope (Profile LL8.1196 and LL8.2/96), 
Levinson-Lessing (modified froni BOLTER & SCHMIDT, 1997). 



Non-sorted steps 

As can be seen fsom Figure 5.1.2 the soils of the non-sosted steps only showed weak profile 

differentiation. The mud pit (profile LL8.1) showed lower gravel contents than the adjacent 

vegetated soils. The soils showed slope water above the pennafrost table. Yet, reduced iron 

could only be deterrnined in the subsoils of the vegetation ring. Accumulation of organic 

matter occussed when vegetation was present, though in the drier soil (LL8.2) a thin A- 

horizon developed. On the contrary, weakly decomposed organic matter accumulated at the 

wetter micro-site (LL8.3) of the vegetation ring. In the wetter micro-site thaw depth was lower 

than in the adjacent soils. 

Profile LL11196 (see Tab. A2.2-3 for profile description) differed fsom profile LL8196 in that 

respect that the mud pit was partially overgsown by the sursounding vegetation. An AC- 

horizon weakly developed. The organic horizons of the vegetation ring were thicker than 

those fond in profile LL8.3. 

Non-sorfed stripes 

Figure 5.1.3 shows exemplarily the soils ofthe valley On top of mountains. They developed On 

fsost-shattered rock debris and contained 50 to 90% gsavel or coarser fragments. Vegetation 

coverage was vesy low (10-20%). Organic matter accumulated at these micro-sites. Yet, in 

unvegetated topsoils (LL10.1196) AC-horizons could develop. In the respective horizons roots 

were found because of horizontal rooting strategies of the sussounding vegetation in the 

vegetation stripe (LL10.2). 

Profile 9 (see Tab. A2.2-4 for profile description) differed fsom the latter in that respect that it 

was situated fÅ¸rthe downhill at a more steeply sloping site. Thus, non-sosted stripes 

developed whereas at profile 10 these were transitionasy to nets. Generally the vegetation 

coverage was gseater (i.e., 60%). The downslope position led to higher'slope water contents in 

the soils ofprofile 9 which was at surface in the vegetation stripes (LL9.2). Thus, the organic 

mat was slightly thicker (i.e., 4 cm) and an A- or AC-horizon was lacking. Thaw depths were 

also lower than in profile LL10. 
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Non-sorted transitional nets 

Profile LL10196: Typic Aquorthel (Pergelic Cryorthent) (S.T.) 
Leptic Cryosol ( W B )  

Relief: 
Altitude: 
Vegetation. 

Substrate: 
Drainage: 

Middle slope at mountain top plateau, rnoderately steeply sloping (15') 
280 rn a.s.1. 
Arctic and arctic-alpine vegetation (10-20% coverage): Salixpolaris, Papaver spp., 
Novosi~~iersia glacialis, mosses, lichens (Cetraria ciicuiata, Thamnolia vermicularis) 
Frost shattered rock debris 
mperfectiy drained, slope water 

Depth 

100 150 crn 

(Drafi N. Schrnidt) 

Profile LL10.1196 (unvegetated stripe): 
Depth (cn~)  Horizon Description 

0 -  11 AC Reddish brown (2.5Y 311) silty-loamy sand, 50 vol.% gravel, very weakly 
humic, moderately rooted, pH [CaCli] 6.2 

1 1 - 6 0  C Very dark grey (10YR 311) moderately sandy loam, 60-80 vol.% gravel, no 
humus, very weakly rooted, pH [CaC12] 6.6, dipyridyl [-I, slope water at 36 
cm 

>60 Cf Permafrost table 

Profile LL10.2196 (vegetation stripe): 
Depth (cm) Horizon Description 

-3 - 0 Oi Weakly decomposed plant debris, pH [CaCl;] 6.2 
0 - 5  AC Very dark grey (10YR 311) sandy silt, 10 vol.% gravel, very weakly humic, 

moderately rooted, pH [CaCl;] 6.2 
5 - 2 3  Cl  Very dark brown (10YR 212) silty-loamy sand, 90 vol.% gravel, no humus, 

very weakly rooted, pH [CaCl;] 6.4, dipyridyl [-I 
23 - 60 C2 Moderately sandy loam, dipyridyl [-I, ~ e - c o a t i n g  on stones, dope water 
>60 Cf Permafrost table 

Fig. 5.1.3: Profile description non-sorted stripes (Profile LL10.1196 and LL10.2/96), Levinson- 

Lessing. 



5.1.2.2 Solls at Labaz 

In this study three typical tundra soils and two diy soils of top of mountains and spurs were 

investigated. Profile descriptions were translated from GUNDELWEIN (1 998). 

The soil showed distinct gleying properties. In the wet depressions between easth hummocks, 

the water table was predominantly at soil surface. They represented a propostion of 10 to 15% 

of the hummock tundra. Layers of organic matter were formed here, pastly of great thickness 

with high organic carbon contents. Litter of the exposed hummocks (profile 2a195) 

accumulated in these wet depressions. The hummocks, on the contrary, were lacking 

0-horizons. They thawed more rapidly and to greater depth. 



Profile Lb2195: Hummock tundra 
Typic Haplorthel (Pergelic Cryaquept) (S.T.) 
Histic Cryosol/Haplic Cryosol (WRB) 

Landfonii: 
Altitude: 
Vegetation: 

Substrate: 

Level footslope 
65 m a.s.1. 
Subarctic vegetation adapted to wet habitats: Cassiope, Ledum, Rubus, 
VacciiÅ¸um Ledum spp., inosses, lichens ( 1  00% coverage) 
Sandy loam 

hummock depression hummock 
(profile 2a) 

E 
0 

20 

40 

60 

Profile 2 a 1 Humn~ock 
Depth (cm) Horizon Description 

00 - 01 A Reddish brown (5YR312) loamy sand, weakly decomposed plant debris, very 
densely rooted, < 1 vol.% gravel, ~ e " ,  very acid 

01 - 55 c g  Brown (10YR413) very loamy sand, moderately rooted 1-20 vol.% gravel, 
coherent structure, ~ e ~ ^ ,  band of humified organic matter, neutral to acid 
(above permafrost table) 

> 55 c g  f Brown (10YR413) very loarny sand, no roots, 1 vol.% gravel, ice lenses, 
permafrost 

Profile 2 b 1 Depression 
Depth (cm) Horizon Description 

00 - 10 Oe Very dark brown (10YR212) moderately decomposed plant debris, < 1 vol.% 
gravel, very acid 

> 10 0 f Very dark brown (10YR212) xnoderately decomposed plant debris, < l vol.% 
gravel, very acid, permafrost 

Fig. 5.1.4: Profile description profile Lb2195 (earth hummock tundra site), Labaz (modified 

frorn GUNDELWEIN, 1998). 



Profile Lb3195: Tussock tundra 
Ruptic-Histic Aquorthel / Typic Historthel 
(Pergelic Cryaquept / Histic Pergelic Cryaquept) (S.T.) 
Gleyic Cryosol / Histic Cryosol (WRB) 

Landfonn: 
Altitude: 
Vegetation: 

Substrate: 

Level middle dope 
60 m a.s.1. 
Subarctic vegetation adapted to wet habitats: Betula nana, Salixpulchra, Vaccinium 
vitis'idea, Eriophorum vaginaturn, Carex bigelowii ssp. arciosibirica, Toniet~typ~iii~ri 
nitens, Drepanocladus uncinatus, Kiaeria starkii, Cetrwia c u c d a t a ,  Cladiria 
arbuscula ( 1  00% coverage) 
Weakly clayey loam 

+ - depth [cm] 
\ ., 

/'---~ --- 

/--'/war o table 
. 20 - 

"0 
5 3 60 
V 

80 
0 20 40 60 80 100 120 140 160cm 

Profile 3 a 1 Tussock 
Depth (ein) Horizon Description 

00 - 05 A Dark greyish brown (lOYR4/2), weakly clayey loam, humified organic 
matter, very densely rooted, coherent structure, < 1 vol.% gravel, F e T ,  very 
acid 

05 - 08 c g l  Dark grey (5Y4/1), weakly clayey loam, moderately rooted. < 1 vol.% gravel, 
coherent structure, F e 2 ,  acid 

08 - 44 C@ Dark yellowish brown (10YR4/4), weakly clayey loam, moderately rooted. 
< l vol.% gravel, coherent structure, F e 2 ,  acid 

44 - 50 c g 3  Dark olive grey (5Y3,5/1), weakly clayey loam, moderately rooted. < 1 vol.% 
gravel, coherent structure, ~ e ~ " ,  band of humified organic matter above 
permafrost, acid 

> 50 c g f  Clayey loam, no roots, ice lenses, permafrost 

Profile 3 b 1 Depression 
Depth (cm) HorizonDescription 

-17 - 00 Oe Black (5YR2.511) moderately decomposed plant debris, < 1 vol.% gravel, 
acid 

00 - 10 ACg Very dark grey (5YR311) weakly clayey loam, < 1 vol.% gravel, moderately- 
weakly rooted, coherent structure, F e 2  acid 

> 10 cgf  Very dark grey moderately decomposed plant debris, < 1 vol.% gravel, ice 
lenses, permafrost 

Fig. 5.1.5: Profile description profile Lh3195 (wet tussock tundra site), Lahaz modified from 



The micro-relief was characterized by small non-sorted circles (earth hummocks) overgrown 

with tussock forming grasses (Carex bigelowii (suppl. by the author), Eriophorum 

vaginatum). Tussocks covered some 45%, depressions approximately 55% of the total area. 

At the sides tussocks enlarged due to accumulation of organic matter. Litter of the exposed 

tussocks (profile Lb3aJ95) accumulated in the wet depressions (profile Lb3bl95) and formed 

(occasionally thick) organic layers. The tussocks, on the contrary, were lacking 0-horizons. In 

the exposed tussocks, the soil moisture and temperature regime were drier and warmer than in 

the adj acent depressions.(. . .) 

The soils showed distinct gleying features. In the wet depressions between tussocks, the water 

table was predominantly at soil surface. Soil texture consisted at equal proportions of sand, 

silt and clay. The clay content was clearly higher than in the hummock tundra of profile 

Lb2195. 



Profile Lb4195: Wet sedge tundra 
Typic Aquorthel (Pergelic Cryaquept) (S.T.) 
Histic Cryosol (WRB) 

Landfonn: 
Altitude: 
Vegetation: 

Substrate: 

Drainage ditch at level middle slope (profile Lh3195) 
57 m a.s.1. 
Suharctic vegetation adapted to extremely wet hahitats: Salixpulchra, Carex stans, 
Enophori~m a~~gustifolii~rn, Drepa~iocladus uncinatus, Tomenlypiium nitens, 
Plc~gomiliiim elaliim ( I  00% coverage) 
We'ikly clayey loam 

profile 4 

Depth (ein) Horizon Description 

-12 - 00 Oi Black to very dark brown (10YR211-2) weakly decomposed plant debris, very 
densely rooted, very acid 

00 - 42 A c g  Dark yellowish brown (10YR416) and very dark grey (5Y311) weakly clayey 
loarn, rnoderately rooted, < l vol.% gravel, coherent structure, ~ e " ,  acid 

> 42 c g f  Very dark grey (5Y311) weakly clayey loam, no roots, weakly acid, 
permafrost 

Fig. 5.1.6: Profile description profile Lb4195 (wet sedge tundra site), Labaz (modified from 

GUNDELWEIN, 1998). 

The site was very wet. The water table was permanently above soil surface. The ditch drained 

the surrounding polygonal and tussock tundra to the brook Tolton-Pastach. A micro-relief was 

lacking. The predominant plant (Eriophorum uizgustifoliurn) does not form tussocks. The Open 

space and the deeper position of the ditch formed a relatively warm and protected habitat. The 

gleyed subsoil was covered by a thick layer. 



Profile Lbll95: Dry exposed rnountain top 
Typic Haploturbel (Pergelic Cryorthent) (S.T.) 
Typic Cryosol (WRB) 

Landfonn: 
Altitude: 
Vegetation: 

Substrate: 

Top dope underneath the mountain top plateau, east exposition 
I I 0  rn a.s.1. 
Subarctic vegetation adapted to dry habitats with little snow Cover: Salix, Dryas, 
L e h m  spp., Lichens (80% coverage) 
Sand with coarse gravel (20-63 min) over medium sand with little gravel content 

,, ,:. ,,,,,;,,.,,,,;./, ,,;,,,,, ,,,.';,.,; ,,,; ,; ,;,,,{~,,!,/;//;/, . . 

Bwl 
20 

-.- 

- ,  
,,Y, 

--. 

Depth (cm) HorizonDescription 

00 - 01 A Very dark greyish brown (10YR312) medium sand with weakly decomposed 
plant debris, densely rooted, weakly acid, deflation crust 

01 - 23 Bwl Very dark brown (lOYR212) medium sand, humified organic matter, 60-90 
vol.% gravel, granular to subangular blocky structure, moderately rooted, 
neutral 

23 - 35 2Cwl Brownish yellow (10YR616) medium sand, 1 vol.% gravel, granular structure, 
weakly rooted, weakly alkaline 

35 - 52 Bw2 Yellowish red (5YR518) medium sand, 60-90 vol.% gravel, granular to 
subangular blocky structure, moderately rooted, weakly alkaline 

52 - 60 3Bw3 Yellowish red (5YR 518) medium sand, 1-10% vol.% gravel, subangular 
blocky structure, moderately rooted, weakly alkaline 

60 - 110 3Cw2 Brownish yellow (10YR 616) medium sand, 1-10 vol.% gravel, granular 
structure, no roots, weakly alkaline 

> 110 3Cf Medium sand, granular structure, 1-10 vol.% gravel, ice lenses, weakly 
alkaline, permafrost 

Fig. 5.1.7: Profile description profile Lbll95 (dry exposed mountain top), Labaz (modified from 



The soil clearly showed interwoven horizons, which indicated csyoturbation. The latter is 

unusual for coarse textured soils under the present well-drained conditions. These 

discontinuities were reflected by the C-contents of the respective horizons. Yet, soil pH 

increased steadily with depth. Gravel and coarser fsagrnents consisted partly of limestone, 

carbonate coatings under stones indicate an upward movement of soil water. At the dry site, 

differentes between horizons in C-contents were preserved. Soil pH, however, was 

characterized by recent processes of upward movement of soil water and precipitation of 

calcium carbonate. These properties indicate that csyoturbation represented a relic process. 

Because of the dryness of the soil vegetation coverage was 80%. Carbon accumulated in the 

thin A-horizon. The transition to the underlying horizon was discrete, mixing of soil material 

was not discemible. The transition from the B- to C-horizons was striking and was 

accompanied by a decrease of gravel content from 60% to 10%. 
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Profile Lb7195: Dry spur 
Aquic Umbriturbel (Pergelic Cryaquept) (S.T.) 
Turbic Cryosol (WRB) 

Landfonn: 
Altitude: 
Vegetation: 

Substrate: 

Spur above brook valley 
50 m a.s.1. 
Subarctic spotty vegetation adapted to dry habitats: Betiila spp., Cassiope spp. 
grasses, inosses and lichens (90% coverage) 
Alternating layers ofsand and loam 

Depth (cm) Horizon Description 

-1 - 00 Oi Weakly decomposed plant debris, predominantly lichens and mosses, discrete 
horizon formation 

00 - 10 AE Dark yellowish brown (10YR 314) weakly humified, weakly clayey sand, < 1 
vol.% gravel, densely rooted, granular structure, very acid 

10 - 25 Bhs Brown (7.5YR 414) sand , very weakly humified, < l vol.% gravel, densely 
rooted, granular structure, cemented illuviation Zone, very acid 

25 - 60 Bwg Dark yellowish brown (10YR 414) sand, < 1 vol.% gravel, no roots, granular 
structure, gleying features, acid 

60 - 80 c g  Olive grey (5Y 512) sand, < 1 vol.% gravel, no roots, gleying features, weakly 
acid 

> 80 c g  f Olive grey (5Y 512) sand, < 1 vol.% gravel, no roots, gleying features, weakly 
acid, permafrost, little ice-enrichment 

Fig. 5.1.8: Profile description profie Lb7195 (dry spur), Labaz (modified from GUNDELWEIN, 



Profile 7 represented a dry habitat. The exposed spur position and the sandy texture favoured 

good drainage and deep thaw depths. In the topsoil the proportion of the sand fraction was 

87% and increased up to 96% above the permafrost table. Porosity was 47-49% in the topsoil 

as well as above the permafrost table. At a depth of 40 Cm, the soil showed strong 

compaction. Porosity was 39% and bulk density was extremely high (1.9 g ~ m ' ~ ) .  

According to the dsyness vegetation Cover was sparse, in particular higher plants occussed 

only sporadically. Pronounced and continuous 0-horizons as well as any form of patterned 

ground were 1acking.c ...) The topsoil clearly showed podzolisation properties (bleaching, 

accumulation of sesquioxides). The upper boundary of the Cg-horizon was very irregular and 

indicated cryoturbation. The latter is unusual for sandy, dry soils and was probably a relic 

property. Features of csyoturbation were lacking in the topsoil. Despite good drainage and a 

high proportion of coarse pores, the subsoil showed iron mottling and precipitates indicating 

temporary anaerobic conditions. The soil was thus classified as Pergelic Cryaquept (S.T., 

6"' ed.). 

In the WRB System, soil properties of the topsoil (thickness, colour, low base saturation, 

organic C content, pH) qualified for an umbric hosizon whereas gleying properties were not 

sufficient. However, the soil was classified as Aquic Umbriturbel and (Turbic Cryosol; 

S.T., 8'Â edn. and WRB suppl. by the author). 
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5.2 Pedological Parameters 

5.2.1 Organic carbon (CÃ£re and total nitrogen (Nt) content 

Levii~son-Lessing 

Figures 5.2.1 - 5.2.7 show the contents of organic carbon (Co,e) and total nitrogen (Nt) of the 

soils at Levinson-Lessing (see appendices for analytical data). The compasison of the soils of 

the polygonal tundra, solifluction steps and non-sorted stripes shows greatest Corg and Nt 

contents in the soils of the polygonal tundra (profiles LL1196 - LL7196). Core and Nt contents 

of the solifluction steps and the non-sorted stripes were lower. Corg contents generally 

decreased with depth marked by distinct changes fsom organic to mineral hosizon. This holds 

also true in case of the busied Oe-hosizons in the transitional polygon soils. The overall Cm- 

ratio was wide and narrowed with increasing depth. Apart from gseater Core and Nt contents, 

the polygonal tundra soils also showed wider CiN-ratios. 

In addition, Corg and Nt contents changed remarkably with the micro-relief. In the polygonal 

tundra (e.g., LL1196 and LL2196) the CÃ£r and Nt contents were some 20% gseater in the wet 

depression than in the elevated apex. The Cm-ratios were narrower in the elevated apices than 

Fig. 5.2.1: Pedological Parameters in the apex (LL1196) and the centre (LL2196) of the low 
centred polygon at Levinson-Lessing (where Core organic carbon content [% w.w.1, 
N total nitrogen content [% w.w.1 and soil pH [CaCli]. 
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in the depressions. In the soils of the solifluction steps (profiles LL8196; LL11196) and the 

non-sorted steps (profiles LL8196; LL11/96), the Corg and Ni contents followed the pattemed 

ground of alternate vegetation (i.e., stripes or rings) and mineral material. In the vegetated 

soils of the solifluction steps, the Corg and Ni contents were some 60% greater than in the bare 

soils. In the non-sorted stripes these differences were even more pronounced (80-90% 

increase). The Cm-ratios were similar. 

Fig. 5.2.2: Contents of organic carbon (% Co& total nitrogen (% N) and pH [CaCl;] in the 
apex (profile LL 3/96) and the depression (profile LL 4/96) of the high centred 
polygonal tundra at Levinson-Lessing. 
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Fig. 5.2.3: Content of organic carbon (% Co& total nitrogen (% N) and pH [CaCI;] in the 
apices (profiles LL 5/96 and LL 6/96) and the depression (LL7196) of the 
intermediate polygonal tundra at Levinson-Lessing. 

Fig. 5.2.4: Contents of organic carbon (% Co-), total nitrogen (% N) and pH [CaC12] in the 
vegetated mud boil (LL 11.1196) and the vegetation ring (LL 11.2196) of the 
solifluction steps at Levinson-Lessing. 
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Fig. 5.2.5: Contents of organic carbon (% Co%), total nitrogen (% N) and pH [CaCl;] in the 
unvegetated mud boil (LL 8.1196) and the vegetation ring (LL 8-2/96 and LL 8.3) of 
the solifluction steps at Levinson-Lessing. 
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Fig. 5.2.6: Content of organic carbon (% Co& total nitrogen (% 3) and pH [CaCli] in the 
unvegetated mound (LL9.1196) and the vegetation stripes (LL 9.2196) of the non- 
sorted stripes at Levinson-Lessing. 

Fig. 5.2.7: Content of organic carbon (% CorÃˆ) total nitrogen (% N) and pH [CaClz] in the 
unvegetated mound (LL 10.1196) and the stripes of vegetation (LL 10.2196) of the 
non-sorted stripes. 
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Labaz 

Figures 5.2.8 - 5.2.12 show the Core and Nt contents of the soils at Lake Labaz (see appendices 

for analytical data). 

Corg and Nt contents were generally lower and Cm-ratios narrower than at Levinson-Lessing. 

The Corg and Nt contents were largely confined to the organic horizons and decreased with 

depth. In case of the lowland soils (profiles Lb2195 to Lb4/95), Corg and N1 increased 

remarkably in the supra-perrnafrost layers and at a depth 10-20 cm of the hummock and 

tussock tundra. 

Greatest Corg and Nt contents were found in the wet sedge tundra soil in a drainage ditch 

(profile Lb4/95). The CiN-ratio here was also the widest. The most abundant soils of the 

hummock (profile Lb2195) and the tussock tundra (Lb3195) showed slightly lower Corg and Nt 

contents. In addition these values varied along with the micro-relief. Corg and Nt contents were 

25-45% greater in the depression than in the corresponding elevated micro-site (i.e., 

hummock, tussock). Accordingly, the CiN-ratios were wider in the depressions. Lowest Core 

and Nt contents were found in the dry soils (Lbll95 and Lb7195). 

Fig. 5.2.8: Content o f  organic carbon (% Co& total nitrogen (% N ) ,  pH [HzO] and pH [CaCl;] 
in dry brown eartb (Lb 1/95) at Labaz. 
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Fig. 5.2.9: Content of organic carbon (% Co& total nitrogen (% N), pH [H20] and pH [CaCl;] 
in the hummock (Lb 2al95) and the frost crack (Lb 2b/95) of the hummock tundra, 
Labaz. 

-*- % 
Ã‘9 % N  
-4 - pH [HO]  

T- pH [CaCI,] 

Fig. 5.2.10: Content of organic carbon (% Corg), total nitrogen (% N), pH [H20] and pH [CaClz] 
in the tussock (Lb 3al95) and the frost crack (Lb 3bl95) of the tussock tundra, 
Labaz. 
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Fig. 5.2.11: Content of organic carbon (% Co& total nitrogen (% N), pH [H20] and pH [CaClz] 
in tlie wet sedge tundra in the drainage ditch (Lb 4/95), Labaz. 

Fig. 5.2.12: Content of organic carbon (% Corg), total nitrogen (% N), pH [H20] and pH [CaCu 
in dry podzolised brown earth (Lb 7/95), Labaz. 
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Levinson-Lessing 

Mean soil pH [CaC12] of the fresh topsoils (0-10 cm) of the polygonal tundra was 6.2. In case 

of the soils of solifluction steps mean pH [CaC12] was 5.7. In the soils of the non-sorted 

stripes mean pH [CaClz] was 6.7. 

In the soils of the solifluction steps, along with the vegetation Cover, the pH [CaC12] was 

lower than in the neighbouring unvegetated mudboils. On the contrary, there was no distinct 

difference in pH [CaC12] with respect to the micro-relief in the soils of the polygonal tundra 

nor in the soils of the non-sorted stripes. 

La baz 

Mean pH [CaC12] of the upper horizons (0-10 cm) of the tundra soils (profiles Lb2195 - 

Lb4195) was 5.2. Mean pH [CaC12] of the dry sites was 7.0 in case of the carbonatic uphill soil 

(Lbll95) and 4.3 in case of the podzolic soil (Lb7/95). 

The pH values [CaCl2] of the tundra soils varied along with the micro-relief. Thus, in the 

depression of the hummock tundra the pH was more acid than in the hummock. On the 

contrary, in the elevated micro-site of the tussock tundra (Lb3195) was more acid than in the 

corresponding depression. 

Mean pH [HsO] of the upper horizons (0-10 cm) of the tundra soils (proflles Lb2195 - Lb4/95) 

was 5.8. Mean pH [H201 of the dry sites was 7.3 in case of the uphill soil and 5.3 in case of 

the podzolic soil (Lb7195). Thus, the overall exchange acidity was high (mean ApH 0.9) being 

highest in the podzolic soil (mean ApH 1.1). The lowest exchange acidity was found in the dry 

uphill soil (mean ApH 0.2). 
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5.2.3 Bulk density and carbon inventory 

Levinson-Lessing 

Table 5.2.3-1 shows the carbon inventories (Cl)  in the soils at Levinson-Lessing calculated for 

the uppennost 4 centimetres. The carbon inventory of the soils showed high spatial variability 

along with the micro-relief. The values ranged between 0.3 and 4.8 kg C m". 

Tab. 5.2.3-1: Carbon inventories (CD in the top soll (4 cm) at Levinson-Lessing 

Profile horizonldepth % gravel Db [g ~ m ' ~ ]  % Corc CI [kg m'>] sum CI (0-4 cm) 

Polygon tundra 

loir cenired (LL 1/96) Oi (0-4 cm) 0.48 20.19 3.9 3.9 

high centred 

LL3196 (centre) Oi (8-5 cm) 0.34 29.09 3.0 3.9 

Oe (5-4 cm) 26.95 0.9 

mud boil 0-4 cm 1.09 5.20 2.3 2.3 

LL4196 (frost crack) Oi (6-4 cm) 0.09 26.14 0.5 0.9 

Oe (4-2 cm) 27.83 0.5 

intermediate 

LL5196 (centre) Oi (15-12 cm) 0.34 21.70 2.2 2.8 

Oel (12-11 cm) 18.49 0.6 

LL6196 (apex) Oal (9-6 cm) 0.38 20.10 2.3 2.9 

Oa2 (6-5 cm) 16.75 0.6 

Non-sorted steps 

LL8.1196 (mud boil) AC (0-2 cm) 6.0 0.59 2.72 0.3 0.7 

AC (2-4 cm) 6.0 0.59 3.34 0.4 

LL8.2196 (vegetated ring) A (0-4 cm) 62.5 0.08 8.62 0.3 0.3 

Non-sorted stripes 

LL9.1196 (unvegetated) AC (0-0.5 cm) 37.5 0.52 2.53 0.1 0.5 

AC (0.5-4 cm) 37.5 0.52 2.24 0.4 

LL9.2 (vegetated) Oi (4-2 cm) 0.57 19.31 2.2 3.6 

Oie (2-0 cm) 11.83 1.3 

LL10.2196 (vegetated) Oi (3-1 cm) 0.57 26.55 3.0 4.8 

Oi (I -0 cm) 24.61 1.4 

A (0- l c1n1 7.17 0.4 

In the polygon tundra, greater carbon inventories (2.3 -3.9 kg C m'2) were calculated for the 

apices. Despite high carbon content (% w.w.) in the frost cracks, the carbon inventory was 

remarkably lower (0.9 kg C m'2) due to a low bulk density. On the contrary, this relationship 

was inverse in the mud boil (LL3196). The carbon inventory was high although the carbon 

content was low. 



The carbon inventories in the non-sorted step (LL8196) were lower than in the polygon tundra. 

In the mud boil, the carbon inventory (0.7 kg C m'2) was twice as high as in the adjacent 

vegetation ring (0.3 g C cm"),  where the gravel content was very high. 

The widest range of carbon inventory (0.5 - 4.8 kg C nY2) was found in the non-sorted stripes. 

Compared to the unvegetated mound (LL9.1/96), the greater inventories were determined in 

the vegetated soils (LL9.2196 and 10.2196). The gravel content in the mound was high. 

Labaz 

Table 5.2.3-2 shows the carbon inventories (Cl) in the soils at Labaz calculated for the 

uppesmost 4 cm using data by GUNDELWEIN (1998). As the soils at Levinson-Lessing, the 

carbon inventory of the soils at Labaz also showed a great heterogeneity. Along with the 

micro-relief, the values ranged between 0.8 and 1 1.0 kg C m'2. 

Tab. 5.3.2-2: Carbon inventories (CI) in the top soil (4 ein) at Lake Labaz (modified data from 
GUNBELWEIN, 1998) 

Profile l~orizonldepth Db [g crn"j] % Co% CI [kg rn"2] sum CI (0-4 cm) 

Hummock tundra 

Lb2a195 (hummock) A (0- 1 cm) 0.9 10.3 0.9 1.5 

Cg (1-3 cm) 1.3 1.5 0.6 

Lb2bl95 (frost crack) Oe (10-6 cm) 0.3-0.6 46,O 5.5-1 1.0 5.5-11.0 

Tussock tundra 

Lb3a195 (tussock) A (0-4 cm) 0.6 4.8 1.2 1.2 

Lb3bl95 (depression) Oe (17-13 crn) 0.2-0,5 33.6 2.7-6.7 2.7-6.7 

Wet sedge tundra 

L W 9 5  Oi (12-8 cm) 0.5 16.8 3.4 3.4 

Dry podzolized soil 

Lb7195 AE (0-4 cm) 1.1 1.7 0.8 0.8 

In the soils of the hummock and tussock tundra (Lb2195 and Lb3195) the carbon inventory 

(CD ranged from 1.2 to 11.0 kg C mM2. The lower CIS (1.2 and 1.5 kg C m'2) were found in the 

relatively elevated hummocks (Lb2d95) and tussocks (Lb3d95). In the adjacent depression, 

these values were between 55 and 88 % higher. This increase was stronger in the hummock 

tundra. In the wet sedge tundra soil of the drainage ditch (Lb4/95), the CI was 3.4 kg C m"2. 

This value is in the same order of magnitude as the polygonal tundra at Levinson-Lessing. The 

lowest CI (0.8 kg C m'2) was found in the dry podzolized soil (Lb7195). At Labaz the trend of 

the carbon inventory is according to the carbon content (% w.w.). 
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5.2.4 Pore size distribution 

Levinson-Lessing 

Figures 5.2.13 to 5.2.15 show the Pore size distribution of the uppesmost 4 cm in the soils at 

Levinson-Lessing. For profiles LL1/96 and 3/96, pore size distribution of the underlying 

horizon was also deterrnined. 

Within these 4 cm, the porosity was generally gseater than 60 % and thus vesy high. An 

exception were the unvegetated soils or micro-sites, where porosity was lower (LL3196, 

LL8.1196 and LL9.1196). The air (AC) and available field capacity (FCa) were usually vesy 

high (AC > 18 % and FCa 20-30 %). 

LL3196 rnud pit (LL3196) 
0 20 40 60 60 l O O V O l %  0 20 40 60 80 100 

I I I I 

C1 1; , , ,,, &Li.x& 

Fig. 5.2.13: Pore size distribution in the polygonal tundra at Levinson-Lessing. 
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In the polygonal tundra, the porosity and the pore size distribution were similar in the apices 

(LL1196 and LL3196). The air capacity was high and decreased with depth. The available field 

capacity was extremely high (>30 %) and increased with depth. On the contrary, porosity and 

air capacity was lower in the mud pit. Yet, the available field capacity was also extremely 

high. Maximum porosity was determined in the frost crack of the high centred polygon 

(LL4196). Profile L,L4/96 showed a sponge-like structure with a porosity of greater 80 % and 

an air capacity greater 60 %. 

Fig. 5.2.14: Pore size distribution in the non-sorted step (profile LL8196) at Levinson-Lessing. 

In the soils of the non-sorted step, porosity and pore size distribution varied strongly along 

with the micro-relief. Porosity was 35 % lower in the unvegetated mud boil than in the 

vegetation ring. Compared to the mud pit of the polygon tundra, the porosity was some 20 % 

lower. The air capacity also decreased remarkably. In addition, the habitable pore space 

(> 0.2 um) was half as big in the mud boil as in the sussounding vegetation ring. For both 

micro-sites, the available field capacity was very high (> 20 %). Yet, it was lower than in the 

polygon tundra. 
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I I 

Fig. 5.2.15: Pore size distribution in the non-sorted stripes at Levinson-Lessing. 

In the soils of the non-sorted stripes porosity and pore size distribution also varied along with 

the micro-relief. The soils of the vegetation stripelring (LL9.2196 and LL10.2196) showed 

similar properties. The porosity was > 60 %. The air capacity was high very high. The 

available field capacity was high but lower than for the soils of the polygon tundra. On the 

contrary, porosity, air capacity and available field capacity decreased some 25 % in the 

unvegetated mound (LL9.1196). The habitable Pore space decreased accordingly. Compared to 

the other unvegetated soils (mud pit LL3196 and LL8.1/96), the air capacity was higher and 

the available field capacity was lower. 



5.3 Microbial parameters 

5.3.1 Fungi 

Levinson-Lessing 

In the soils at Levinson-Lessing, hyphal length of up to 393 m g "  d.wt. (median 21 m g"' 

d.wt.) and fimgal biovolume of up to 3.5 mm3 g '  d.wt. (median 0.19 mm3 g'l d.wt.) were 

measured (see Tab. A4.1-1). Fungal biomass was up to 455.3 pg C g "  d.wt. (median 

24.3 pg C g "  d.wt.). Fungi generally decrease with depth. Maximum values were measured in 

Oe-hosizons. No or very little fungi were found in unvegetated soils (e.g., LL8196; 9196) and 

in hosizons above the pesmafiost table (supra-pesmafrost layer). 

Maximum values were found in the polygon tundra soils (Tab. 5.3.1 - 1). Median values of 

hyphal length (27 m g '  d.wt.), biovolume (0.29 mm3 g" d.wt.) and fungal biomass 

(37.5 pg C g '  d.wt.) were also greater. The fungal distribution showed a complex and uneven 

pattem within profiles and with respect to micro-relief. In the high centred and intermediate 

polygon (LL3196-LL7/96), fungal biomass was gseater in the higher centre or apex than in the 

wet frost crack. On the contrary, in the low centred polygon (LL1196; LL2/96), this 

relationship was inverse. However, the trend was similar when comparing hyphal length 

alone. At wet sites (LL2196, 4/96 and 7/96) fungal biomass increased with depth. An 

exception represented the supra-permafiost layer, where fungi were usually lacking. 

In the solifluction soils of the non-sorted steps, median hyphal length of 18.5 m g '  d.wt. and 

biovolume of 0.15 mm3 g '  d.wt. were measured. The fungal biomass was 19.2 pg C d.wt.. 

These median values were lower than in the polygonal tundra soils. Hyphal length, fungal 

biovolume and biomass varied along with micro-sites. In the unvegetated mud boil 

(LL8.1/96), values were more than 90% lower than in the surrounding vegetated micro-sites. 

In the A-horizons of the drier sites (LL8.2196; LL 1 1.1196) values were 40 to 55% gseater than 

in the 0-horizons at wetter sites (LL8.3/96;11.2/96). Within profiles fungi generally decreased 

with depth. A peak was obsesved in the Oe-horizon of profile LL11.2196. Worthwhile 

mentioning is the remarkable decrease of fungi within the first few centimetres of the 

unvegetated mud boil (LL8.1196). 
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Tab. 5.3.1-1: Fungal parameters in the polygonal tundra at Levinson-Lessing. 

Profile Horizonldepth L [m/gI V [mm^/g] [us, Cf./g d.wt.1 

Low centred polygon 
1/96 vegetated mound Oi (0-5) 38.8 0.3 1 40.7 

Oi (5-10) 37.0 0.38 49.2 
Oe 5.0 0.09 11.5 

2/96 centre Oi 6.9 0.09 11.6 
Oe 1 28.4 1.19 155.1 
Oe2 22.3 1 .06 138.1 

Special features: 
1/96 Carex roots Oi ND ND ND 

Fe-mottling Bg 30.6 0.47 60.9 
2/96 surface Fe-Ox. 0.8 0.01 1.4 

High centred polygon 
3/96 vegetated mound Oi 3.8 0.02 2.9 

Oe 41.2 0.26 34.2 

Bg 81.8 0.96 125.3 
frost boil 0-0.5 9.3 0.08 10.8 

0-4 7.5 0.07 9.5 
4/96 frost crack Oi 3.6 0.03 4.1 

Oe 34.7 0.41 53.7 
Bg 0 0 0 

Special features: 
3/96 saprophytic fimgi Oe 7.9 0.11 13.8 
4/96 transition OeIBg Bg 53.9 0.63 82.0 

Transitionary polygon 
5/96 

6/96 

7/96 

Special features: 
5/96 
6/96 
7/96 

centre Oi 
Oe I 
Oe2 
Bg 
I1 Oe 

mound Oa I 
Oa2 
Oa3 
Bg 
I1 Oe 

frost crack Oe 1 
Oe2 

Fe-oxidation 
roots Oe3 
roots Oe1 

X (min) 0 0 0 
X (max) 393.0 3.50 455.3 
mean 39.4 0.45 59.0 
median 27.7 0.29 37.5 



Tab. 5.3.1-2: Fungal Parameters in the non-sorted steps at Levinson-Lessing, 

Profile Horizonldepth L [mlg] V [mmJlg] [ f ig  Cc/g d.wt.1 
8/96 unvegetated mound AC (0-0.5) 4.4 0.04 5.2 

AC (0-2) 2.0 0.02 2.2 
AC (2-4) 1.3 0.01 1.7 

c g  4.6 0.09 11.6 
peat ring Oi 82.8 0.56 72.9 

A 110.3 0.94 121.5 
Bg (5-9) 58.5 0.61 79.6 
Bg (>9) 18.5 0.15 19.2 

11/96 vegetated nlound A 77.6 0.52 67.7 

Bg 1 .X  0.03 4.1 
peat ring Oi 47.7 0.56 72.6 

Oe 224.4 1.76 229.2 

Bg 3.5 0.03 4.2 

X (min) 1.3 0.01 1.7 
X (max) 224.4 1.76 229.2 
mean 49.0 0.41 53.2 
median 18.5 0.15 19.2 

In the soils of the non-sorted and transitionary stripes (Tab. 5.3.1-3), median hyphal length of 

14.5 m g '  d.wt. and biovolume 0.1 1 mm3 g" d.wt. were measured. Accordingly, median 

fÅ¸nga biomass was 14.1 pg C g" d.wt.. As has been stated earlier for other soils, these values 

generally decreased with depth. In the transitionary stripes (LL10196) values were greater than 

in tlie soil of the non-sorted stripes (LL9196). In the latter, differences along with the micro- 

relief could also be established. Namely, no fungi were found in the unvegetated mound of 

profile LL9196. 

Summing up soils of the non-sorted steps and non-sorted stripes were below the overall 

median being most variable in the non-sorted steps. However, these differences were only 

significant between non-sorted stripes and polygon tundra (p < 0.10) or solifluction steps 

(p < 0.05) respectively. A relationship between fÅ¸ng and plants that form mycorrhizal 

associations with fÅ¸ng could not be established. 
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Tab. 5.3.1-3: Fungal parameters in the non-sorted (transitionary) stripes at  Levinson-Lessing. 

Profile Horizonldepth L [mlg] V [mni31g] fig Cf/g d.wt. 

Non-sorted stripes 
9/96 unvegetated mound AC1 (0-0.5) 0 0 0 

AC 1 (0-4) 0 0 0 
C2 0 0 0 

peat ring Oi 6.8 0.03 3.7 
Oie (2-3) 24.3 0.18 23.9 
Oie (3-4) 17.1 0.12 16.1 

Transtionary stripes 
10196 unvegetated mound A (0-0.5) 0 0 0 

A (0-1 1) 21.0 0.19 24.3 
C 45.8 0.53 68.4 

peat ring Oi (0-2) 9.4 0.06 7.6 
Oi (2-3) 40.6 0.35 45.6 
A 64.2 0.49 63.9 
C 51.1 0.5 1 66.0 

Special features: 
peat Oi (0-2) 12.0 0.09 12.1 
roots ND N D  ND 

X (min) 0 0 0 
X (max) 64.2 0.53 68.4 
mean 20.9 0.18 23.7 
median 14.5 0.11 14.1 

Labaz 

In the soils at Labaz, hyphal length up to 920 m g"' d.wt. (median 4.07 m g" d.wt.) and fimgal 

biovolume up to 9.6 mm3 g" d.wt. (median 0.03 mm3 g" d.wt.) were measured (see 

Tab. A4.1-2). Fungal biomass was up to 1248 pg Cf g'' d.wt. (median 3.3 pg Cf g d.wt.). 

Thus, despite a wider range of values less fungi (length, biovolume and biomass) were found 

in the Labaz soils compared to the soils at Levinson-Lessing. 

Between sites at Labaz, hyphal length, fungal biovolume and biomass decreased in the order: 

wet sedge tundra (Lb4195) > tussock tundra (Lb3195) > hummock tundra (Lb2195) > dry 

brown earth (Lbll95) > dry podzolised brown earth (Lb7195). The decrease of fungal 

biovolume and biomass was stronger than the decrease of hyphal length. In the tussock and 

hurnmock tundra soils values varied along with the micro-relief. Within profiles, fungi usually 

decreased with depth and were absent in supra-permafrost layer. Yet, many soils showed a 

distinct peak of fungi at a depth of 10-20 cm. This peak was found in organic as well as in 

mineral horizons. 

As can be Seen from Table 5.3.1-4, maximum values were found in the wet sedge tundra in 

the drainage ditch (Lb4195). Median hyphal length was 59.7 m g'l d.wt.. Median fungal 

biovolume of 0.58 mm3 g" d.wt. and median fungal biomass of 75.5 pg Cf g '  d.wt. were 



deterrnined. Within the profile, maximum values were found in the lower 5 centimetres of the 

Oi-horizon and otherwise decreased with depth. 

Tab. 5.3.1-4: Fungal parameters in the wet sedge tundra at Labaz. 

Profile Horizon/depth L [m/g] V [ m n ~ ~ / ~ ]  pg Cf/g d.wt. 

Wet sedge tundra 
4/95 drainage ditch Oi (0-2) 79.0 0.80 104.0 

Oi (2-5) 246.9 2.36 306.7 
ACg (5-10) 919.5 9.60 1247.7 
ACg (1 0-20) 40.3 0.36 46.9 
ACg (20-30) 2.7 0.01 1.3 
ACg (30-50) 0 0 0 

x (min) 0 0 0 
x (max) 919.5 9.60 1247.7 
mean 214.7 2.19 284.4 
median 59.7 0.58 75.5 

Tab. 5.3.1-5: Fungal parameters at the hummock and tundra sites at Labaz. 

Profile Horizon/depth L [mlg] V [ n ~ n ~ " > / ~ ]  pg Cf/g d.wt. 
Hummock tundra 
2/95 hummock A (0-2) 3.8 0.05 6.5 

Cg (2-5) 8.9 0.07 8.6 
Cg (5-10) 11.4 0.07 9.2 
Cg (10-20) 12.9 0.12 15.1 
Cg (20-30) 0.6 0.00 0.2 
Cg (30-40) 0 0 0 

frost crack Oe (0-2) 16.9 0.13 17.5 
Oe (2-5) 2.0 0.03 3.6 
Oe (5-10) 43.1 0.38 48.9 
Of (10-20) 16.2 0.16 21.3 
Of (20-30) 0 0 0 

Tussock tundra 
3/95 tussock A ( 0-2) ND ND ND 

A (2-5) 0 0 0 
Cgl (5-10) 4.4 0.02 2.8 
Cg2 (10-20) 48.2 0.37 48.5 
Cg2 (20-30) 2.0 0.02 2.1 
Cg2 (30-40) 0 0 0 
Cg3 (40-50) 2.3 0.02 2.6 

depression Oe ( 0-2) 64.9 0.53 69.2 
Oe ( 2-5) 77.7 0.60 78.4 
Oe (5-10) 124.9 0.75 97.9 
Oe (10-20) 82.4 0.45 57.8 
ACg (20-30) 0 0 0 

X (min) 0 0 0 
X (max) 124.9 0.75 97.9 
mean 23.8 0.17 22.3 
median 6.6 0.06 7.6 
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In the soils of the tussock (Lb3195) and hummock tundra (Lb2/95), hyphal length, fÅ¸nga 

biovolume and biomass were some 90% lower. As can be Seen fsom Table 5.3.1-5, hyphal 

length up to 125 m g" d.wt. (median 6.6 m g d.wt.) and fungal biovolume up to 

0.75 mm3 g" d.wt. (median 0.06 mm3 g" d.wt.) were measured. Fungal biomass was up to 

97.9 pg cf g '  d.wt. (median 7.6 pg cf g" d.wt.). Furthermore, the variability depending On the 

micro-relief was high. Thus, hyphal length and hngal biomass was 50 to 97% greater in the 

depression than in the adjacent tussock or hummock. This increase was stronger in the tussock 

tundra. Whereas in the depressions fungi were confined to organic horizons, in the tussocks or 

hummocks nlaximum values were obsesved in the upper 15 cm of the Cg-hosizon. No fungi 

were found in the supra-permafrost layer. 

Tab. 5.3.1-6: Fungal parameters in the dry brown earth soils at Labaz. 

Profile Horizonldepth L [mlg] V [mm31g] pg Cf/g d.wt. 
Dry brown earth 
1/95 A (0-2) 14.8 0.08 10.7 

Bwl (2-5) 13.9 0.11 14.6 
Bwl (5-10) 17.3 0.08 10.5 
Bwl (10-20) 4.7 0.02 3.0 
2Cwl (20-30) 3.3 0.02 2.0 
Bw2 (30-50) 1.8 0.01 1 .O 

Dry podzolised brown earth 
7/95 Oi (0-2) 0.8 0.01 1.5 

Oi (2-5) 1.1 0.00 0.5 
Oi ( 5-7) 1.4 0.01 0.8 
AE (0-10) 0.5 0.00 0.4 
Bhs (10-25) 2.8 0.02 2.2 
Bwg (25-60) 0 0 0 

X (min) 0 0 0 
X ( m a l  17.3 0.11 14.6 
mean 5.2 0.03 3.9 
median 2.3 0.01 1.7 

As can be Seen from Table 5.3.1-6, fungal values were lowest in the dry soils at Labaz 

(Lbll95 and Lb7195). Yet, these two sites differed in the order of magnitude and the 

distsibution pattem of fungi within the profile. In the dry brown earth (Lbl/95), median hyphal 

length of 9.3 m g "  d.wt. and fungal biovolume of 0.05 mm3 g" d.wt. were measured. Median 

fungal biomass was 6.73 pg cf g" d.wt.. These values are comparable to those determined for 

the elevated tussocks and hummocks (Tab. 5.3.1-5). In the dry brown earth (Lbl/95), fungi 

clustered in the upper 10 centimetres of the profile. 



On the contrary, in the dry podzolised brown eart11 (Lb7195), hngi were some 90% lower than 

in the first brown earth. Median hyphal length of 0.98 m g-' d.wt. and hngal biovolu~ne of 

0.01 mm3 g-' d.wt. were measured. Median hngal biomass was 0.63 pg Cf g-' d.wt.. The 

distribution pattem within the profile also differed. Higher values were found in the Oi- 

horizon, The maximum value, however, was found in the Bhs-horizon. 

At Labaz, the distribution of hngi in the drier soils (Lbll95, Lb7195, Lb2d95 and Lb3d95) 

was significantly (p < 0.1 5) different fi-om the wetter soils (Lb4195, Lb2bl95 and Lb3bl95). 

This relationship could not be established at Levinson-Lessing. 

5.3.2 Bacteria 

Levinsorz-Lessing 

Data of total bacterial number, bacterial biovolume and bacterial biomass were determined by 

M. BÃ¶lter IPO Kiel (publication SCHMIDT & BOLTER, unpubl. data) and can be Seen in Table 

A4.2- I .  

At Levinson-Lessing, total bacterial number (TBN) up to 7 . 3 ~ ~ 1 0 ~  g' d.wt. (median 

l.16*lo9 g-' d.wt) and bacterial cellvolurne (MCV) up to 0.056 pm3 g-' d.wt. (median 

0.039 pm3 g-' d.wt.1 were measured. Bacterial biomass (BBM) was 20.4 pg C g-l d.wt. 

(median 4.7 pg C g-' d.wt.1. The distribution Pattern of bacteria was different fiom what could 

be established for fbngi. TBN was highest in the polygonal tundra whereas it was of the Same 

order of magnitude in the soils of the non-sorted steps and stripes. On the contrary, BBM 

along with MCV decreased in the following order: polygonal tundra non-sorted stripes > 

non-soried steps. Between micro-sites and within profiles, distribution pattem also differed. 

In the soiis of the polygonal tundra, TBN, MVC and BBM generally decreased with depth at 

both micro-sites: kost cracks and apiceshigh centres. In the transitionary polygon (LL5-7/96)> 

maximum values could be established in the supra-permafiost layer, where no fbngi were 

found. Along with hngi,  a relative increase in bacteria was foiind in the Oe-horizons of the 

apices of the high and low centred polygon (LLl and 3196). 

In the soils of the non-sorted steps, TBN, MVC and BBM values were some 50% lower than 

in the polygonal tundra. This decrease was stronger for BBM and MCV. Within profiles these 
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values decsease with deptl~. A selative incsease could be observed in the anaerobic C- or Bg- 

horizons. Between micso-sites, values were gseates undemeath vegetation (LL8.3196, 

L1 1.2196) compased to unvegetated soils (LL8.1196). Hence, values wese also gseates in the 

ovesgsown step (LL11196). 

Despite cotnpasable TBN in the non-sosted stsipes (LL9 and LLlOl96), BBM and MCV were 

some 10% gseates. As has been stated fos hngi: in the unvegetated mound values were lower 

than in the adjacent vegetation ring. However? this decsease was stsonges in the soil of the 

tsansitionasy stsipes (LLlOl96). Thus, the difference between micso-sites was more 

psonounced when looking at bactesial population. 

La baz 

Data of total bacterial numbes, bactesial biovolume and bacterial biomass wese dete~mined by 

BOLTER (1998) and can be Seen in Table A4.2-2. 

At Labaz, total bactesial number (TBN) up to 6.8l*lo9 g1 d.wt. (median 0.37*1o9 g-I d.wt.1 

and bacterial cellvolume (MCV) up to 0.073 pm3 .g-' d.wt. (0.047 prn3 gi d.wt.1 wese 

measused. Bactesial biomass (BBM) was 33.1 pg C g-' d.wt. (median 1.5 pg C g-l d.wt.1. 

Thus, TBN and BBM wese lower than in the soils at Levinson-Lessing. The distribution 

pattesn between sites genesally sesembled the patteln descsibed fos the hngal population. 

Thus, TBN, MCV and BBM decseased in the following osdes: wet sedge tundsa > tussock 

tundsa > hummock tundsa > dsy bsown earth > dsy podzolised soil. Yet, the diffesences were 

less psonounced. 

In general bacteria clustesed in the top few centimetses of the psofile and decseased with depth 

which was particulasly distinct between 0-IA-hosizons and minesal horizons. Furthesmore, in 

the tussock and hummock tundsa (Lb2195 and 3/95) a relative incsease OS peak of TBN and 

BBM was observed at a depth of appsoximately 10 Cm. This incsease l ~ a s  alseady been 

descsibed fos fungi. 

The micso-selief affected bactesial population at the hummock and tussock tundra sites. In the 

wet depsessions (Lb2bl95 and Lb3b/95), TBN, MCV and BBM wese gseates than in the more 

elevated micso-site. This incsease was mose stsonges in the tussock tundsa. 

At Labaz, the distribution of bactesia in the dries soils (Lbll95, Lb7195, Lb2d95 and Lb3d95) 

was significantly (P < 0.05) different from the wettes soils (Lb4195, Lb2bl95 and Lb3bl95). 



5.3.3 Microcalorimetry 

5.3.3.1 Basal lteat oiitp~it (@ 

Levinson-Lessifzg 

Basal heat output Q in the soils at Levinson-Lessing was up to 988.6 pW g-I d.wt. (median 

60.6 pW g-1 d.wt.). Between sites, Q values decreased in the order polygonal tundra, non- 

sorted steps and non-sosted stripeslnets. Within profiles Q values usually decreased witll 

depth. Exceptions sepresented the unvegetated soils whese Q ~ ~ a l u e s  increased with depth. 

In the soils of the polygonal tundra Q values vasied along with the micro-site. In the topsoils 

of the drier elevated site (apex and centse) activities were gseater than in the cossesponding 

depression. Activities decreased with depth but in mose pronounced Imames at the dries 

elevated sites. In the kost boil of profile LL3196 activities were half of the order of magnitude 

measured in the surrounding vegetated soil. The low centred polygon (LLl and 2/96) differed 

fi-om the high centred polygon (LL3 and 4/96) in that respect that the low centred polygon 

soils showed predominating microbial activity in the subsoil whereas in the high centred 

polygon highes activities were found in the topsoil. 

Micro-sites and vegetation cover also affected the heat o u t p ~ ~ t  in the soils of the non-sosied 

steps as well as of the non-sosted stripesinets. In the respective topsoils without vegetation 

cover heat output was more than 70 % lower than in the adjacent vegetated soil. Also the 

activities in the subsoil differed. Thus, in the unvegetated soils (LL8.1196; LL9.1196) Q values 

were gseater in the subsoil than in the topsoil wheseas values decreased with depth in the 

vegetated soils. 

La baz 

Basal heat output Q in the soils at Labaz was up to 1516.2 pW g-I d.wt. (median 

20.4 pW gl d.wt.1. Thus, despite a wider range the median microbial activity was lowes than 

in the soils at Levir~son-Lessing. Between sites, Q values were gseater in the hummock and 

tussock tundra than in the wet sedge tundra. 

In the tussock tundra soil basai heat output was gseater than in the soil. Also Q values varied 

along with the micro-selief although the two sites differed. Whereas at the tussock tundra site 

gseater activities were measured in the depression compared to the dries tussock, at the 

hummock tundra site activities were lower in the fiost crack. Activities genesally decreased 

with depth. A relative peak at a depth of approximately 10 centimetses was observed in the 

hummock tundra. In the wet sedge tundra heat output was only detemined in the upper 

20 centimetses. In the subsoils values tended to Zero. Maximum activity was found at a depth 

of 5 to 10 centi~netses. 
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Heat output - Polygon tundra 

0 1 2 3 Caloric quotlent 0 1 2 3 

LL3196 LL3196 mud pit 
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* Caloric quotient 
-0- Basal heat output 
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Fig 5.3.1: Basal and Substrate induced heat output and caloric quotient in the soiis of the Iow 
centred polygon (apex LLll96; centre LL2196) and the high centred polygon (centre 
LL3196, unvegetated mud pit of the centre LL3196 and frost crack LL4196). Missing 
values were not determined. Note the different scales of the Y-axes. 
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Heat output - Non-sorted steps 

Calorhc quotfent 
+ Basal heat output 
4 Substrate ~ n d u e d  heat output 
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Fig. 5.3.2: Basal and Substrate induced heat output and caloric quotient in the soil of the non- 
sorted step (LL8.1196 bare mud pit, LL8.2196 dry vegetation ring and LL8.3196 wet 
vegetation ring) and the partially ovegrown non-sortecl step (LLll .1 vegetated n ~ u d  
pit; LLll.2196 vegetation ring). Missing values were not determined. Note the 
different scales of the X- and y-axes. 
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Heat output 

0 1 2 3 Caloric quotient 0 1 2 3 

0 Calorlc quotient 
Â Basal heat output 
+ Substrate induced heat outout 

Fig 5.3.3: Basal and substrate induced heat output and caloric quotient in the soils of the non- 
sorted stripes (9.1196 unvegetated mound; 9.2196 vegetation stripe). Missing values 
were not determined. 

Heat output 

LL10.1196 LL10.2196 

0 1 2 3 Caloricquotient 0 1 2 3 

0 Caloric quotient 
+ Basal heat output 
-&- Substrate induced heat output 

Fig. 5.3.4: Basal and substrate induced heat output and caloric quotient in the soils of the 
transitionary stripes (10.1196 unvegetated mound; 10.2196 vegetation stripe). Missing 
values were not determined. 
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Heat output - hummock tundra 
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Heat output - tussock tundra 
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4 Substrate induced heat output 

Fig. 5.3.5: Basal and substrate induced heat output and caloric quotient in the hummock 
tundra (hunirnock Lb2al95, frost crack Lb2bl95) and tbe tussock tundra (tussock 
Lb3al95, depression Lb3bl95) at Labaz. Missing values were not determined. Note 
the different scales of the X- and Y-axes. 

Heat output - wet sedge tundra 
Lb4195 

Caloric quotient 
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Fig. 5.3.6: Basal and substrate induced heat output and caloric quotient in the wet sedge tundra 
at Labaz. Missing values were not determined. 
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5.3.3.2 Substrate induced heat output (SIQ) 

Levinson-Lessing 

Substrate induced heat output 570 in the soils at Levinson-Lessing was up to 

1683.8 pW g-I d.wt. (median 119.5 pW g-1 d.wt.). Thus, substrate amendment generally 
enhanced the overall microbial activity. Between sites, SIQ values decreased in the order 
polygonal tundra, non-sosted steps and non-sorted stripednets. Within profiles values 

generally decreased with depth. 

In the polygonal tundra, soils of the wetter micro-sites (LL2196 and LL4196) showed greater 

values. This increase has already been detesmined for the basal heat output. Yet, with 
substrate amendment this increase was more pronounced. However, in the mud boil of LL3196 
the substrate induced heat output was lower than without substrate. In the subsoil SIQ values 
decreased remarkably although more pronounced in the soils of the elevated apedcentre. 

In the soils of the non-sorted steps, changes in substrate induced heat output along with micro- 
relief and vegetation were observed. SIQ values increased with vegetation cover although this 
increase was not as pronounced as was observed for the basal heat output. This was partly due 

to lower heat output in the unvegetated mud pit (LL8.1196) with substrate amendment than 

without. SIQ values generally decreased with depth although a relative increase in the 
anaerobic subsoil of LL8196 could also be established. 

Micro-relief and vegetation cover also affected the substrate induced heat output in the non- 
sorted stsipeslnets (LL9196 and LL10196). As was established earlier SIQ increased with 
vegetation cover. Substrate amendment enhanced this increase in the case of profile LL9196 
but diminished it for profile LL10196. 

Labaz 

Substrate induced heat output 570 in the soils at Labaz was up to 648.4 pW g-I d.wt. (median 
38.7 pW g-1 d.wt.). Despite a narrower range, substrate amendment generally enhanced the 
overall microbial activity. Yet, the effect was lower than in the soils at Levinson-Lessing. 
Between sites, SIQ values were greater in the wet sedge tundra than in the hummock and 
tussock tundra. Compared to the basal heat output, this order was inverse. 
In the soil of the wet sedge tundra (Lb4195) SIQ could only be measured in the top 
20 centimetres and was enhanced compared to the basal heat output. 

A more complex pattem could be established in the soils of the hummock and soils tundra. 
Substrate induced heat output vasied along with the micro-relief as was stated above for the 
basal heat output. Namely, in the hummock tundra soils SIQ values were greater in the dsier 
hummock and decreased in the cossesponding frost crack. On the contsary, in the tussock 
tundra values were greater in the depression. Yet, the heat output could hardly be enhanced by 
substrate amendment. This increased appeared to be strenger in the subsoil than in the top 
soil. 



5.3.4 Adenosine triphosphate 

Levinson-Lessing 

The adenosine triphosphate (ATP) contents of the soils at Levinson-Lessing was up to 

32.4 pg g" d.wt.. The median was 0.94 pg ATP g"' d.wt.. The ATP contents decreased in the 

order non-sorted steps, polygonal tundra soils, and non-sorted stripeslnets. Within profiles 

ATP usually decreases with depth and varies depending 011 the micro-relief or sites. Topsoils 

of vegetated soils always showed greater ATP contents than the adjacent bare soil. On the 

contrary, ATP contents of the subsoils were often of the same order of magnitude or even 

greater in the subsoils of the bare micro-site. Water logged sites showed a more even 

distribution within the profile than the respective drier site. 

Tab. 5.3.4-1: ATP contents in the non-sorted steps at Levinson-Lessing. 
Profile: horizonldepth ATP [pglg] 
8/96 unvegetated mound AC (0-0.5) 2.99 

AC (0-2) 1.71 
AC (2-4) 1.48 
c g  5.34 

peat ring Oi 32.40 
A 14.75 
Bg (5-9) 0.87 
Bg ('9) 0.50 

11/96 vegetated mound A 0.82 

Bg 2.72 
peat ring Oi 8.74 

Oe 0.90 

Bi? 1.70 

X (rnin) 0.5 
X (rnax) 32.4 
mean 5.8 
median 1.7 

This particularly held true in the soils of the non-sorted steps. As can be seen from 

Table 5.3.4-1, ATP content was 7 to 15 times greater in the vegetation ring than in the 

adjacent mud pit. In the vegetated soils, this abruptly decreased with the mineral subsoil. In 

the mud pits, however, ATP increased with depth (profiles LL8.1196 and 11.1196). 

Table 5.3.4 -2 shows that a uniform Pattern of ATP contents along with the micro-relief was 

lacking in the soils of the polygonal tundra. Whereas the low centred polygon (LL1 and 2/96) 

showed fourfold greater ATP contents in the wet depression, the corresponding sites in the 

high centred (LL4196) and transitionary polygon (LL7196) showed lower contents. These were 

a third of the ATP content in the adjacent apex. Furthennore, subsamples of the polygonal 

tundra revealed "hot spots" of active micro-organisms. Thus, ATP content around the oxidised 

iron (Fe3+) of the around a water vein was manifold (LL1196) greater. The same was found in 

the Fe-oxidation band between the Oe- and Bg-horizon in profile LL4196 and on the plant 
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remnants. However, subsamples of the soils in the transitional polygon were in the Same order 

of magnitude as the surrounding horizon. 

Tab. 5.3.4-2: ATP contents in the soils of the polygonal tundra at Levinson-Lessing (ND' not 
detectahle; ND* not determined). 

Profile: horizonldepth ATP [pglg] 

Low centred polygon 
1/96 vegetated mound Oi (0-5) 

Oi (5-10) 
Oe 

2/96 centre Oi 
Oe 1 
Oe2 

Special features: 
1/96 Carex roots Oi 

Fe-mottling Bg 
2/96 surface Fe-Ox. 

High centred polygon 
3/96 vegetated mound 

frost boil 

4/96 frost crack 

Special features: 
4/96 transition OeBg 

Transitionary polygon 
5/96 centre 

mound 

7/96 frost crack 

Special features: 
5/96 Fe-oxidation 
6/96 roots 
7/96 roots 

o i  
Oe 

Bg 
0-0.5 
0-4 
Oi 
Oe 

Bg 

Bg 

Oi 
Oe 1 
Oe2 
Bg 
Oe f 
Oal 
Oa2 
Oa3 

Bg 
I1 Oe 
Oe 1 
Oe2 

Oe3 
Oe I 

X (min) 0 
X (n~ax) 14.7 
mean 2.1 
median 0.8 



Lowest ATP contents were found in the soils of the non-sorted steps and stripes 

(Tab. 5.3.4 -3). As previously has been described for the non-sorted steps, these soils showed 

variation of ATP contents along with the micro-relief andlor vegetation cover. Thus, values in 

the unvegetated mound were very low (<0.5 pg g"). In the soils with vegetation cover, ATP 

contents were up to ten times gseater. Yet, values were greatest in the upperrnost centimetres 

(in the transition between plant debris and humified material, as subsampling of the Oi- 

horizon revealed (LL 10196). 

Tab. 5.3.4-3: ATP contents in the soils of the non-sorted stripes and nets at  Levinson-Lessing. 

Profile: horizonldepth ATP [pglg] 
9/96 unvegetated mound AC (0-0.5) 0.15 

peat ring 

unvegetated mound 

peat ring 

Svecial features: 
Oi (0-2) 

AC (0-4) 
C 
Oi 
Oie (2-3) 
Oie (3-4) 

A (0-0.5) 
A (0-11) 
C 
Oi (0-2) 
Oi (2-3) 
A 
c 

plant material 
rhizosphere 
humified 
material 
X (min) 0.10 
X (max) 13.70 
mean 1.70 
median 0.73 

Labaz 

The adenosine triphosphate (ATP) contents of the soils at Labaz were up to 25.2 pg g-' d.wt.. 

The median was 1.2. pg ATP g" d.wt.. Thus, ATP contents were gseater than in the soils at 

Levinson-Lessing. The ATP contents decreased in the order hummock and tussock tundra, dry 

carbonatic brown earth, wet sedge tundra, and podzolised brown earth. Within profiles ATP 

contents generally decreased with depth. This decrease was usually abrupt changing fi-om A- 

or 0-horizons into the mineral subsoil. 

Furthermore, as can be Seen fsom Table 5.3.4 -4, the hummock and tussock tundra soils 

showed a different distribution of ATP contents along with the micro-relief. In the soil of the 

hummock tundra, ATP contents were five times gseater in the adjacent kost crack (Lb2195) 

than in the hummock. On the contrary, in the tussock tundra (Lb3/95), values decreased by a 

third in the wet depression. In the tussock as well as in the hummock tundra values decreased 
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with depth but the ratio between the topsoil and the subsoil was narrower in the depression. In 

both profiles a relative increase of ATP could be obsei-ved at a depth of 10 to 20 centimetres 

(5 to 10 centimetres in the fiost crack of the hummock tundra). 

Tab. 5.3.4-4: ATP contents in the soils of the humn~ock and tussock tundra at Labaz (ND not 
detectable). 

Profile ATp [iigkl 

Hunimock tundra 

2/95 hummock A (0-2) som 3.65 
min. 0.23 

c g  (2-5) 0.34 
Cg (5-10) 0.03 
Cg (10-20) 1.36 
Cg (20-30) 0.83 
Cg (30-40) 1.25 

frost crack Oe (0-2) 4.5 1 
Oe (2-5) 0.84 
Oe (5-10) 23.05 
Of (10-20) 1.21 
Of (20-30) 3.00 

Tussock tundra 

3/95 tussock A (0-2) 1.99 
A ( 2-5) 17.77 
Cgl (5-10) 0.14 
Cg2 (10-20) 0.19 
Cg2 (20-30) 0.55 
Cg2 (30-40) ND 
Cg3 (40-50) ND 

depression Oe ( 0-2) 4.16 
Oe ( 2-5) 4.85 
Oe (5-10) 0.91 
Oe (10-20) 1.74 
ACg (20-30) ND 

X (min) 0.0 
X (n~ax) 23.0 
mean 3.5 
median 1.3 

A stratification of the ATP contents was also deterrnined in the dry brown earth (Lbl/95). As 

can be seen from Table 5.3.4 -5, maximum ATP content of 25 pg g" d.wt. was found in the A- 

horizon and decreased remarkably with change into the underlying Bwl-horizon (app. l pg 

ATP g-' d.wt.). ATP contents hrther decreased with depth. Yet, at a depth of 10 centimetres 

values increased until a depth of 50 centimetres (4 pg g-' d.wt.). 
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Tab. 5.3.4-5: ATP contents in the dry brown earth at Labaz. 

Profile Pergelic Cryorthent Horizon/depth ATP [pglg] 
1/95 A (0-2) 25.15 

Bwl (2-5) 1.67 
Bwl (5-10) 0.71 
Bwl (10-20) 1.15 
2Cwl (20-30) 1.62 

Tab. 5.3.4-6: ATP contents in the wet sedge tundra at Labaz. 

Profile Wet sedge tundra Horizon/depth ATP [pg/g] 
4/95 drainage ditch Oi (0-2) 1.97 

In the wet sedge tundra (Tab. 5.3.4 -6) and the podzolised brown earth (Lb7195) ATP could 

only be determined in the topsoil (Oi- and AE-horizons). In the underlying subsoil ATP was 

not detectable. ATP contents were lowest in the podzolised brown earth (Tab. 5.3.4 -7.) 

Tab. 5.3.4-7: ATP contents in the dry podzolised brown earth at Labaz. 

Profile Pergelic Cryorthent Depthlhorizon ATP pg/g 
7/95 Oi ( 0-2) 0.24 
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5.4 Ecological parameters 

5.4.1 Fungal to bacterial ratio 

Levinson-Lessing 

At Levinson-Lessing fimgal to bacterial ratio (FB-ratio) was up to 174.1 (median 4.5). Thus, 

the microbial biomass was clearly dominated by hngi. 

In the soils of the polygonal tundra (LL1-7/96), the ratio was narrower due to higher bactesial 

biomass (median FB-ratio 3.5). Generally, the FB-ratio widened with depth and tended to Zero 

in the supra-pesmafrost layer, where bacteria dominated. Greater values were found in the 

apices or the high centre. 

In the soils of the non-sorted steps (LL8196 and LL11/96), median FB-ratio was 5.8. 

Accordingly, the proportion of the fiingi was higher than in the polygonal tundra. This, 

however, depended on the micro-site. In the vegetated soils ratios were wide and culminated 

at a depth of approximately 10 centimetres. On the other hand, the FB-ratio was 1 (or smaller) 

in the unvegetated mound. 

In compa~ison to the non-sorted steps, the FB-ratio narsowed (median 5.5) in the soils of the 

non-sorted (transitionary) stripes, which was due to higher bacterial biomass. In the 

unvegetated mounds FB-ratios were nil. In the soils of the vegetated stripes, hngi over took. 

FB-ratios of profile LL9196 were narrower than of profile LL11196. 

Labaz 

In the soils at Labaz, FB-ratio was up to 170.0 (median 2.7). Thus, microbial biomass was 

dominated by hng i  although the proportion of bactesia increased in comparison to the soils at 

Levinson-Lessing. At Labaz, FB-ratios were widest in the lower Oe- or upper mineral 

horizons. This peak was found regardless of sites or micro-sites. Below, FB-ratios verged to 

nil where bactesia dominated and hngi tended to be absent. Differences could only be 

established in tesms of absolute figures. 

Maximum values were found in the wet sedge tundra. In the tussock and hummock tundra, 

FB-ratios vasied along with the micro-relief. In the topsoil of the tussock (Lb3al95) and the 

hummock (Lb2a/95), FB-ratios widened with depth. Whereas the A-horizon was dominated 

by bacte~ia, hngi over took in the upper Cg-hosizon. In absolute figures, FB-ratio was wider 

in the tussock than in the hummock. On the contrary, the composition of the microbiota 

differed in the adjacent depression or frost crack. In the fi-ost crack of the hummock tundra 

(Lb2b/95), the microbiota was dominated by bacteria (with exception of a peak around 

10 cm). In the depression of the tussock tundra (Lb3bl95) fungi dominated in the entire 

organic hosizon. 

In the uppermost hosizons of the dry soils (Lbl and Lb7/95), fungi and bacteria 

counterbalanced. FB-ratios widened with depth, although the increase of fungi in profile 

Lb 1 195 was strenger. 
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5.4.2 Caloric quotient 

Levinson-Lessing 

The ratio of basal to substrate induced heat output (caloric quoticnt) was up to 5.1 (median 

0.6) in the soils of Levinson-Lessing. Thus, the substrate induced activity prevailed over the 

basal activity. The caloric quotient narrowed in the following order: non-sorted steps>polygon 

tundra>non-sorted stripes. Within profiles an apparent pattern was lacking. 

In the soils of the non-sorted steps, the caloric quotient was greater 1 when vegetation was 

lacking. This diminished in the presence of vegetation. The caloric quotient also decreased 

with depth although relatively greater quotients could also be obsei-ved. The latter quotients 

were k1. These were determined in the anoxic horizon of profile 8.1. and the aerobic upper 

centimetres of the subsoil of the vegetation ring (LL11.2196 and LL8.2196). In contrast values 

verged to nil in the anoxic horizon of the soils with vegetation Cover. 

In the topsoils of the polygonal tundra, the caloric quotient was smaller 1. Again, the quotient 

increased (i.e., >1) with lacking vegetation as in the mud boil of the high centred polygon 

(LL3196). However, the caloric quotient charactesistics differed remarkably between the two 

types of polygons. They differed with respect to micro-site and to depth. In the soils of the low 

centred polygons the quotient increased with depth. This increase was stronger in the apex 

than in the wet centre and exceeded 1. In the corresponding profile of the high centred 

polygon (LL3196) the quotient decreased with depth although maximum quotient of > l  was 

determined in the lower organic hosizon. 

Caloric quotient in the non-sorted stripes were generally very low and verged to nil. Quotients 

>1 were found in the anoxic mineral subsoil of unvegetated mound (e.g., LL9.1196) and the 

organic horizons of the vegetated mound (e.g., 10.2196). 

Summing up it may be stated that the microbial activity was enhanced by substrate 

amendment. Exceptions were the mineral topsoils of the unvegetated soils, the anoxic subsoil 

of the unvegetated soils as well as the upper centimetres of the subsoil of the drier elevated 

micro-sites. Here, substrate induced heat output was below basal heat output, i.e., quotients 

exceeded 1. The different abiotic properties suggest a different composition of the microbiota 

at the respective micro-habitats. 

Labaz 

In the soils at Labaz, the caloric quotient was up to 3.5 (median 0.5). As was observed in the 

soils of Levinson-Lessing substrate induced microbial activity predominated. 

In the wet sedge tundra (Lb4195) the caloric quotient was only determined in the Oi-horizon 

since no activity could be measured in the subsoil. Within the Oi-horizon quotients increased 
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with depth and exceeded 1 in the lower centimetres. In the hummock and tussock tundra, 

values varied along with the micro-relief although both tundra types differed. The relatively 

elevated micro-site showed a zigzag pattem of caloric quotients with increasing depth. They 

both showed a peak (quotient >1) at lower depth of approximately 10 centimetres. Yet, they 

differ in the topsoil and the underlying subsoil. The hummock (Lb2a.195) showed greater 

substrate induced activity in the topsoil (caloric quotient <1) and predominating basal activity 

above the permafiost table. In the tussock (Lb3al95) on the contrasy quotients were nil since 

no basal activity was measured. In the cossesponding depression quotients were always <1 and 

showed a peak (>I) in the lower Oe-horizon and a relative increase above the permafrost 

table. 

As for the soils at Levinson-Lessing the substrate induced microbiota predominated. 

Nevertheless micro-habitats with differing calosic quotients were also found in the soils at 

Labaz. These represented the transitional hosizons from the topsoil to the mineral subsoil as 

well as the supra-permafrost layer. 

5.4.3 Microbial inventory 

The measurement of trace gas fluxes in the field represent activity studies under natural 

conditions. Data are usually given as a flux over a given area. For the soils of this study CO2 

(SOMMERKORN, 1998) and CH4 fluxes (GUNDELWEIN, 1998) were measured. As a 

consequence an inventosy of fungal and bacterial biomass data from Sections 5.3.1 and 5.3.2. 

was also taken [mg CÃ£Ã m"] for hrther understanding of the mediating microbial population. 

Levinson-Lessing 

Fungal and bactesial carbon inventories CI for the soils at Levinson-Lessing are shown in 

Table 5.4.3-1. Bulk density changed within profiles and between micro-sites, which results in 

a different distribution pattem of fungal or bacterial biomass. In contrast to data related to dsy 

weight of soil, decreases of hngi and bacteria within profiles became less pronounced due to 

increasing bulk density. 

As an example given, increasing bulk density between micro-sites in the soils of the non- 

sorted stripes (LL9196) and the transitionary polygon (LL5 and 6/96) amplified increases in 

fungi and bacteria. On the contrary, lower bulk density in wet depressions (LL2196) or fsost 

cracks (LL4196) for instance balanced differences out. In the case of the high centred polygon 

this resulted in an inverse relationship. Fungal CI became gseater in the fiost crack than in the 

adjacent higher centre. Bacterial CI, however, became greater in the centre. An inverse 

relationship was also observed between the centre and the mud boil of the high centred 

polygon (LL3196) and within profile LL1196. In the latter bacteria increased with depth when 

given as bactesial CI. 



Tab. 5.4.3-1: Bulk density Db [g cm3], fine earth bulk density Dbr[g c n ~ ' ~ ] ,  fungal and bacterial carbon 
inventory CI [mg C m'2] in the iipper 4 crn of soils at Levinson-Lessing. Subsoil samples 
were taken for profile LL1196 and LL3196. *values were calcnlated using an estimated 
value of bulk density. 

Profile Horizonldepth Db D bf CI fungal CI bacterial CI 
[g ~ r n - ~ ]  [g [kg m-2] [mg C rn-2] [mg C m-*] 

Polygon tundra 
Low cenfred 
apex (L,L 1/96) Oi (0-4 cnl) 0.48 3.9 777.3 68.9 

Oc (6- 10 cm) 0.94 8.0 428.6 77.4 
Cenire (LL2/96)* '0.34 1 .0 *237. 1 *8.6 

High centred 
Centre OiIOe 0.34 

Bg (2-6 cm) 0.68 

mud boil (0-4 ein) 1.09 
Frost crack 0.09 
(LL4196) 

Transitionai-}' 
Centre (LL5196) OiIOe 1 0.34 
Apex (LL6196) OallOa2 0.38 

Non-sorted steps 
LL8.1196 mud boil 1.29 0.59 0.7 54.1 50.5 
veg. ring A (0 4 cm) 0.75 0.08 0.3 388.8 8.1 
(LL8.2196) 

Non-sorted stripes 
non-vegetated AC 1.51 0.52 0.5 0.0 48.2 
CLL9.1196) 
veg. s t~ ipe  OilOie 
(LL9.2196) 
veg. stripe 
(LL 10.2196) OilA 0.57 4.8 712.2 160.9 

Labaz 

For the soils at Labaz, bulk density values were available for whole profiles. As can be seen 

from Table 5.4.3 -2 values for fungal and bacterial CI showed also differences in the soils at 

Labaz other than from simple biomass data. Decreases of fungi and bacteria with depth were 

less pronounced with increasing bulk density (e.g., Lb2a.195). Conversely, relative increases 

were enhanced such as the peak at a depth of 10 to 20 cm or in the supra-permafrost layer of 

profile Lb3a195. In the corresponding depression an analogous peak became only apparent 

when hng i  and bacteria where given in inventories. 

On the contrary, increases in fungi and bacteria between micro-sites (as in profile Lb2195; 

Lb3195) diminished along with lower bulk density. For bacteria this resulted in an inverse 

relationship. Greater bacterial CI was found in the hummock although in the depression the 

bacterial biomass was greater. 



Tab. 5.4.3-2: Bulk density Db [g cnl-31, fungal and bacterial carbon inventory CI [n~g  C m-21 at 
different depths in the soiis at Labaz. ND not determined (modified frorn GUNDELWEIN, 
1998). 

Profile Horizon D u CI fungal CI bacterial CI 
[g crn"] [kg [mg C m"2] [mg C 

Hummock 
tundra 
2d95 A (0-2 cm) 0.9 1.85 143.5 489.7 

Cg (2-5 cm) 1.3 0.59 336.7 57,9 
(5-10 cm) 1.3 0.98 599.2 48.1 

(10-20cm) 1.3 1.69 1968.5 277.7 
(20-30 cm) 1.3 1.69 24.6 95.2 
(30-40 cm) 1.3 2.08 0.0 67.7 

Oe (0-2 cm) 0.3-0.6 2.75 - 5.5 104.7-209.4 156.1-312.2 
(2-5 cm) 0.3-0.6 4.12 - 8.24 32.1-64.3 50.1-100.3 

(5-10 cm) 0.3-0.6 6.87 - 13.7 733.7-1467.4 34.4-68.7 
Oef (10-20 cm) 0.3-0.6 13.74 - 27.48 637.7-1275.5 161.2-322,l 

(20-30 cm) 0.3-0.6 13.74 - 27.48 0.0 53.0-105.9 

Tussock tundra 
3 d 9 5  A (0-2 cm) 

(2-5 cm) 
Cgl  (5-8 cm) 
Cg2 (8-10 cm) 

(10-20 cm) 
(20-30 cm) 
(30-40 cm) 
(40-44 cm) 

Cg3 (44-50 cm) 

3bi95 Oe (0-2 cm) 0.2-0.5 1.34 - 3.36 747.0-1867.0 108.0-269.0 
(2-5 cm) 0.2-0.5 2.02 - 5.04 470.2-1 175.5 79.4-198.4 

(5-10 cm) 0.2-0.5 3.36 - 8.4 978.6-2446.4 331.1-827.8 
ACg (10-17 cm) 0.2-0.5 4.70 - 11.76 3065.0-4279.0 309.0-432.1 

(1 7-20 cm) 1.3 1.48 2255.3 227.7 
(20-30 cm) 1.3 4.94 0.0 223.0 

Wet sedge tundra 
4/95 Oi (0-2 cm) 0.5 1.68 1039.8 293.8 

(2-5 cm) 0.5 2.52 4600.0 243.1 
(5-10 cm) 0.5 4.2 31191.4 183.5 

(10-12 cm) 0.5 1.68 5725.8 303.0 
ACg (12-20 cm) 1.4 2.02 5256.5 278.2 

(20-30 cm) 1.4 2.52 186.4 205.9 
(30-40 cm) 1.4 2.52 0 145.0 
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Cluster 1 

Cluster 2 

Fig. 5.4.1: Relationship of fungal biornass [pg Cf g'l d.wt.1 and substrate induced heat output 
SZQ [pW g'l d.wt.1 in the soils with predorninant fungal rnicrobial biornass at 
Levinson-Lessing and Labaz. 
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5.4.4 Allocation of microbial habitats 

Microbial biomass vs. substrate induced heat output 

As was mcntioncd before (4.3.2.2.) substrate induced heat output SIQ is a parameter used to 

detemine soil microbial biomass. In this study overall data of fungal and bactesial biomass 

did not correlate with SIQ suggesting a complex microbial community structure. However, 

individual relationships of SIQ to fungal and bacterial biomass became apparent when looking 

at particular soils OS the respective micro-organisms alone. Figure 5.4.1 shows the relationship 

of the fungal biomass and 570 in the soils with a predominating fungal component of the 

microbial biomass (FB-ratio > I ) .  The plot shows two discernible clusters. The first cluster is 

characterised by a steep linear increase of SIQ per unit fungal biomass (r2=0.78). Generally 

these were mainly organic topsoils of all investigated sites at Levinson-Lessing and Labaz. 

Most entries were found among the lower Oi- or Oe-hosizons. An exception here represented 

the mineral topsoil of the mud pit of the high centred polygon (LL3/96). At a lower level 

another cluster showed a linear, more gentle increase of SIQ per unit fungal biomass (r2=0.73). 

This relationship was generally found for mineral subsoils. Exceptions were organic topsoil 

horizons of the wet sedge tundra (Lb4196) and the frost crack in the tussock tundra (Lb2a195). 

Fig. 5.4.2: Relationship of bacterial biomass [pg Ci, g'l d.wt.1 and substrate induced heat 
output in the uppermost 5 cm of soils with predominating bacterial microbiota at 
Levinson-Lessing. 

Soil hosizons with a predominating bacterial microbiota (FB-ratio <1) generally showed rather 

low SIQ values. SIQ and bacterial biomass only correlated well (r2=0.83) in the uppermost 

centimetres of organic topsoils (i.e., Oi-horizons). This relationship was also marked by a 
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logarithmic increase of SIQ values per unit bacterial biomass which was steeper than was 

observed for hngi. However, as can be seen from Figure 5.4.2 the random sample size was 

small. Increasing hngi (i.e., gseater FB-ratios) did not attribute significantly to increasing SIQ 

values. 

Activity of substrate sensitive biomass 

Figure 5.4.3 shows the relationship of ATP contents and substrate induced heat output SIQ for 

the soils of bot11 study areas. Three clusters were discemible. Cluster no. 1 is characterised by 

great SIQ values (>250pW g-1 d.wt.). Cluster no. 3 showed intermediate values. As for 

duster no. 2; SIQ values were low but ATP contents were high (>2 pg ATP g'l d.wt.). 

ATP [pg g"' d.wt.1 

D Organic topsoil horizons with predominant fungal population 
A Various horizons with high ATP-concentration 
0 Others 

Fig. 5.4.3: Relationsh$~ of ATP-contents [pg g1 d.wt.1 and substrate induced heat output 
SIQ[pW g- d.wt.1 in the soils at Levinson-Lessing and Labaz. 

Cluster no. 1 comprises drier (apices of the polygonal tundra, overgsown non-sorted steps, the 

soils of the vegetation ring) as well as wetter organic horizons (tussock and wet sedge tundra) 

and subsoil horizons of the wetter micro-sites of the polygonal tundra. As can be seen ATP 

contents correlated well (r2= 0.87) with SIQ values in these horizons. 

Fungal and bacterial biomass was significantly (p=0.10; p<O.Ol) greater in the horizons of 

cluster no. 1 than in cluster no. 3. FB-ratios, however, did not diverse. This suggests that the 

differences were caused by the magnitude of the total active microbial biomass. 
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In the horizons of cluster no., 2 SIQ values were low despite high ATP contents. The overall 

microbial biomass was low. Yet, this was mainly because of low fungal biomass (median 

9.08 pg cfg-' d.wt.) which was similar to the horizons of cluster no. 3. On the contrary, 

bacterial biomass in these horizons (median 13.2 pg Cb g" d.wt.) was significantly higher 

(~K0.05). This was also reflected by the FB-ratio. The latter was also significantly (D=O.lO) 

narrower than in the horizons of cluster l and thus clearly dominated by bacteria. ATP 

contents, however, were neither correlated to SIQ nor to basal heat output Q. Cluster no. 2 

comprises the very top centimetres of many Oi-horizons (i.e., generally 0-2 centimetres of the 

soils of the hummock and tussock tundra as well as the vegetated non-sorted stripe), 

furtherrnore the anoxic subsoil of mudpits (non-sorted steps) and the corresponding upper 0.5 

centimetres of the unvegetated mudpit. 

Active versus restricted microbial bioinass 

ATP contents neither correlated with fimgal nor with bacterial biomass. Nevertheless 

differences between individual soils were observed when relating ATP to microbial biomass 

(here: summed up fkngal and bacterial biomass, Cb). 

In the soils at Levinson-Lessing, median ATP content per unit microbial biomass was 

0.03 ATP pg" Cfi. At Labaz median value was 0.05 pg ATP pg" Cn, and significantly 

(p<0.10) different. Maximum values also were up to seven times greater at Labaz than at 

Levinson-Lessing. 

Table 5.4.4 -1 shows that values varied with sites at the respective study area. Similarity 

between individual sites at Levinson-Lessing and at Labaz could not be established. 



Tab. 5.4.4-1: Difference of median ATP:MBM (snmmed up fungal and bacterial biomass) ratios 
[pg ATP: pg Cm] and significance level lp] between individual sites at Levinson-Lessing and 
Labaz (PT.: polygonal tundra; Solst.: non-sorted steps with solifluction; Str.: non-sorted 
stripes; BE: dry brown earth; HT: hnmn~ock tundra; TT: tussock tundra; WST: wet sedge 
tundra; P. BE: podzolised brown earth). 

Profiles ATP:MBM PT Solst. Str. BE HT TT WST p. BE 

PT (LL1196-7/96) 0.02 0.07 0.67 0.15 0.10 0.38 0.06 0.30 
Solst. (LL8196; LLlll96) 0.19 0.02 0.20 0.21 0.46 0.00 0.69 
Str. (LL9- 10196) 0.03 0.14 0.08 0.36 0.01 0.25 
BE (Lbll95) 0.56 0.45 0.79 0.12 0.24 
HT (Lb2195) 0.10 0.78 0.05 0.39 
TT (Lb3195) 0.03 0.32 0.53 
WST (Lb4195) 0.00 0.15 
p. BE (Lb7195) 0.05 

At Levinson-Lessing ATP content per unit microbial biomass was significantly (p<0.10) 

higher in the non-sorted steps of the solifluction slopes. These also showed differences along 

with the micro-relief. In the unvegetated mud boil (LL8.1196) values were some 90 % gseater 

than in the adjacent vegetation ring. On the contrary, in the soils of the overgsown step 

(LL11196) this relationship was inverse. Values were 30 % gseater in the vegetation ring. In 

the non-sorted stripes, ATP content per unit microbial biomass also increased along with the 

vegetation Cover. Yet, this increase was far less pronounced in profiles LL9196 (i.e., 10 %) 

than in profiles LL10196 (i.e., 60 %). In the polygonal tundra, values were greater in soils of 

the drier micro-sites than in the corresponding depression or frost crack. Yet, this did not 

apply to the low centred polygon where no difference could be observed between the micro- 

sites. Values were higher in the high centred and intermediate polygon. Within profiles, values 

generally decreased with depth. Exceptions here represented the wet micro-sites of the high 

and low centred polygon, the drier apex of the intermediate polygon and the subsoils of the 

non-sosted steps. In the latter this increase with depth was either an absolute (profile LL11196) 

or a relative within the subsoil (LL8.2196). 

At Labaz ATP content per unit microbial biomass decreased in the order: dry brown earth > 

tussock tundra > hummock tundra > podzolised brown earth > wet sedge tundra. Difference 

between dry brown easth and the tussock tundra as well as between the latter and hummock 

tundra could not be established. The inconsistency in this relationship was due to a wide range 

of values in the tussock tundra along with the micro-relief. The wet sedge tundra soil showed 

a significant lower ATP content per unit microbial biomass than the soils of other sites. 

Within profiles values generally decreased with depth. Exceptions here could be observed in 

the soils of the tussock and the hummock tundra. These showed increased ATP contents per 

unit microbial biomass at a lower depth. In the soil of the hummock tundra this increase was 

observed at a depth of 5 and 10 centimetres. Values were greater than in the overlying 

horizons. In the soils of the tussock tundra this increase represented only a relative one and 
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was observed at a depth of 10 to 20 centimetres. In the dry brown earth increasing values were 

observed at a depth of 10 centimetres and culminated at a depth of 50 to 60 centimetres. 

A c t i v e h g i  

In soil horizons with predominating fungi, ATP content per unit fungal biomass was up to 

3.9 pg ATP pg" Cr. Yet, two thirds of the respective sarnples showed extreme low values of 

smaller than 0.04 pg ATP pg" Cf. Nevertheless hngal biomass was significantly (p<0.05) 

greater. This relationship particularly held true for subsoil horizons and few organic horizons 

in the non-sorted steps and stripes at Levinson-Lessing. In the low centred polygon, values 

were lower in the wet centre than in the con'esponding apex. This relationship was inverse in 

the high ccntrcd polygon, Values were greater in the drier centre. 

In the soils at Labaz, extreme low ATP content per unit iÃ¼nga biomass were always found in 

horizons that showed absolute or relative peaks of fungal biomass. 

5.4.5 Controls of microbial habitats 

Soil pH 

Fungi and bacteria were present in soils over the whole range of soil pH. Fungal biomass 

(FBM) showed a normal distribution pattem (see Fig. A4.1-1) along with pH with maximum 

FBM at pH (CaCl;) 5.7. On the contrary, no such or only a weak distribution pattern was 

discemible for bacterial biomass (BBM). Thus microbial community composition as 

expressed by the FB-ratio was also affected by soil pH as FBM was. 

For the tundra soil types (Lb2195- Lb4/95) at Labaz, maximum FBM values 

(45-120 pg Cf g"d.wt.) at soil pH (CaCl;) around 5.1 were found in most subsoil horizons at a 

depth of approximately 10 centimetres. The soils at Levinson-Lessing showed a different 

distribution pattern of FBM along with pH. Relatively high FBM values 

(60-100 pg Cfg-' d.wt.) were found at pH (CaCl;) 6.2. These comprised most organic topsoils 

of the drier micro-sites of the polygonal tundra as well as of the vegetated non-sorted stripes 

and steps. Below pH 6.0, FBM was usually smaller than 50 pg Cff' d.wt.. Yet, beside the 

relative peak of a normal distribution pattern, a duster of higher FBM values 

(> 60 pg Cfg" d.wt.) was also found below pH (CaCl;) 6.0, which could be attributed to the 

vegetation ring of the non-sorted step (LL8196) and the wet centre of the low centred polygon 

(LL2196). 

As mentioned above, bacterial biomass (BBM) only showed a weak normal distribution 

pattem along with soil pH. Yet, two clusters were discemible that feil out of this pattern. In 

the tundra soil types at Labaz (Lb2-4/95), the uppermost centimetres of organic topsoils 

showed high BBM values (>20 pg Cb g-' d.wt.) at low pH 5.1 (CaCl;). BBM values between 

15 and 22 pg Cb g" d.wt. were found at higher pH values (6-7.8). This cluster was observed in 



the soils at Levinson-Lessing namely in the uppennost centimetres of organic topsoils of the 

polygonal tundra, the non-sosied stripes and steps. Yet, these horizons were not identical to 

those for which an increase in FBM has been described before. In the latter 0-horizons, on the 

contrary, BBM values were rather low (usually around 5 [IQ Cb g" d.wt). Profile LL11196 

represented an exception. 

Within most Oi-horizons at Levinson-Lessing, BBM tended (+G.64) to increase with 

increasing pH. This relationship did not apply to the centre of the low centred polygon 

(LL2196), profile 8.3196 of the vegetated non-sosied step and profile 9.2196 of the vegetation 

stripe. This relationship could also not be established for the soils at Labaz. 

Vegetation 

Generally the presence of vegetation govemed the size as weil as the composition of the 

microbiota. As mentioned in Section 5.4.1 microbial biomass shifted towards higher bacterial 

biomass in unvegetated soils. Vegetation is also closely related to both quantity and quality of 

soil organic matter content. Thus, plants affect the nutrient resource for micro-organisms. 

Effect of lichens 

Fig. 5.4.4: Impact of Iichens on bacterial biomass BBM [pg Ch g"' d.wt.1 in the uppermost 
centimetres of lichenised and non-lichenised soils. 

In both study areas, lichens represented an important component of the vegetation cover at 

drier sites. As can be seen from Figure 5.4.4-1, bacterial biomass was significantly (p<0.05) 

lower in the uppermost centimetres of soils with liehen stands. At Levinson-Lessing these 

comprised the drier micro-sites of the polygonal tundra as well as the d~ ie r  vegetated soils of 

the non-soried steps and stripes. At Labaz, lichens were present in the vegetation cover of 

both brown earih soil types as well as in the elevated hummock of the hummock tundra site. 
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On the contrary, this relationship could not be established for fungal biomass. Thus, FB-ratios 

tended to be wider in the lichenised soils. Soil pH was not significantly different. 

The impact of plants that form mycorrhizal associations could not be investigated because of 

the low random sample size of soils with non-mycorrhizal plants (n=4). 

Substrate quantit}' 

Substrate quantity was found to affect the microbial biomass and influenced furthermore the 

microbial community composition and its activity (see Fig. A5-2 and A5-5). 

In vegetated dry topsoils as well as in subsoils, bacterial biomass increased with increasing 

carbon and nitrogen content (pw0.6-0.8). Fungi only showed greater biomass values with 

increasing nitrogen content in dry vegetated topsoils ( ~ ~ 0 . 6 ) .  These also showed a positive 

correlation of basal Q and substrate induced heat output 570 with increasing carbon content 

(pw0.64). The latter was also found to increase with carbon and nitrogen content (pasO.85; 

p~0.60).  Yet, ATP content did not increase accordingly, which suggests an increasing 

proportion of glucose sensitive micro-organisms. In subsoil horizons, increasing substrate 

quantity was found to enhance glucose sensitive activity, which correlated with bacterial 

biomass ( ~ ~ 0 . 7 1 ) .  In dry topsoils, carbon content also increased overall activity (i.e., basal 

heat output Q). 

On the contrary in topsoils of wet depressions (see Fig. A5-2), overall microbial biomass was 

not affected by carbon and nitrogen content. Yet, a negative effect on the composition of the 

microbiota was observed. The proportion of the autochtonous microbiota (i.e., caloric 

quotient) decreased with increasing carbon content (P=-0.94 ) and Cm-ratio (P=-0.89). 

Substrate quality 

As has just been described for wet topsoils substrate quality as expressed as Cm-ratio showed 

an impact on cornpusition of the microbiota but less on its size and its activity. In contrast to 

wet topsoils, substrate quality did not show any affect in dry topsoils. Thus the caloric 

quotient decreased with wider CIN-ratios (p-0.89) in wet soils. Substrate quality further 

affected the glucose sensitive micro-organisms (SIQ) in subsoils. 570 was inhibited by wider 

Cm-ratios (rw-0.9). Accordingly, the caloric quotient increased with higher Cm-ratios 

( ~ ~ 0 . 6 3 ) .  
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Water logging 

In the two study areas, water logging occurred at any depth within soil profiles. The most 

conspicuous type was water saturation up to the soil surface in wet depressions of micro-sites 

or in a drainage ditch as at Labaz. These sites had vegetation stands with adaptation to wet 

conditions (e.g., Carex spp., Eriophorum spp.). CIN-ratios in soils at wet (micro-)sites 

differed significantly (o<0.05) from dry topsoils (see Fig. A5-5). Fungal and bacterial biomass 

values were found to be significantly (p<0.15, p<O.Ol) greater in the wetter soils though the 

activity parameters (i.e., basal heat output, ATP, ATP content per unit microbial biomass) 

were not. 

Impeded drainage within profiles occurred above horizons with lower perrneability and above 

the perrnafiost table. In supra-perrnafrost horizons, substrate quantity was significantly 

different (p=0.01). Carbon contents were four times higher horizons although nitrogen content 

were half of the comparable dry subsoil horizons. The increasing carbon contents mainly 

affected bacterial biomass (r~0.8),  which was twice the biomass of drier subsoils. Activity 

parameters did not show any significant difference. 
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6. Discussion 

This earth is honey to all beings, and all beings are 
honey to this earth. 

Upanishads 

6.1 Microbial pool in tundra soils 

The data obtained from this study give a detailed picture of the composition of the microbial 

pool and habitats in arctic tundra soils. Spatial heterogeneity of both fungal and bactesial 

biomass as well as the energetic state proved to be important Parameters for the description 

and understanding of the decomposer cycle in this environment. 

6.1.1 Vertical distribution 

In all tundra soils studied, microbial biomass was largely restricted to topsoil horizons, which 

are the upper 10 to 20 centimetres of the active layer. Fungi and bactesia both decreased with 

depth. For fbngi, this decrease was more pronounced and ofien marked by a distinct decline or 

cessation towards the subsoil (e.g., PT, HT, TT, WST). Bactesia also concentrated in the 

topsoil but occurred throughout the soil profile (SCHMIDT & BOLTER, unpubl. data; BOLTER, 

1998). This distsibution Pattern of microbial biomass was reported for the soils of the IBP 

sites (BUNNELL et al., 1975; CHERNOV et al., 1975; HOLDING, 1981) but also for other biomes 

(ZVYAGINTSEV, 1994; PAUL & CLARK, 1989). Generally, this disti-ibution Pattern was linked 

to soil organic matter since soil micro-organisms are primasily decomposers. Yet, the results 

of this study also showed that microbial biomass did not simply follow the distribution of 

organic matter content. For instance, higher values of microbial biomass were found below 

organic hosizons (e.g., HT and TT), and drier micro-sites show greater microbial biomass 

despite lower Corg contents than adjacent wet sites. Thus, in tundra, soil organic matter did not 

represent the only factor that influences soil microbiota. The studied soils also differed fiom 

those of most other biomes with respect to the shallowness of the total hosizons, which micro- 

organisms predominantly inhabit. Furthetmore, microbial biomass was also lower. 

Fungi 

At Levinson-Lessing the iÃ¼nga hyphal length was up to 396 m g" d.wt. with a median of 

21 m g '  d.wt.. Although the range of values was wider at the expesimental site Labaz (up to 

920 m g"' d.wt.), the median was only 4.1 m g" d.wt.. These values are low compared to those 

fiom other biomes (review by KJ0LLER & STRUWE, 1982) and even from IBP tundra sites 
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(HOLDING, 198 1). Hyphal fungal length was of the same order of magnitude as respective data 

of agricultural Systems in temperate regions. In the latter, liowever, fungi represent a minor 

proportion of the total soil microbial biomass (e.g., BRUSSARD et al., 1990). Fungal hyphal 

length obtained from this study was within the range from tundra sites in Alaska or Canada 

(mean vaiues up to 1150 m g '  d.wt., K J ~ L L E R  & STRUWE, 1982). Data are given as median 

values because of asymmetrical distribution. Mean values were higher. Differing sampling 

techniques may also account for differences in average values of hyphal length. Values for 

various tundra sites were measured for the uppermost centimetres of the active layer 

(maximum depth 15 cm; BLISS, 1975). In this study, on the contrary, length of fungal hyphae 

was measured at all deptlis of the active layer. As a result sainples with low or no fbngal 

biomass were more numerous witliin the total random sample size. Furthermore, variability of 

fungi is particularly high (PARINKINA, 1989). 

As mentioned above, fungi were confined to the presence of organic matter. Thus, fungal 

biomass is particularly high in topsoils and decreases with depth. Exceptions were given in 

unvegetated soils of the solifluction slopes and Leptosols On top of mountains, which may be 

explained by the absence of carbon sources. In level soils a relative increase or peak of fungal 

biomass was observed at a depth of approximately 10 centimetres. This coincided with high 

root densities. In order to enhance nutrient acquisition, many tundra plants form mycorrhizal 

associations. Although the presence of Diyas, Salix and Betula spp. in the vegetation Cover 

suggests that a great proportion of fimgal biomass may be mycorrhizal, this could not be 

shown by statistical analysis. The random sample size of soils where mycorrhizal associations 

could clearly be excluded, was too small. Furtherrnore, vegetation communities with plants 

that do not form mycorrhizal associations also showed high fungal biomass values. The 

vegetation of the non-sorted steps and stripes (LL 8/96 to LL11196) for instance comprised 

legumes (e.g., Astragalus spp.) and other higher plants Oxitropis spp., which occasionally 

have been found to be infected by rhizobia. Yet, the respective soils had acid pH, at which 

rhizobial nodulation is less likely to occur (KILLHAM, 1994). Acid soil reaction may explain 

higher fungal biomass values at these sites. Since fungicides were reported to enhance 

rhizobial infection (TATE, 1995, p. 322), it may be inferred that N2-fixing bacteria are less 

competitive in the presence of fungi. In contrast, fungal diversity is higher in these soils 

(CHERNOV et al., 1975). 



6.1 Microbial pool in tundra soils 117 

Bacteria 

According to SCHMIDT & BOLTER (unpubl. data) total bactesial number (TBN) ranged 

between 0.2 and 7.4*109 g"' d.wt. at Levinson-Lessing. The experimental site at Labaz showed 

lower values (BOLTER, 1998). Provided that total bactesial number was deterrnined by direct 

obsesvation methods, values of this study were of the Same order of magnitude as results fsom 

other arctic soils (CHERNOV et al., 1975; BUNNELL et al., 1975) as well as fiom soils of other 

biomes. Yet, bacterial biomass was much smaller than in soils of other biomes because of 

extremely sn~all cell volumes (0.04-0.05 pn3 ;  SCHMIDT & BOLTER, unpubl. data; BOLTER, 

1998). Evaluation of TBN data alone may result in a misjudgement of bacteria with respect to 

microbial biomass. This may pastially explain the significance attributed to bacteria by some 

studies (MATVEYEVA et al., 1975; CHERNOV, et al., 1975). Bacterial biomass data (usually 

given in g m'2) were generally below fungal biomass (BLISS, 1975; BUNNELL et al., 1975). 

Bacterial biomass generally decreased remarkably with depth although the following 

deviations were observed. At Labaz, bacterial biomass was approximately ten times higher in 

the organic topsoil than in the underlying hosizons. Relative increase or peak values may often 

be observed at a depth of approximately 10 centimetres. This increase was accompanied by 

higher Core contents (this study. BOLTER, 1998; GUNDELWEIN, 1998) and probably higher 

nutrient contents (MATVEYEVA et al., 1975). At Levinson-Lessing, this increase of bactesial 

biomass was found in a less pronounced manner in the polygonal tundra soils of the Krasnaya 

valley. Since this feature only occurred in level land with impeded drainage (PT, TT, HT, 

WST), further explanations may be linked to particular hydrological conditions. The dry 

podzolised brown easth at Labaz (profile Lb7t95) represented an exception here. Yet, the 

respective horizon at a depth of 10 to 25 centimetres was characterized by a cemented 

illuviation Zone above a gleyed horizon (for fusther discussion see Sect. 6.3.2 'fiontier'). 

Bacterial biomass also increased above the permafsost table, which corresponds to findings by 

LYSAK & DOBROVOL'SKAYA (1982). The layer was charactesized by water saturation and a 

doubling of soil organic matter, which comprises lighter fractions (< 1.6 g cm3) of fulvic 

acids as fsactionation has shown (GUNDELWEIN, 1998). Since macroscopic organic matter 

(e.g., fibres, root remains) was lacking, this increase is most likely explained by accumulation 

and dehydration of dissolved organic carbon (DOC) due to impeded drainage above the 

permafsost table. 
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In these subsoils, bacteria were found to prevail over hngi. The statistical data suggested that 

bacteria throve with increasing substrate quantity (C and N contents) whereas fungi were not 

affected. In contrast, low temperatures and reducing conditions in these horizons represent 

Stress factors for fungal proliferation (ROBINSON & WOOKEY, 1997; HOLDING, 198 1 ; 

FLANAGAN & SCARBOROUGH, 1974). Generally the soils of this study were characterized by 

high fungi to bacteria ratios (FB-ratios). This is explained by overall high Cm-ratios, 

indicating coinplex polymer structures of the soil organic matter. 

In topsoils, manifold higher fungal bioinass resulted in high FB-ratios. These were widest in 

dry and warm organic topsoils. With the exception of the 'frontier', FB-ratios lowered with 

depth. In unvegetated soils and wet micro-sites, FB-ratios were also found to be lower than or 

equal to 1. Thus, microbial composition also varies between sites. 

6.1.2 Variation between sites 

The experimental sites showed specific forms of micro-relief with regular repetition of 

elements (see Sect. 2.1.4.2) due to cryogenic processes. These were accompanied with 

peculiar pattems of soils and vegetation (pattemed ground-soil-vegetation complexes). 

Vegetational succession and fieeze-thaw processes both showed independent and interactive 

effects. This study showed that microbial properties reflect edaphic and vegetational changes 

between sites. 

At level OS gently sloping tundra sites, drier apices were surrounded by wet depressions and 

troughs (TT, HT, PT). Furthermore, these sites were often intersected by drainage ditches 

(WST) and brooks. As observed for vertical distribution, fungal bicmass fluctuated most 

between wet and drier micro-sites. As mentioned before, fungi predominated in the upper 

horizons of the drier apices. Fungal biomass values tended to be higher than in the respective 

wet micro-sites. Thennal conditions, aeration and weakly decomposed organic mats 

represented a more favourable environment. At wet micro-sites (LL2196; 4/96; 7/96 as well as 

Lb2b195, 3bl8.5 and 4/95) higher fungal biomass values were found in the horizons between 

the topsoil and supra-permafrost layer. Bacteria on the contrary prevailed in the uppermost 

horizons. Since temperature conditions and oxygen levels were more favourable for hng i  in 

the upperrnost horizons, this increase of fungal biomass may be explained by vegetational 

andlor root effects, of for instance Eriophorum spp., at these sites (see Sect. 6.3.2 

'rhizosphere'). Fungal diversity and biomass is greater in litter and rooting ho~izons 
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underneath these vegetation stands (FLANAGAN & SCARBOROUGH, 1974; CHERNOV et al., 

1975). In addition, high abundance of fungi exemplifies that hng i  tolerate water saturation, a 

finding supposted by FLANAGAN & SCARBOROUGH (1974). The comparison of fungal carbon 

inventory between these micro-sites shows that higher fungal biomass values ofien coincided 

with bulk density values between 0.3-0.4 g ~ m ' ~ .  BUNNELL et al. (1975) have suggested that 

the respective range might represent optimum bulk density values for fungal growth. 

However, the respective values also coincide with more decomposed organic topsoils at mesic 

micro-sites. These alone represent optimum gsowth conditions for fungi. In contrast to the 

mentioned study, kng i  did not cease at the organiclmineral interface where bulk density 

values naturally increase (e.g., HT, TT, PT). Consequently, in this study there was no 

evidence for the impact of bulk density On kngal biomass. 

Ammensalism may further explain the absence of fungi in the uppermost horizons. 

Microscopical investigation revealed that a substantial (but not quantified) propostion of the 

soil microbiota comprised algae and cyanobactesia. It is known that Anabaena and Nostoc 

spp. exude fungicidal compounds (KULIK, 1995). 

Generally, bacterial biomass was higher in the wet depressions than in adjacent dsier micro- 

sites which corresponds to findings of other tundra sites. BUNNELL et al. (1975) have reposted 

55% higher bactel-ial biomass in polygonal troughs than in the apex. Yet, this study showed 

that low bulk density values of mossy peat in depressions may also smooth differences out 

(LL4196). Mossy peat had a lower bulk density than peat fosined from sedges or gsasses (as 

reported by BOTCH et al.; 1995). It has been assumed that higher bactesial biomass in the wet 

soils is a result of competition rather than adaptation to the wet environment (BUNNELL et al., 

1975). 

In the soils of the solifluction slopes and the non-sorted stripes (Levinson-Lessing) soil micro- 

organisms were mainly affected by the presence of vegetation. In bare soils FB-ratios were 

very low or below 1 which means bactesia prevail over fungi. During the surnmer months bare 

soils show steep thermal and moisture gradients (PROSEK & BRAZDIL, 1994). Upward 

movement of soil water may cause moisture deficiency (PARINKINA & PIIN, 1992). These 

gradients are too strong for fungi to thsive (BUNNNELL et al., 1975). This also explains why 

fungi showed higher biomass values at deeper horizons where moisture and temperature 

fluctuations are less pronounced. In addition, root penetration from sui~ounding vegetation 

may further affect fungal biomass. 
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Inhibition of bacteria has been observed in the presence of lichens in the vegetation cover. 

Ammensalism caused by lichens was also described for other arctic areas (PARINKINA & PIIN, 

1992). PARINKINA (1989) states that the carbon content increases in soils with lichen 

vegetation. In the investigated soils with lichen stands, bacteria were found to correlate with 

carbon contents. Whereas ammensalism by lichens only affected the upper two centimetres, 

carbon enrichment may represent a stimulus for bacterial growth in underlying horizons. 

These findings correspond to the literature (PARINKINA, 1989). 

In Summary, direct observation methods have proved to be useful in characterisation of the 

microbial pool. Fungi clearly prevailed in the soils at both experimental sites. Fungi were 

largely restricted to the pronounced organic horizons and the rooting depth. These findings are 

in accordance with data from soils of other biomes (e.g., KJ0LLER & STRUWE, 1982). Bactesia 

also dominated in upper organic horizons but inhabit all soil horizons. In unvegetated topsoils, 

wet micro-sites and the supra-permafrost layer bacteria predominated. Interactions with the 

composition of tlie vegetation cover could also be established. This distribution Pattern was 

also described by other authors (e.g., PARINKINA, 1989). 
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6.2 Spotting the active microbial pool 

It is known that only a cestain propostion of soil micro-organisms is viable. For fungi the 

percentage of live mycelium ranges between 10 and 16% (KJ~LLER & STRUWE, 1982). The 

propostion of live bacterial cells on the contrary is higher, namely 60 to 93% (CHERNOV et al., 

1975). It is therefore important to investigate the active microbial pool in addition to 

quantification and differentiation by direct observation methods. ATP content and 

measurements of heat output are microbial Parameters that depend on viable micro-organisms. 

They hsthermore allow differentiation of active micro-organisms from resting OS donnant 

ones and provide hrther infoimation about the cornmunity structure as will be discussed in 

the following section. 

Adenosine triphosphate 

All living microbial cells contain ATP which delivers the energy of its phosphate bonds for 

biosynthetic and catabolic reactions. ATP contents in soil of up to 9.0 pg ATP g '  d.wt. have 

been reported (JENKINSON & OADES, 1979). For arable soils, ATP contents have been found to 

be lowest, but varied depending on land use practices (JENKINSON & OADES, 1979; SPARLING 

& EILAND, 1983). Agricultural and quasi natural grassland Systems have shown a wide range 

from 1.7 to 7.7 pg ATP g-' d.wt. (ROSS et al., 1980). Variation has mainly been explained by 

differentes in nutrient content and nutrient availability of soils (ibid.). In forest Systems, ATP 

contents have been in the upper range (3.1 to 9.0 pg ATP g d.wt., JENKINSON & OADES, 

1979), which probably also indicates a shift in microbial cornrnunity structure since fungi 

contain more ATP per unit biomass than bacteria (AUSMUS, 1973 cf. ROSS et al., 1980). High 

ATP contents (up to 7.7 pg ATP g '  d.wt.) have also been reposted in water-logged paddy 

soils, but decreased with increasing Oz-depletion (INUBUSHI et al., 1989). 

In the soils of this study, median ATP contents were 0.9 pg ATP g '  d.wt. at Levinson-Lessing 

and 1.2 pg ATP g '  d.wt. at Lake Labaz. Consequently, values are low compared to soils fiom 

other biomes and in the same order of magnitude as arable soils from temperate regions. This 

is in accordance with microbial biomass values. However, extremely high values of up to 

32.4 pg ATP d.wt. were found in the uppermost topsoil horizons. Whereas ATP contents 

of topsoil horizons did not appear to differ significantly from 'frontier' horizons, ATP 

concentration values (i.e., ATP content per unit microbial biomass) on the contrasy did. 

Extemal ATP sources from vegetation, roots or meso- and macro-fauna may be excluded, 
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since the chosen ATP extractant (i.e., Tsis buffer) is considered to be very specific for 

microbial cells (VERSTRAETE et al., 1983; VERSTRAETEN et al., 1983). Microbial biomass 

values in this study compsised fungi and bactesia determined by direct observation methods. 

Primary producers among micro-organisms such as cyanobactesia and soil algae have not been 

determined. However, in the Arctic, their presence was reposted in the upper horizons of 

unvegetated soils, in wet depressions and as epiphytic and soil species at drier sites 

(CAMERON et al., 1978; BUNNELL et al., 1975; HOLDING, 198 1 ; ELSTER et al., 1994). Non- 

quantified observations during microscopical investigations revealed substantial amounts of 

cyanobactesia and algae. They may therefore contribute to the extreme ATP contents found in 

the respective horizons. This is supported by the fact that ATP in these horizons appears to be 

relatively unaffected by substrate quantity and quality, in which the sites differ. The respective 

populations were insensitive to glucose amendment for substrate-induced heat output as 

shown in Table 5.4.4-3 (duster No. 3). Weak correlation of nitrogen with carbon content in 

wet topsoils might further indicate another nitrogen source than soil organic matter (such as 

by NI-fixation). Yet, on the basis of the present data this conclusion is rather daring, However, 

the extreme values in ATP content may only pa~tly be explained by algae and cyanobacteria, 

since algal ATP contents can contribute 0.02-0.28 pg ATP g" d.wt. in tundra soils (calculated 

from data by HOLM-HANSEN & BOOTH, 1966; CAMERON et al., 1978)'. ATP was most likely 

be attributed to protozoa (e.g., amoebae, flagellates, ciliates), of which PARINKINA (1989) 

noted particular high densities in water-saturated sites. In drier topsoils, interference might 

also come from lichens in the vegetation Cover. Furtheimore, these higher values of ATP 

content were concomitant with extreme high values of heat output (see below). 

As can be seen fiom Table 6.2-1, ATP concentrations (i.e., ATPImicrobial biomass-ratio) in 

the literature range from 1 :423 (0.0024) to 1 :82 (0.012). In this study, ATP to microbial 

biomass ratios was in this range. Again, extreme ratios were found in the before mentioned 

topsoil hosizons. 

' mean ATP content of marine algae: 0.074 per centldry weight (HOLM-HANSEN & BOOTH, 1966) 
maximum algal biomass in tundra soils at a depth of 0-2 Cm: 0.6 g d.wt. m"2 (CAMERON et al., 978) 
bulk density values in this study ranged between 0.08 and 1.1 g crn-'. 
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Tab. 6.2.-1: ATP concentrations [unit ATP per unit microbial biomass] as given in the literature, 
n~olariiy converted ATP Mr 602.2 (Boehringer Mannheim). 

Soils ATP concentration Conversion Ratio Source 

forest humus 3.2 pg ATP mg-' CÃ£Ã 0.0032 1x3 12 ARNEBRANDT & BAATH, 
1991 

arable soils 9.2 pmol ATP g"' C 0.0055 1: 180 OCIO & BROOKES, 1990 

arable soils 1: 167 FRIEDEL. 1993 

agriculiural and 1: 163 ROSS et al., 1980 
natural grassland 1:423 

arable soils 10.6 pmol ATP g '  CÃ£Ã 0.0064 1: 157 BROOKES & JENKINSON, 
1989 

various 1: 120 OADES & JENKINSON, 1979 

permanent grassland, 1:82 - SPARLING & EILAND, 1983 
arable soil 1:203 

paddy soils 9.1 um01 ATP g" C 0.0055 
12.5 pmol ATP g"' C 0.008 

Higher ratios were also found either in horizons just above or below the water table or in the 

water saturated layer above the perrnafrost. In addition, this increase in ATP concentration 

was always very pronounced (i.e., up to 40 times of the overlying horizon). The respective 

horizons were also characterized by distinct increases of bacteria. In case of the supra- 

permafrost layer, bacteria even generally prevailed over fÅ¸ngi The phosphorus status of the 

soil represents another factor that might have caused high ATP concentrations. NANNIPIERI 

et al. (1 990) have found that the presence of inorganic phosphorus affects the ATP content of 

soils. It is hence assumed that available phosphorus teinporarily accumulates in the respective 

horizons. In tundra Systems, nutrients such as nitrogen and phosphoms are mobilised at 

snowmelt and during plant senescence although they are highly limited during plant growth 

(ULRICH & GERSPER, 1978). A considerable amount of nutrients is also lost by leaching 

(CHAPIN 111, 1978), which indicates the impact of water on the nutrient Status. Low 

phosphoms availability has also been determined for the experimental site at Levinson- 

Lessing (BECKER, 1997). Evidence in Support of the conclusion that the phosphoms 

concentrations are temporarily high at the water table and thus affect ATP concentrations also 

comes from the presence of water itself. In addition to leaching processes, water saturation 

will eventually lead to lower redox potentials, which fÅ¸sthe increases the mobility of 

phosphoms bound with sesquioxides (SCHEFFERISCHACHTSCHABEL, 1998, P. 267). 

Phosphoms that becomes available may then be immobilised by micro-organisms and increase 

ATP concentrations as suggested by NANNIPIERI et al. (1990). Conditions above the 
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pennafrost table differ slightly in higher phosphorus availability since the microbial P-demand 

is low at temperatures above freezing point (NADELHOFFER ct al., 1992). At L,evinson-Lessing 

higher phosphorus contents were found in horizons influenced by slope water (BECKER, 

1997), although this does not necessarily mean that it is available pl~ospho~xs. In tundra peat, 

however, CIP-ratios increase with depth in contrast to C/N-ratios, which reflects the high 

biological deinand for this nutrient (NADELHOFFER et al., 1992). It may thus explain the veiy 

low ATP concentrations found in horizons above the water table, the before mentioned 

frontier' horizons. The gradient of ATP concentrations between thesc depths was very strong. 

Many tundra plants (e.g., Dupontia, Carex and Eriophorum spp.) only form secondary roots 

above the water table, where oxygen levels are more favourable for root metabolism 

(CHAPIN 111, 1978). At drier sites many plant species form mycorrhizal associations, without 

which some plants (e.g., Salix spp.) even cannot exist in tundra (MILLER & LAURSEN, 1978) 

Thus, wet as well as dry sites show specific mechanisms to enhance nutrient acquisition. Yet, 

these are largely dependent On sufficient aeration. P-deficiency due to nutrient competition 

with plants may be one explanation for the lower ATP concentrations in the frontier horizons. 

Further differentiation between frontier horizons of wet and diy inicro-sites in this study 

appeared to be slightly arbitrary, signals of differing ATP concentrations were very weak. 

From these discrepancies between microbial biomass and ATP concentrations, it may first be 

concluded that ATP deterrnination as currently used in soil microbiology does not address 

primary producers or even protista, which are very common in specific habitats of arctic 

Systems. Probably these also account for high ATP contents as detesmined in other wet soils 

reported in the literature (INUBUSHI et al., 1989). Furtheimore, in topsoil and fsontier horizons 

of this study, ATP also appeared to be controlled by environmental factors other than the 

carbon and nitrogen Status of the soil. This is surpi-ising because ATP is usually found to 

correlate with C and N contents (JENKINSON et al., 1979). Yet, this anoinaly is supported by a 

study by ROSS et al. (1980). Therefore, there is intercession for the use of ATP as an estimate 

for microbial activity rather than microbial biomass (NAAWIPIERI et al., in press). ATP 

contents of microbial populations were also found to be affected by environmental Stress to 

different degrees. In aerobic moist soils, micro-organisms are capable of maintaining high 

ATP and adenylate energy charge (AEC) levels at those of actively growing cells (BROOKES & 

JENKINSON, 1989) whereas in anaerobic soils ATP and AEC levels were found to decrease 

with increasing 02-depletion (INUBUSHI et al., 1989). It has also beeil suggested that ATP 
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contents represent mean values of high ATP concentrations in a small, active population and 

vesy low concentrations in the remaining past (BROOKES & JENKINSON, 1989). 

Heat output 

Heat measurements approved to elucidate the active microbial pool in the soils of this study. 

As shown in Figure 5.4.4-1, fungal biomass showed different response to glucose amendment. 

Being heterotrophs most fungi are thought to be sensitive to glucose amendment. A 

logarithmic increase in respiration per unit biomass is characteristic for active microbial 

populations (ARNEBRANDT & BMTH, 1991). It is surprising that this relationship held true for 

wet and dry micro-sites since fungi only thrive under aerobic conditions. One explanation is 

that the controlled conditions during substrate-induced heat output (SIQ) measurements 

themselves already represented an amelioration of the environment compared to conditions in 

the field. This conclusion is supposted by the relationship of SIQ and ATP contents (Tab. 

5.4.4.-3). An increase of SIQ per unit ATP could only be deterrnined for topsoil horizons at 

drier micro-sites. VANDENHOVE et al. (1991) have found out that the SIQIATP-ratio increased 

significantly with environmental stress. As a consequence, hngi  were viable in wet micro- 

sites, but were restricted in activity. Laboratosy conditions were more favourable with respect 

to aeration and temperature. These may thus represent important controlling factors for fungi 

since carbon and nitrogen contents appeared to be of minor impostance. 

On the contrary, hngi  appeared less efficient in using glucose as a substrate in mineral 

horizons (Fig. 5.4.4.2), which compsise 'frontier' and subsoil horizons. In 'frontier' horizons, 

this was concomitant with low ATP concentrations as previously descsibed. Although ATP 

concentrations of 1:250 (OS 0.004) were low, these are still within the range (Tab. 6.2.-1) 

Along with lower ATP concentrations, lower 570 values per unit fungal biomass probably 

indicate that a significant propostion of hngi may not be viable. A study by ZHU et al. (1996) 

has revealed that only 1.3 to 11% of total fungal length was FDA-active (i.e., a Parameter for 

hngal metabolic activity). Consequently, in 'frontier' hosizons, this methodical inaccuracy 

Sums up as hngal biomass increases despite great care with respect to measurement of intact 

fungal hyphae. On the other hand, caloric quotients were found to be rather high in 'frontier' 

hosizons of drier micro-sites, which may be explained by a lower energetic efficiency due to 

environmental stress as will be discussed below. Thus, inference of the viable proportion of 

hngi cannot be made on the present database. Yet, the data rather suggest a low energetic 

efficiency than a microbial population that is not viable. 
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A shift in microbial population fusther explains lower SIQ values per unit fungal biomass in 

'frontier' horizons, which showed significantly higher FB-ratios than topsoil hosizons. 

Experience with substrate-induced respiration (SIR) demonstrated that inorganic and organic 

soils formed distinct clusters of Cmic to SIR ratios (WARDLE & PARKINSON, 1991; BECK et al., 

1997). This was not only explained by different glucose sensitivity (WARDLE & PARKINSON, 

1991), but also by a gseater proportion of fungi (CHENG & VIRGINIA, 1993) because these 

produce less COz per unit biomass than bactesia (ANDERSON & JOERGENSEN, 1997). Thus, 

what looks like a bwer glucose sensitivity may only be the effect of decreasing bactesial 

biomass in 'frontier' horizons. Substrate induced detennination of microbial biomass is 

therefore known to overestimate bacteria (ibid.). When bacteria took over in subsoil horizons, 

no relationship was found between bacterial biomass and SIQ indicating that the respective 

microbial population is largely insensitive to glucose. 

Data on heat output are not readily available since the use of microcalorimetry in studying 

soils is not wide-spread. Yet, the database is sufficient to allow comparison although caution 

is required due to poor methodical standardisation (NANNIPIERI et al., in press). Since heat 

output is most commonly used to estimate microbial bioinass, it is usually ineasured after 

substrate amendment (i.e., SIQ in this study) as descsibed by SPARLING (1983). Furtherrnore, 

most studies were done On soils of temperate regions (e.g., RAUBUCH & BEESE, 1995; 

ZELLES et al., 1987a; ALEF et al., 1988; SPARLING, 1981a) and only one in Antarctica 

(BOLTER, 1994). To date, no heat output measurements have been carried out in arctic tundra 

soils. In generalising data from topsoils of temperate regions, it inay be stated that the heat 

output increased in the order agricultural < grassland < forest soils. Maximum heat output for 

agricultural soils was reported from 30 to 120 pW g-' d.wt. (SPARLING, 1983; ALEF et al., 

1988), whereas grassland soils reached 80 to 330 pW g-' d.wt. (ibid.). Values given for forest 

topsoils range between 500-520 pW g"' d.wt. (SPARLING, 1983) and 2500-4000 pW g-' d.wt, 

(ZELLES et al., 1987a). Thus, heat output of up to 220 pW g" d.wt. (BOLTER, 1994) measured 

in Antarctic soils falls into the lower range. 

In comparison with these data, values of median basal heat output (20.4 pW g" d.wt at Labaz; 

60.6pWg-'d.wt at Levinson-Lessing) as well as median substrate heat output 

(38.7 pW g-' d.wt. at Labaz; 119.5 pW g'l d.wt. at Levinson-Lessing) were within the cited 

range. Yet, rnaximum values of up to 1683.8 pW g"' d.wt. SIQ at Levinson-Lessing appear 

rather high. The upper range of heat output (approximately 300 to 1683.8 pW g" d.wt.) was 
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concomitant with high ATP contents per unit hngal and bacterial biomass (ATP 

concentrations ATP:MBM > 0.01). Furtherrnore no clear relationship to microbial biomass 

was discernible. In addition to the previously discussed algae and cyanobacteria, the 

vegetation Cover at the respective dry sites always comprised lichens. These are therefore 

assumed to cause interference with heat ineasurements in the studied soils. This evidence is 

supported by a study of BOLTER (1 994) who found up to tenfold greater heat output values for 

lichens. 

In this study, heat output generally decreaseed non-linearly with depth (by roughly a third 

between horizons), which was also established for various investigated soils from the 

literature (RAUBUCH & BEESE, 1995; ALEF et al., 1988; ZELLES et al., 1987a). Yet, in 

inorganic soils from Antarctica, this decrease appeared to be stronger (BOLTER, 1994), which 

was confirmed by unvegetated soils of this study (e.g., LL10.1i96; LL8.1196). Exceptions 

were often found in soils where the microbial population was insensitive to glucose 

amendment and substrate amendment did not produce any further response in heat output. 

This has been explained by specific substrate requirements, shifts in microbial population 

(WARDLE & PARKINSON, 1991) or sufficient in situ carbon concentrations (NANNIPIERI et al., 

in press). Glucose insensitive microbial populations were predominantly found under 

anaerobic conditions, i.e., soil horizons with chroma of 2 or less andior undemeath the water 

table, where anaerobic bacteria increase (ROSSWALL et al., 1974). However, this does not 

apply to soils where the water table was at soil surface (PT, WST, TT, non-sorted stripes 

LL9.2196). It is therefore assumed that these differences reflect different substrate 

requirements, which is supported by a shift to a larger propostion of hngi.  Under clearly 

aerobic conditions, glucose insensitive populations were found in the uppennost centimetres 

of both unvegetated soils and aerated 0-horizons. Since ATP concentrations were also higher 

and light penetration was possible, it may be assumed that photoautotrophs represent a 

significant propostion of the microbiota. 

The fact that heat output also included organisms other than the taxonomic target groups as 

well as the fact that some microbial populations were glucose insensitive, form the 

background, why it is not advisable to estimate microbial biomass from 570 values in tundra 

soils. CHENG & VIRGINIA (1993), on the contrary, have recommended substrate-induced 

respiration (SIR) methods for arctic tundra soils. Yet, it has to be stated that in the respective 

study only the uppermost 5 centimetres of vegetated soils had been sampled, in which 
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heterotrophic hngi are likely to predominate. In this study, SIQ as a tool to estimate microbial 

bion~ass, proved to be particularly inappropsiate for unvegetated and anaerobic soils. In water- 

logged soils of a temperate alder forest, comparison of microbial biomass estimates by SIR 

were clearly greater than by chloroform hmigation extraction snethods (DILLY, 1994). Subsoil 

horizons in particular showed up to fourfold higher values (ibid.). 

The ratio of basal heat output Q to substrate-induced heat output SIQ (caloric quotient) thus 

provides further information on the microbial population. 

Successional stages 0 1 .  environmental stress? 

Analogously to the metabolic quotient qC02 (basal respiration to microbial biomass carbon) 

(INSAM, 1990), the ratio between basal and substrate-induced heat output (or respiration) may 

hrther be used to analyse the physiological status of microbial comsnunities. In ecosystem 

theoiy, the metabolic quotient has been described to decrcase with proceeding successional 

stages reflecting an r-K-selection continuum in favour of K-strategists (SANTRUCKOVA & 

STRASKRABA, 199 1). The r-strategists correspond to Winogradsky's zymogenous micro- 

organisms that respond rapidly to substrate amendment. These represent successful colonisers 

during primary stage of succession. K-strategists live at or near the canying capacity of the 

ecosystems and cossespond to Winogradsky's autochionous snicro-organisms (SCHLEGEL. 

1992). Succession selects for K-strategists. These are more efficient in use of substrate and 

will result in lower metabolic quotients. 

At the experimental site Levinson-Lessing, the sampling technique was also designed to 

detect potential differences between successional foims of patterned ground. In such malmer. 

profile LL11196 represented an overgsown non-sorted step, which most likely has formed 

from an unvegetated step like profile LL8196. The data suggest that the caloric quotient was 

larger in the unvegetated step which would support the hypothesis of declining 

caloric/metabolic quotients with progsessing succession. The intermediate stage of succession 

is usually characterized by gseater vegetational diversity (e.g., STRASBURGER et al., 1998), 

which is reflected by the properties of the microbiota (PARINKINA & PIIN, 1992; PARINK~NA, 

1989). The soils of the solifluction slopes showed highest hngal biomass values when 

looking at the organic horizons alone. Furthermore, all Parameters linked to the active pool 

(i.e., ATP contents and concentrations, heat output) were within maximum values determined 

in this study. Temperature regime (i.e., greater thaw depth), aeration, sufficient moisture (i.e., 

slope water) and nutrient Status (BECKER, 1997) were also more favourable. All these factors 
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indicate that the soils of the solifluction slopes are the most active and dynamic with respect 

to soil ecology. Finally, the caloric quotient values thus fit into the jig-saw puzzle. 

The picture was rather ambiguous in the soils of the polygonal tundra. These was weak 

evidence that caloric quotients decreased between the low centred polygon (LL1 and 2/96) and 

the high centred polygon (LL3 and 4/96). Yet, it is subject of dispute whether these represent a 

successional sequence (e.g., HARRY, 1988). One hypothesis is that high centred forrns have 

evolved fsom low centred polygons by progressive upthrusting of material adjacent to the 

growing ice-wedge (ibid.). This option has also been favoured by ecologists (CHERNOV & 

MATVEYEVA, 1997). On the other hand, it has also been advocated that they develop 

independently under different hydrological conditions. High centred polygons appear to form 

under better drained conditions, whereas low centred forms are found in poorly drained areas 

(TEDROW, 1977, pp. 253). The caloric quotient was also found to increase in response to 

environmental stress and was therefore used as a respective parameter (RAUBUCH & BEESE, 

1995). Increasing caloric OS metabolic quotients were found due to environmental stress 

imposed by low pH (ibid., ANDERSON & DOMSCH, 1993), climatic conditions (ANAN'EVA et 

al., 1997), or single crop fasming (DILLY, 1994). In case of the polygonal tundra, either would 

result in a decreasing caloric quotient fsom low centred towards high centred forrns, either due 

to progressive successional stage of the ecosystem OS due to amelioration of environmental 

conditions (i.e., aeration) along this sequence. Thus, fsom the soil microbiological point of 

view, this question may not be answered accurately on the database presented. 

Yet, the example of the high centred polygon at Levinson-Lessing further illustrates that 

discussion of succession encounters tundra specific problems as stated by CHERNOV & 

MATVEYEVA (1997). Due to fseeze-thaw dynamics, 'plakor' vegetation at the mesic high 

centred polygon is intersected by fsost-boils either bare of vegetation or with vegetation stands 

that are characteristic for pre-climax stages. Accordingly, the caloric quotient was found to 

increase in this study. Yet, again, abiotic factors also deteriorated (e.g., porosity, aeration, 

desiccation). 

As previously discussed, the uppermost centimetres of 0-horizons or unvegetated soils 

showed high caloric quotients concomitant with high ATP concentrations. Fungi tended to be 

less numerous although there were exceptions fsom this rule. In topsoils, caloric quotients 

generally decreased with depth and increasing decomposition, which agrees with the findings 

of WARDLE (1993). This probably reflects successional stages of the microbial community. 



Algae and cyanobacteria showed particularly high abundance at the respective sites. These 

organisms will be rather insensitive to glucose. Although they represent primaiy colonisers in 

soil, equation of substrate-sensitive and -insensitive populations with r-K-strategists appears 

to be immature at this Stage of discussion. 

The limited use of caloric and metabolic quotients for the description of successional Stages 

was fostered by the anaerobic soils of this study. In anaerobic horizons above the pei-mafiost 

table microbial community composition was cliaracterized by a shifi towards bacteria, fungi 

ofken disappeared and caloric quotients of l or higher were generally established. These may 

partly be explained by Stress caused by thawing (ANAN'EVA et al., 1997), low temperatures 

and oxygen deficiency. Yet. anaerobic bactesia such as methanogens, which had been found to 

increase with depth (DUNICAN & ROSSWALL, 1974; ROSSWALL et al., 1975) will most likely 

be adapted to this habitat. 

In transition from topsoil to subsoil, the physiology of the microbial community showed the 

most complex pattem. Caloric quotients increased despite high fungal biomass values and 

were ofien concon~itant to the lowest ATP-concentrations deterrnined in the soils of this 

study. The respective horizons indicated reducing conditions (i.e., chroma of 2 or less) in most 

cases. The latter were linked to the position of the water table, in which wet micro-sites 

differed fiom the respective drier ones. At drier micro-sites reducing conditions were found 

above the water table, which was in the lower part of the soil profile. At wet sites, the water 

table was at or near surface and reducing conditions were encountered at greater depth 

(5 - 10 cm). However, the just mentioned microbial properties (fimgal biomass, low ATP 

concentrations, high caloric quotients) occurred at a transitionary depth within profiles at both 

micro-sites. It may therefore be concluded that anaerobic conditions represent unfavourable 

conditions for hng i  resulting in low activity and high caloric ratios. On the other hand, below 

this transition, bacteria increased in proportion to hngi and FB-ratios often feil below 1. In 

the transitionary layer, bacteriological Parameters (total number, mean cell volume and 

bacterial biomass) followed the relative or absolute peak in fungal biomass (SCHMIDT & 

BOLTER, unpubl. data; BOLTER., 1998). This transition in microbial community composition is 

also supported by MOORE & DALVA (1 993), who have found a negative logarithmic response 

in CH4 production with decreasing water table. The same study has further shown that 

methanogenesis is more temperature sensitive than aerobic respiration. Furthemore, in many 

tundra soils psychrophilic bacteria prevail over mesophilic bacteria at greater depths 
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(VASSILYEVSKAYA et al., 1975). Consequently, there is strong evidence that the microbial 

population changes in this transitionary layer between topsoils and subsoils of this study. High 

caloric ratios may thus either indicate environmental stress, which holds true for hngi in the 

respective horizons. Yet, since bacteria take over, high caloric ratios may also reflect a 

transitionary stage of microbial community, where competition for the habitat may be 

strengest. It was concluded from differences between sites that these properties are linked to 

the position of the water table. For this reason, this transitionary layer is also highly dynamic 

over time, all of which has led to forrnulation of 'frontier' horizons in this study. The 'frontier' 

as microbial habitat will be discussed in a separate section. 

In Summary, it may be stated that in this study the caloric quotient not readily distinguished 

between environment stress and changes in microbial community composition or successional 

Stages. Bot11 signals appear to be superimposed to each other. This is supported by data of 

WARDLE & GHANI (1995), who therefore object to the broad use of the respective quotients. 
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6.3 Microbial habitats in tundra soils 

In this study patterns of microbial propesties are discemible which are closely linked to biotic 

and abiotic factors. The microbial habitat may thus be described fiom results of profile 

description ancl pedological data (from this study or from references if applicable). In such 

manner a generalised view of microbial habitats for tundra soils has evolved, which comprise 

wet and dry topsoils, the Trontier' and subsoil horizons. 

6.3.1.1 Wet topsoils 

Wet topsoils represent organic mats of moss or gsass-sedge peat. Bulk density was lowest in 

the mossy peat (i.e., 0.09 g ~ m - ~ )  and increased with increasing grass and sedge content (i.e., 

0.4 g CIT '~) ,  which corresponds to literature data (BOTCH et al,, 1996). Accordingly, porosity 

was very high k 90 vol.% and freely draining macro-pores (i.e., > 1000 pin pore neck 

diameter) predominated. Since the wet topsoils contain little mineral soil, the high proportion 

of micro-pores (< 0.2 um pore neck diameter) is explained by methodical constraints. As 

described in Section 4.2.4. the calculation of pore size distribution is based on the relationship 

ofvolumetric water content at a given suction. It is thus assumed that soil water is only held 

by capillary forces (MARSHALL et al., 1996; SCHLICHTING et al.. 1995). Yet, surface 

adsorption by organic matter will affect the 'water-retention-curve' and particularly 

overestiniate the proportion of micro-pores. In tundra, organic topsoils are generally water 

saturated under field conditions, since the water table is at or near soil surface. The respective 

soils may consequently be pictured as aquatic liabitats with a sponge-like stsucture, which 

allows organisms to float fieely. Compared to their drier Counterparts, wet topsoils showed 

less acid soil reaction as well as higher carbon and nitrogen contents, but with higher Cm-  

ratios. Yet, the microbial propesties seemed to be relatively unaffected by carbon and nitrogen 

quantity. At first sight, this is suspsising because it is rarely questioned that microbiota is 

positively affected by the respective elements, but CIN-ratios On the contrary showed poor 

substrate quality indicating nutrient limitation. CHAPIN & BLEDSOE (1992) fusther repost a 

negative effect of a low nutsient status on Nz-fixers, the abundance of which have been 

observed during microscopy (see Sect. 6.2). The enzyme System that drives nitrogen fixation 

(i.e., nitrogenase) requires specific elements for protein synthesis: inolybdenum, iron, sulphur 

and cobalt, but presumably less magnesium (ibid., EADY & POSTGATE, 1974). Analysis of the 

soils at Levinson-Lessing showed that the nutrient Status (BECKER, 1997) appeared to be 
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favourable for nitrogen fixation to occur. As mentioned before, other microbial propesties 

further supposted the significance of primary producers (algae and cyanobacteria). Nitrogen 

fixation in pasticular is known for its feedback on methane production, as it fumishes nitrogen 

(i.e., N H ~ )  as a nutrient for methanogens (CHAPIN & BLEDSOE, 1992). ATP contents and 

concentrations also suggested the presence of protozoa (Sect. 6.2). This indicates that the 

microbial loop may be an impostant component in the energy flux of wet tundra soils. 

Generally, fungal and bacterial biomass (given as carbon inventosy) were lower in wet 

topsoils than in the respective drier micro-site. However, at wet depressions of the high 

centred polygon (LL3-4/96) and the tussock tundra (Lb3195) this relationship was inverse. 

These soils differed fsom all other wet micro-sites in their- immediate proximity to mounds of 

either the vegetated elevated rim OS tussocks. Since these mounds were some 20 centimetres 

higher than the wet depression, gseater fungal and bacterial biomass may therefore be a root 

effect (see section 'rhizosphere' below). Both profiles On the contrasy seemed to be quite 

different with respect to other propesties. Different thickness of the active layer for instance 

indicates more favourable thermal conditions in the tussock tundra than in the wet micro-site 

of the high centred polygon. As a result, conditions for soil organic matter decomposition also 

differ (GUNDELWEIN, 1998). According to a study by SOMMERKORN (1998) at the respective 

sites, Q io  values have been higher than in dry topsoils indicating a greater sensitivity to 

temperature changes. 

In summary, wet topsoils represent an aquatic habitat, in which a significant proportion of the 

energy flux appears to pass thsough protista and bacteria ('microbial loop'). However, their 

impact on decomposition may not be answered in the present study and only be infessed fsom 

the literaiure (CLARHOLM, 1994). Although present in lower biomass, decomposers such as 

fungi did occur in these wet habitats and were viable as microcalorimetsic data have shown. 

Temperature and aeration are likely to control the inhibition of their activity as derived fsom 

laboratory conditions and stated in the literature (HOLDING, 198 1). 

6.3.1.2 Dry topsoils 

Dsy topsoils generally consisted of organic horizons of vasying thickness and the upper 

mineral horizons. In comparison to their wetter Counterpart, dry topsoils showed lower carbon 

and nitrogen contents as well as narrower Cm-ratios. Soil reaction was more acid. All of 

which reflected higher degrees of organic matter decomposition. As discussed earlier, 

microbial biomass occussed in higher abundance in these upper horizons. Although generally 

decreasing with depth, relative peaks were found in the lower 0-horizons and few centimetres 
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of the underlying mineral soil. In addition to higher degrees of clecomposition, the organic 

horizons showed a more distinct profilc differentiation. This was reflected by higher bulk 

density values, which ranged from 0.4 g ~ r n ' ~  for OiIA-horizons to 0.9 g c n ~ ' ~  for A-horizons. 

Porosity was lower than in the wet topsoils but still very high (i.e., 70 to 80 vol.%). Pore size 

distribution was favourable with respect to aeration and moisture regime. Yet, bulk density 

increased (i.e., 1.1 to 1.4 g c ~ n ' ~ )  and porosity decreased (40 to 60 vol.%) remarkably in 

unvegetated soils. In addition, larger micro-pores (0.2 to 10 um pore neck size) represented 

the biggest proportion, which corrcsponded to the finer texture of the inud pits. Aeration 

conditions became more favourable with increasing gravel content. This has been 

supplemented by texture analyses in a study by MULLER-LUPP (1997). The structural 

properties of unvegetated soils also held tnie for mineral horizons underneath the organic 

layers. This stn~ctural change in transition fusther results in moisture and thermal gsadients 

(STONER et al., 1983). Water fiolll precipitation rapidly moves through organic mats. 

Infiltration then slows down as the higher matric potential of the mineral soil must be 

overcome. Further downward movement of the wetting front progresses slowly and depends 

on the soil texture, which may be critical for deep percolation particularly in deeper thawed 

soils (ibid.). This physical behaviour is iinportant as it indicates stronger accumulation of 

solutes in the topsoils and therefore affects pedogenesis (GRABETSKAYA & CHIGIR, 1992) as 

well as the nutrient Status (NADEI,HOFFER et al., 1992; ULRICH & GERSPER, 1978). Thermal 

properties change in diurnal and seasonal amplitudes (SOMMERKORN, 1998; BOIKE, 1997; 

PROSEK & B ~ Z D I L ,  1994; ROMANOVA & UTKINA, 1973; I<OMANOVA, 1970). Within organic 

mats amplitudes may be very high. Yet, due to low bulk density, organic mats represent a 

thermal insulation resulting in lower temperatures and variability in the inineral soil. As a 

consequence, thaw depth generally decreases with increasing thickness of the organic 

horizons, which was also found in this study. Conversely in winter, when the soil refreezes, 

the downward movement of the freezing front progsesses faster in the organic mats than in the 

mineral horizons thus forming a 'zero-curtain', which is accompanied by water migsation to 

the freezing front retarding further freezing (RIEGER, 1983). The 'zero-curtain' represents an 

irregular front and additionally occurs around freezing cells (BOIKE, 1997). 

Thus, in transition to the mineral soil, organic mats provide a favourable habitat with respect 

to temperature variability, moisture conditions and nutrient status. Predominant colonisation 

underneath the vegetation Cover is supported by PARINKINA (1989). In this study, basal heat 

output and substrate-induced heat output cosrelated well and was dependent 011 high levels of 
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carbon and nitrogen. These properties indicate that the microbiota was mainly zymogenous 

and sensitive to glucose. This correlation was better for bacteiia than for fungi. Since ATP 

concentrations decreased as the fungal proportion of the microbial biomass increased, the 

major proportion of fungi seemed to be metabolically inactive or not viable. Yet, insensitivity 

of fungi to glucose may fui-ther be explained by substrate requirements other than simple 

Sugars. The vegetation stands at mesic sites comprised a higher proportion of wood plants 

(Sect. 5.1.2) than wet sites, which is reflected in the quality of soil organic matter 

(GUNDELWEIN, 1998). In addition, fungi were more affected by nitrogen levels than by carbon 

levels. This suggests microbial succession during decomposition as described by GOKS0YR 

(1975). In drier topsoils, fungi may decompose complex polyiners (such as lignin) provided 

that nitrogen levels are sufficient. Within profiles fungal biomass values were often followed 

by higher bacterial biomass suggesting that bacteria benefit from fungi. Furthermore, bacteria 

appeared to require more simple compounds as a substrate due to their strenger affinity to 

glucose as well as to carbon and nitrogen levels. Fungal decomposition probably provides 

substrate in the form of leachates, or hngi themselves (e.g., fungal cytoplasm) represent a 

nutrient source for bacteria. WARDLE (1993) has found a decreasing metabolic quotient during 

successional Stages of decomposition. In this study, there was only weak evidence for a 

decreasing caloric quotient in this context (e.g., PT, TT, vegetated non-sorted steps). Yet, the 

respective topsoils encounter decreasing temperatures and increasing oxygen deficiency with 

depth, which imposes environmental stress. Consequently, an assumed decreasing caloric 

quotient due to succession would overlay the signal of increasing environrnental Stress. 

The uppermost centimetres of dry topsoils showed quite different microbial properties 

compared to the transitionary horizons between organic and mineral horizons. ATP contents 

and concentration as well as caloric parameters indicated a different cominunity structure such 

as a higher proportion of autotrophs (see Sect. 6.2). In horizons with predominating bacteria, 

these were found to be sensitive to glucose (Fig. 5.4.4-3). Yet, the trophic relationship remains 

unclear since it is unlikely that they decompose structurally intact plant material. For the 

respective horizons, it could be hypothesised that they benefit of primary producers in the 

same manner as has just been described for lower horizons. It has been suggested in the 

literature, that bacteria feed on dissolved organic matter leaching from litter surfaces and on 

exudates of algae and protozoa (CLARHOLM, 1994). Nitrogen fixation by cyanobacteria was 

also reported to occur in drier topsoils despite decreasing significance in the order wet > mesic 

> diy topsoils (BLISS, 1997; ALEXANDER, 1974b). In this study, the bacterial population was 
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found to be inhibited by lichens in the vegetation Cover, which was studied in detail for arctic 

soils by PARINKINA ( 1  989). 

In summary, dry topsoil microbial habitat changed stratigraphically from weakly decomposed 

to humitied organic horizons into the mineral topsoil. This was concomitant with an increase 

in bulk density and a decrease in porosity. As a result, insulation of the organic mats creates a 

more stable environment with respect to temperature and inoisture. Dcspite high affinity to 

carbon and nitrogen contents, high microbial biomass was not restricted to organic layers. 

Relative peaks were determined for the upper mineral horizons, in which nutrient solutes 

accumulate. Furthermore, there is strong evidence that microbial succession occurred during 

decomposition spatially (between horizons) and temporally. 

6.3.2 'Frontier' 

The conception of 'frontier' liosizons developed in this study has evolved kom strong 

gradients in microbial propesties which suggested a transition in microbial community 

structure between topsoil and subsoil horizons (see Sects. 6.1 . l  and 6.2). Within a depth of 10 

to 20 centimetres microbial biomass was found to increase strongly, even reaching maximum 

values in most soils. Simultaneously, fungi increased manifold stronger than bactesia did as 

indicated by tnaximuin FB-ratios. Yet. mean bacterial cell volume increased and followed the 

hngal distribution pattem (SCHMIDT & BOLTER, unpubl. data; BOLTER, 1998). As discussed 

above, ATP concentrations on the contrary were lowest, indicating restricted microbial 

activity, which was supported by high caloric quotients. These exceeded a value of one, being 

wider in 'kontiert hosizons at drier sites than in wet sites. Higher caloric quotients indicate 

environmental Stress or a changing microbial population (see Sect. 6.2). Either may explain 

this microbial gradient since the respective hosizons showed reducing conditions (chroma 2 or 

lower) and were found in proximity to the water table. At water-logged, wet sites, reducing 

conditions only occurred at greater depth, which may be explained by higher oxygen levels in 

the upper part of the water column. At dsier sites, reducing conditions were found above the 

water table. This implies that conditions rnay change with fluctuating water table. 

Furthermore, these conditions are only stable in level or only gently sloping positions, which 

cossesponds to the microbial parameters. Although no relationship could be established 

between vegetation stands that form mycorrhizal associations and those that do not, there was 

a clear rhizosphere effect since the respective microbial properties coincided with high root 
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densities. In general, roots will be metabolically active above the water table (WEBBER, 1978). 

From these propesties it is concluded that 'frontier' horizons represent a Stratum of redox 

potential discontinuity (RPD) interlocking with the rhizosphere. 

Redoxpotential discontinuity 

As mentioned above, soils with impeded drainage (PT, TT, HT, WST) showed the respective 

properties suggesting a link to specific hydrological conditions of plains. The dry podzolised 

brown easth at Labaz represented an exception here (profile Lb7195). Yet, the subsoil of the 

latter (below 25 centimetres) showed gleying features due to water logging. On the contrary, 

the upper border of 'frontier' horizons was marked by iron oxidation bands (see profile 

descriptions), which had already been described in other arctic pesmafrost soils 

(GRABETSKAYA & CHIGIR, 1992). Below these iron bands, soils showed low chroma values of 

2 or less, which thus marks a Zone of redox potential discontinuity (RPD) in level tundra soils. 

The formation of the iron oxidation bands as well as the fact that these occur as relict features 

in fosmerly pesmafkost affected soils (FITZ~ATRICK, 1972; FITZPATRICK, 1987), indicate that 

despite shost-term fluctuations, the RPD is temporally rather stable. 

The occussence of a RPD has been described in aquatic Systems (e.g., O n ,  1988, p. 23 1) and 

characterized by decreasing redox potentials with depth and over time. In a marine 

environment, the redox Status of the sediment is hrther classified as oxic, oxygen depleted 

postoxic, sulfidic (> 1 pM H2S concentration) and methanogenic (lower H2S concentrations) 

sediment (BERNER, 198 1 cf. WALLMANN, 1990). Although this represents a helphl analogy, 

properties may not readily be transfessed to soils, since marine sediments represent an alkaline 

and highly saline environment with a different decomposer cycle. Only for reed belt sediments 

of fresh water lakes, decomposition has been reported to be driven by a microbiota 

comparable to soils. Although no redox potentials were measured during the field campaign 

of this study, there is strong evidence for a gradient in redox potentials. As already mentioned, 

there is macroscopic evidence fkom the profile description (Sect. 5.1.2) such as iron oxidation 

bands and reduced chroma in the underlying horizons. During soil sampling odour of 

hydrogen sulphide in anoxic horizons was perceptible. Although the latter is highly subjective, 

it was still indicative for a particular redox environrnent. In soils of the experimental site 

Labaz, soil pH was measured in aqueous and CaCl2 suspension, the quotient of which 

represents a Parameter of exchangeable H'. 'Frontier' hosizons were charactesized by a low 

ratio of pH [H20] and pH [CaC12], which is indicative for reduction reactions since these are 



proton-consuming reactions. Furtherrnore, discontinuity of redox potentials has been 

supported by other studies. 8 ^ ~  studies (GUNDELWEIN, 1998) have shown that methane is 

forrned in the 'fiontier' although actual methanogenesis could not be measured. This was 

supported by activity studies which have shown the presence of methanogens (ibid.). On the 

contrary, SLOBODKIN et al. (1992) have shown for tundra soils that methane being produced in 

underlying horizons or adjacent micro-sites is oxidised at the respective depths. Thus, 

methanogenesis as well as methane consumption occurs in the 'frontier' despite different redox 

potential requirements. Methanogenesis is strictly anaerobic whereas consumption requires 

aerobic conditions (SCHIMEL et al., 1993). GUNDELWEIN (1998) states that methanogenesis 

and methane oxidation occurs at different redox potentials. Yet, a recent study by WAGNER & 

PFEJFFER (1998) suggests that the respective processes may be synchronous (i.e., in an aerobic 

environment). This apparent paradox has been explained by synergistic effects of the aerobic 

and (facultative) anaerobic microbiota at the interface of the RPD in natural environments. 

Although this question may not be answered from the present study, it is still indicative for a 

dynamic microbial population at the RPD as has been observed at the respective interface in 

marine environments (KOSTER, 1992). In generalising, Table 6.3-1 illustrates 

microbiologically mediated redox couples, which may be read as a temporal or vertical 

sequence with increasing oxygen depletion. This gradient also develops around anaerobic 

pockets (TIEDJE et al., 1984), which occur in tundra soils in the study area of this study 

(BOIKE, 1997). 

Tab. 6.3-1: Sequence of redox couples and associated microbial processes operating in the soil 
environment, with associated redox potential E7 [mV] at pH 7 (modified fro~n CRESSER et al., 
1993). 

Redox couple Microbial process E7 [mVl 

0 2  -r H 2 0  + e- Aerobic respiration +820 

NO3 -r N2 + e'; N20+ e' Denitrification +420 ' 
Mn 4+ -> ~ n ^  + 2 e- Maiiganese reduction +410 

organic matter Ã‘ organic acids + e' Fermentation +400 

~ e ' "  -+ ~e~ '+ e- Iron reduction -180 

N O i  + N H +  e- Dissimilatory nitrate reduction -200 

-> H2S+ e- Sulphate reduction -220 

CO2 -r CHs + e- Methanogenesis -240 

' Data on significance of denitrification in tundra are contradictory. Whereas some authors state that 
denitrifiers are rare or absent in tundra soils (MATVEYEVA et al., 1975; BUNNELL et al., 1975), at some sites 
their numbers have been found to increase those of nitrifiers (PARINKINA, 1986). 
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The involved micro-organisms have been reposted in tundra soils (DUNICAN & ROSSWALL, 

1974; MATVEYEVA et al., 1975; BUNNELL et al., 1975; PARINKINA, 1986; VAINSHTEIN & 

GOGOTOVA, 1992). Because of the relationship of redox potential and pH, reduction processes 

occur over a wide range of pH. DUNICAN & ROSSWALL (1974) for instance reported sulphate 

reduction at E11 -200 mV to operate in the range of pH 4.4 to 6.2. Consequently, the position 

of the water table is crucial for redox reactions to occur (MOORE & DALVA, 1993; SLOBODKIN 

et al., 1992; WHALEN et al., 1996; SOMMERKORN, 1998; GUNDELWEIN, 1998), the water 

content and oxygen diffision (SKOPP et al., 1990) and geochemical conditions (STEINMANN & 

SHOTYK, 1997). Apart fsom oxygen production at wet sites (abundance of primary producers), 

oxygen diffusion may firther explain the position of the RPD below the water table. In 

'frontier' horizons at drier sites, porosity and low proportion of macro pores was less 

favourable. This indicates that soil physical propesties represent a fiisther control for aerobic 

versus anaerobic processes as supported by GEBAUER et al. (1996). However, position of the 

RPD and thickness of the aerobic proportion of the active layer varied remarkably between 

wet and dry sites. The dsier soils of this study showed a gseater aerobic propostion than wet 

sites. Fusthemore, thickness of the aerobic layer ranged between 10 and 20 centimetres at 

drier sites and five to ten centimetres at wet sites. These fmdings cossespond to data by 

GEBAUER et al. (1996). 

In marine environments, it is known that micro-organisms and ciliates interstitially inhabit the 

RPD (OTT, 1988). In the soils of the present study, manifold higher ATP concentrations below 

'frontier' horizons suppoit the hypothesis, that these may inhabit this habitat. In the respective 

hosizons at drier sites, the presence of the water table fiirther represents an ideal habitat for 

protozoa (COLEMAN & CROSSLEY, 1996). In addition, protozoa represent a characteristic 

feature of the rhizosphere and are intimately linked to rhizobacteria (CLARHOLM, 1994). 

Rhizosphere 

The rhizosphere is generally thought to stimulate microbial activity in manifold ways 

(S~RENSEN, 1997; TATE, 1995; BOLTON et al., 1995; CURL & TRUELOVE, 1986). Yet, despite 

gseater microbial biomass, all Parameters that characterize the active pool were found to 

decrease from topsoil to 'frontier' horizons. This was pasticularly true for fungi, which 

correlated with low ATP concentrations. The latter indicated a great propostion of inactive or 

even decaying fingi. Furthennore, they did not show any correlation with heat output values. 
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Microscopical investigations revealed that 'frontier' and to a lesser degree subsoils horizons 

contain a substantial amounts of hyphae depleted of cytoplasm. GUGGENBERGER et al. (in 

press) found that dead fungi in particular may be regarded as microbial 'litter'. Ce11 wall 

residues (e.g., amino sugars) contsibute to the intermediate soil organic matter pool that is 

more recalcitrant to decomposition than carbohydrates. These residues (particularly hngal 

derived glucosamine) have fi~sther been suspected to be of major importance in the formation 

of organo-mineral complexes as well as in aggsegation (TISDALL, 1994; TIESSEN & STEWART, 

1988; GOLCHIN et al., 1994). Density fractionation of soil organic matter (som) in the 

respective horizons showed a distinct increase of the heaviest fsaction (>2.4 g ~ m ' ~ ) ,  which 

contains 2-4% of total som (GUNDELWEIN, 1998). On the other hand, although not 

n~etabolising, fungi may still be 'functioning' in transfei-sing nutrients thsough hyphae fsom a 

substrate source to metabolically active pasts or plants when in mycosshizal association. These 

'pipelines' are thus important for hngal functioning in soil whether as decomposer or as 

mycon-hizal symbiont (CLARHOLM, 1994). 

In contrast to fungi, carbon and nitrogen contents affected bacteria. Fusthesmore, basal and 

substrate-induced heat output also correlated well, which indicates that bacteria feed on 

simple compounds as described for topsoil horizons. Root exudates are typically simple 

compounds such as simple sugars, amino acids and organic acids (S~RENSEN, 1997, 

MARTENS, 1990), which are suitable for a wide range of rhizobacteria. Fungal cytoplasm may 

provide another nutrient source (GUGGENBERGER et al., in press). In this study, bacteria 

hrtherrnore appeared to thsive well in the rhizosphere at depth of 20 and 45 cm, which was 

reflected not only in higher total numbers but also in increased mean cell volume (SCHMIDT & 

BOLTER, unpubl. data; BOLTER, 1998). Yet, no differences in the rhizosphere could be 

established between different vegetation stands. MATVEYEVA et al. (1975) on the contrary 

reposi that roots of different plants stimulate microbiota in different ways. Thus, bacterial 

biomass was two times greater in the rhizosphere of Dryas spp., whereas this increase may be 

3 to 30 times gseater with Novosiviersia (ibid.). Compared to other biomes, many tundra 

vegetation stands are charactesized by high belowground biomass and litter production 

(WEBBER, 1978), which may be enhanced by short life Spans (SHAVER, 1995). According to 

ZHU et al. (1996) root litter has a stimulating effect on fungal biomass. FEDOROV-DAVYDOV 

(1998) calculated that more than half the microbial population in tundra soils utilises root 

litter and exudates as a nutrient source. 
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In Summary, the 'frontier' is characterized by interlocking habitats of redox potential 

discontinuity (RPD) and rhizosphere. Although microbial biomass in 'frontier' horizons was 

significantly higher than in the susrounding hosizons, this increase did not correspond to the 

activity Parameters. Fungi appeared to be more restricted in activity than bactesia. High caloric 

ratios indicated environmental stress and a shift in microbial community structure towards the 

subsoil. Fluctuating reducing and oxidising conditions represent environmental Stress. The 

impoi-iance of the water table in this mechanism had already been established in parallel 

studies at the respective sites (GUNDELWEIN, 1998; SOMMERKORN, 1998) and was confirrned 

by the present study. This was supplemented by soil physical properties that affect soil water 

content and oxygen difhsion. The 'frontier' thus appears to be a Zone, in which micro- 

organisms compete for the habitats. 

6.3.3 Subsoil 

Subsoil horizons generally represent anaerobic mineral hosizons above the pei-inafrost table. 

The only exception represented the transitionary polygon at Levinson-Lessing which showed a 

buried 0-horizon above the permafrost table. As discussed for 'frontier' hosizons, thickness of 

anaerobic subsoil ho~izons were dependent On the thickness of the active layer and oxygen 

diffusion. Accordingly, the proportion of subsoil horizons within a profile was gseater in wet 

depressions than in the respective dsier sites, which corresponded to fmdings in the literature 

(GEBAUER et al., 1996). Subsoils were water saturated above the supra-perrnafrost layer and 

marked by a distinct increase in soil organic matter with low Cm-ratios, which cossespond to 

respective data by GUNDELWEIN (1998). This has been explained by precipitation of low 

molecular organic compounds at low temperatures above the pemafrost table (ibid.). 

In the respective horizons, bactesia prevailed over fungi, which were even absent in many 

cases. A peak in bactesial bioinass values in the supra-permafrost layer was also detesmined 

by LYSAK & DOBROVOL'SKAYA (1982). Substrate induced heat output cosselated with carbon 

and nitrogen levels but was negatively affected by wider Cm-ratios. The fact that caloric 

quotients increased with wider Cm-ratios indicates that the microbial population was apt for 

the nutiient resource available in the respective hosizons. Heat output was attsibuted to 

bacteria and cosrelated well with the activity dependent Parameters. 

In Summary, the microbial properties in a,ccordance with statistical evaluation allowed a 

generalised view of microbial habitats in tundra soils, which differed significantly from each 
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other. Differentes between the topsoils of wet and drier micro-sites were greater than between 

individual 'fsontier' or subsoil horizons. As a consequence, variability between sites has only 

been discussed with respect to the respective horizons. Furthermore, it has to be stated that the 

individual habitats are likely to interlock depending On active layer thickness and proportion 

of the aerobic and anaerobic horizons within the profile. Particularly the cumulative wetting 

effect and 'zero-curtain', which results in accun~ulation of solutes in the upper part of mineral 

horizons is likely to interlock with 'fsontier' habitats when thaw depth is shallow. Topsoils 

represent a continuum between wet, aquatic habitats and drier soils charactesized by a 

decomposer cycle. 011 the other side, these may spatially and temporally interlock with for 

instance fluctuating water table at soil surface. Rhizosphere effects have been suggested when 

wet depressions in immediate proximity to vegetated mounds showed very high microbial 

biomass values. This is j~istified because of exceptional high belowground biomass production 

by tundra plants. 
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6.4 Tundra soils in a changing climate 

As confismed in this study, the decomposer cycle is detemined by temperature, moisture and 

nutrients. Whereas soil temperature and moisture are largely controlled by climatic conditions, 

nutrient Status and availability represent an indirect effect of both abiotic conditions and plant 

species composition. Yet, all of these factors are intimately linked to each other. In a changing 

climate, their effects on soil microbial properties are largely unknown. Impact of climate 

change in this context may thus be discussed in a rather simplistic manner. On the other hand, 

the presumed increase of CO2 release and CH4 oxidation in the Arctic represent plant- 

microbe-mediated processes, which in retum might have a feedback on global climate 

(CHAPIN I11 et al., 1992). Since tundra globally Covers 7.34* 1 0 ~  km2 (MATTHEWS, 1983), 

addressing consequences of climate change at soil microbe level becomes important. 

During the last century, temperatures in Alaskan tundra have increased 2 to 4OC 

(LACHENBRUCH & MARSHALL, 1986 and LACHENBRUCH et al., 1988 cf. OECHEL & BILLINGS, 

1992). As a result of atmospheric trace gas emissions such as CO2, CH4, and nitrous oxide 

(NzO), global temperature might increase ('gseenhouse effect'). In the early 1990s, further 

increase was considered to be highly certain (MAXWELL, 1992; CHAPIN I11 et al., 1992). More 

recent data qualify observed higher temperatures in the Arctic within range of historic 

variability (MAXWELL, 1997). Projections for the Russian Arctic differ from those for other 

arctic regions. Thus, mean annual air temperature shows no clear trend in climatic scenarios. 

This is explained by different trends of winter temperatures. Mean summer temperatures, in 

contrast, are generally expected to increase. In westem Siberia (Yamal), an increase in 

tcmperature is also expected for winter but decreases towards the east (ibid.). Projections of 

changes in global water balance differ and are subject of discussion. Thus, climate change 

may lead to warmer and drier conditions due to increased evapotransipiration (KANE et al., 

1997). On the other hand, precipitation is expected to increase (ROWNTREE, 1997) leading to 

warmer and wetter conditions. In the Russian Arctic, annual precipitation trends range from 

0.0 to +2.3% per decade. Yet, surnmer precipitation is generally expected to increase 

(MAXWELL, 1997). 

At both experimental sites of this study, a temperature increase would result in increased soil 

respiration, wet (top)soils showing a greater temperature sensitivity than the respective dsier 

ones (SOMMERKORN, 1998). A theoretical temperature increase of 10Â° (Qio) would result in 

2.2 to 3.0 greater activity at wet sites compared to 1.2 to 1.6 gseater values at drier sites 
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(ibid.). Thus, a higher temperature of 1 'C would increase mineralisation by 12 to 16% at drier 

sites and 22 to 30% at wet sites. The potential for gseater mineralisation rates at wet sites was 

supported by data of this study. Substrate induced heat output (SIQ) of wet topsoils showed 

that fungi in the respective horizons were viable. Lower activity under field conditions thus 

indicated tliat the microbiota was inhibited most likely due to water logging and low 

temperatures. In water saturated soils, a temperature increase would increase CH4 production 

to a gseater extent (VOURLITIS & OECHEL, 1997) because of higher temperature sensitivity 

(Qio 5.3-16) of methanogenic bacteria (DL'NFIELD et al., 1993). In contrast to microbial 

activity, community composition may not change significantly by temperature changes alone 

(PANIKOV, 1997) 

As can be seen, the position of the water table represents another critical control for 

decomposition processes in the soils of this study (SOMMERKORN, 1998; GUNDELWEIN, 1998), 

as has also been established for other arctic soils (FEDOROV-DAVYDOV, 1998; VOURLITIS & 

OECHEL, 1997; OECHEL & VOURLITIS, 1995; WHALEN et al., 1996; OBERBAUER et al., 1996; 

MOORE & DALVA, 1993). Yet, the soil moisture regime is a major variable in predicting 

impact of climate change (see above). Increased annual air temperature along with higher 

evapotranspiration (i.e., warmer and wetter scenario) is likely to increase thaw depth and to 

lower the water table (KANE et al., 1992). In the soils of this study, lowering of the water table 

by 10 cm was found to result in almost complete CH4 oxidation (GUNDELWEIN, 1998). In 

contrast, influence of water table on CO2 efflux is limited, probably reflecting different 

substrates and microbial populations, lower temperatures and root respiration (SOMMERKORN, 

1998; MOORE & DALVA, 1993; GEBAUER et al., 1996). Influence of water table was greatest at 

a depth of 0-5 cm (SOMMERKORN, 1998; OBERBAUER et al., 1991). For the soils of the 

experimental sites, this relationship indicates that tlie bulk CO; efflux originales fiom the 

respective horizons (SOMMERKORN, 1998), which corresponds to the microbiological data of 

this study. In addition to these considerations, gseater thaw depths and lowering of the water 

table would result in a shift of 'fsontier' horizons. Depending 011 the physical properties of the 

soil, this would relieve the stress caused by Oz deficiency and microbial community stsucture 

might shift towards an aerobic population. In wet habitats, a lower water table will reduce 

ciliates and flagellates that are adapted to feeding in water (CLARHOLM, 1994). 

However, climate change may not necessarily induce drier soil moisture regimes. Precipitation 

is also likely to increase in most areas (i.e., warmer and wetter scenario), as in the Russian 

Arctic (MAXWELL, 1997). Yet even in the warmer and dsier scenario, KANE et al. (1997) 
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fusther state that downslope soils may receive additional moisture from hillslope soils. This 

process would affect many soils of this study. Hence, there is strong evidence that soil 

moisture regimes may not change to a great extent. 

At long-tem scales, climate change is expected to affect plant species composition, which 

bears gseater uncertainties since plant species respond differently to changing environmental 

conditions (CHAPIN I11 et al., 1997; BILLINGS, 1992). Yet, vegetation affects soil ecology in 

substrate quantity and quality as well as in competition for nutrients. It has generally been 

suggested that plant species composition will change towards gseater abundance of grasses 

and deciduous shrubs (KIELLAND & CHAPIN, 1992). Soil drying could increase deciduous 

shrubs relative to gsaminoids and mosses (CHAPIN I11 et al., 1997). Advance of the treeline 

depends on the onset of the gsowing season, which might be delayed as a result of later 

snowmelt (SVEINBJORNSSON, 1992). Furthemore, the microbiota of the rhizosphere is vesy 

plant specific (PARINKINA, 1974; 1989). Thus, changes in the vegetation Cover will be 

accompanied by changes in the microbial population (KIELLAND & CHAPIN, 1992). It has been 

suggested that elevated CO2 concentrations of the atmosphere and increasing temperatures 

may result in increased plant productivity, which may fÅ¸sthe be counterbalanced by limited 

nutrient availability and plant specific water relations (OECHEL & BILLINGS, 1992; 

OBERBAUER & DAWSON, 1992). Low nutrient availability may increase mycorrhizal infection 

in order to enhance nutrient acquisition (SVEINBJORNSSON, 1992). According to MOORHEAD & 

LINKINS (1 997) greater activity associated with nutrient acquisition, will change the microbial 

community con~position. This is explained by a gseater availability of simple carbohydrates, 

which may lower the decomposition rate of complex polymers. On the other hand, it has been 

suggested that microbial biomass may increase but not change in composition since plant litter 

production will increase too (ZAK et al., 1993). Thus, there are many uncestainties in 

evaluating the long-term effect On plant-microbe relations. 

In summing up, it may be stated that even if anticipation of the nature of climatic change was 

possible, impact 011 soil ecology of arctic Systems might not be. Yet, the soil microbiota of this 

study showed high potential productivity and sensitivity with respect to temperature and soil 

water conditions and may therefore be particular vulnerable to climate change. 
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6.5 Future research needs 

The methods used in this study proved to describe the microbial pool and its spatial variability 

successfully. Yet, in order to elucidate (micro)biologically i-nediated carbon fluxes in tundra 

soils future research should address the following aspects: 

e This study showed that microbiological investigations should include all depths of the 

active layer. Changes in microbial properties such as community composition and substrate 

requirements indicate the potential productivity of tundra soils. This is substantiated by the 

freeze-thaw dynamics of permafrost affected soils, where frost chuming may result in 

upside-down orientation of subsoil hosizons. Furthermore, climate change may cause the 

soils to thaw to greater depths. 

Tundra soils are characterised by a short gsowing season, during which edaphic conditions 

and microbial biomass values change remarkably. It is also known for temperate soils, that 

microbial Parameters such as for example metabolic quotients vary over time (DILLY, 

1994). Therefore, a temporal resolution of the sampling technique is desirable. In addition 

to continuous CO2 and CH4 measurements in the field, these would provide further insight 

in the underlying microbial processes. 

* There is evidence from this study that in wet habitats of tundra soils, a substantial 

proportion of the energy flux might pass through protozoa. The fast tumover of carbon and 

nutsients through bacteria and protozoa is commonly referred to as 'microbial loop'. FOT 

aquatic habitats, the significance of the 'microbial loop' as a link or source of energy flow 

is subject of dispute. Yet for tundra soils, there is very little information On the respective 

taxonomic gsoups and fkture investigation is recommended. 

Tundra plants show specific rooting strategies and high belowground biomass production. 

Within the scope of this joint research project, emphasis was put on particulate carbon 

input fiom above and belowground. Root litter and exfoliating cells of living roots as well 

as ~nicrobial cell residues will stimulate decomposer micro-organisms. Yet, hrther input 

Comes from root exudates, upon which different gsoups will feed. Of equal importance are 

mycorrhizal associations. In contrast to decomposing fÅ¸ngi mycorrhizal hngi receive 

assimilates from above-ground plant Parts. Mycorrhiza thus contribute to soil organic 

matter but are less important in decomposition. The methodology of this study was not 

designed to capture these processes. Yet, a clear rhizosphere effect was discemible in the 

studied tundra soils. Further insight in the origin of particulate soil organic matter in the 
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rhizosphere may be achieved by CPIMAS ^C N.M.R spectroscopy (BALDOCK et al., 1990). 

Fungal and bacterial cell residues may be investigated by contents of glucosamine and 

muramic acid (GUGGENBERGER et al., in press). Characterisation of soil pore water and 

detemination of dissolved organic matter with respect to root effects are recommended. 

0 The hypothesis of a redox potential discontinuity (RPD) needs investigation by redox 

potentiometers in the field. Yet, both temporal and spatial resolution are required for 

further characterisation. Confismation of the presence of a RPD would have implications 

for geochemical element cycling as well as microbial inediated processes and the 

microbiota. Marine environments show a dynamic microbiota with respect to carbon 

cycling at the interface of aerobic and anaerobic layers. Contradictosy anaerobic and 

aerobic processes have also been reported to occur synchronously in water-logged soils of 

temperate regions. Future investigation should address all these aspects. 
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8. Appendices 

A l .  Calculation of ATP contents 

ATP contents of the soil extract (A-value), the soil extract with standard in the extract 

(C-value) and the soil extract with standard during ineasurement (B-value) are read fiorn the 

standard curve and given in nanogratns. The inhibition rate I [%] is calculated as follows: 

where I inhibition rate [%] 

A-value ATP content [ng] of aliquot of tlie soii extract 

B-value ATP contcnt fng] of aliquot of the soil extract 

with added ATP standard (Std,) for measurement 

Std, internal standard during measurement; here: 0.5 or l ng ATP 

A- and C-values are then corrected for inhibition: 

The measured ATP contents A and C (ATPm) are given in nanograms per gram dry weight of 

soil using the following equation: 

where ATP,,, ATP content of A or C [ng g" d.wt.1 

Conc ATP content [ng 1 in the cuvette (obtained from Eqn, 3,4.2) 

VE Extraction volume [inl]; here: 50 ml (or 30 ml) 

WC Water content of the soil sample [ml] 

vÃ Dilution volume [inl]; here: 0.1 ml 

DW Dry weight of the soil sample [g] 

V, Aliquot volume of diluted soll extract in cuvette [n~l]; here: 0.35 ml 

The recovery rate [%I is calculated as follows: 

wliere RR [%I recovery rate [%I 
C C-value obtained from Equation 3.4.3 

A A-value as obtained from Equation 3.4.3 

Stdc Standard added before extraction; here: 1000 ng ATP 



The ATP content of the soil sample (A-value as obtained from Eqn. 1.3) is corrected for 

recovery of added ATP (C-value obtained fi-om Eqn. 1.3) as follows: 

where ATPc ATP content of soil sample [ng g" d.wt.1 corrected for recovery 

ATP,,, Measured ATP content [ng d.wt.1 as calculated by Equation 1.3 

RR Recovery rate [%I as obtained from Equation 1.4 



Fig. A2.1-1: $02 map Levinson-Lessing (modified from GUNDELWEIN et al.; 1997; GUNDELWEIN, 1998). 
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High centred polygon 

Profile LL3196: Ruptic-Histic Aquiturbel (Pergelic Cryaquept) (Â§.T. 
Turbic Cryosol (WRB) 

Profile LL4196: Typic Aquorthel (Pergelic Cryaquept) (S.T.) 
Histic Cryosol (WRB) 

Relief: 
Altitude: 
Vegetation: 

Substrate: 
Drainage: 

Tes~ace of river Krasnaya 
50 m a.s.1. 
Arctic and arctic-alpine vegctation (1 00% coverage) 
Dry centrc: inosses (Tormenthvpfwm nitens, Hviocomium splendens), dwarf shrubs 
(Diyas punctata), sedges (Carex arcfosibir~ca), lichens (Thamnolia vermicularis, 
Dactyiina arct~ca) 
Wet frost crack: inosses (Plclgoiiiuns darum), sedges (Eriophorum angusllfolium, 
Carex arctosibirca), dwarf slirubs (Sa1i.v reptans) 
Fluviatile sands 
Cenire: moderately drained. frost crack: very poorly drained 

Profile 3/96 (dry centre): 

Depth (cm) HorizonDescription 

- 8 - 5 Oi Weakly decomposed plant debris, 0 v ~ l . ? ~  gravel, no roots, pH [CaCl*] 6.5 
- 5 - 0  Oe Moderately decomposed plant debris, 0 vol.% gravel, very densely rooted, 

pH [CaCl2] 6.7 
0 -  8 Bg Very dark grayish brown (2.5Y 3/2) sandy loarn, weakly stony (1-10 vol.% 

gravel), dark yellowish brown (10YR 416) iron mottling, dipyridyl [+I, 
weakly liumic. coherent structure, densely rooted, pH [CaCl;] 6.3, HC1 [-I, ice 
veins, oriented stones 

>8 pft Permafrost table 

Profile 4/96 (wet frost crack): 

Deptli (cm) HorizonDescription 

+6 - 4 Oi Weakly decon~posed plant debris, 0 vol.% gravel, no roots, pH [CaCl;] 7.0 
4 - 0  Oe Moderately decomposed plant debris, 0 vol.% gravel, very densely rooted, 

pH [CaCl;] 7.0 
0 -  18 Bg Very dark gray (5Y 311) sandy loam, 0 vol.% gravel, dipyridyl [+I, weakiy 

humic, coherent structure, densely rooted, pH [CaCl;] 6.5, HC1 [-I 
> 18 pfi Permafrost table 

Tab. A2.2-1: Profile description high centred polygon (Profile LL3/96 and LL4/96), Levinson-Lessing. 



Profile LL5-7/96: 

Relief: 
Altitude: 
Vegetation 

Substrate: 
Drainage: 

Profile LL5196 (centre): 

Depth (ein) Horizon 

-15 - 12 Oi 
12 - 10 Oe 1 
1 0 -  0 Oe2 

>I 1 pft 

Profile LL6196 (apex): 

Depth (cm) Horizon 

-9-6 Oa 1 
6-2 Oa2 

Note: 

Typic Historthel (Pergelic Cryofibrist) (Â§.T. 
Histic Cryosol / Stagnic Cryosol (WRB) 

Ten'acc of river Krdsnaya 
50 m a.s.1. 
Arctic and aretic-alpine vegetation (100% coverage): 
Ccntre: sedges (Carex stans, Eriophorum a~igustfoI;~~m), mosses (Plagot~~i~ium 
cla~iitn), dwrf  shrubs (Sdix reptans} 
Apex: dwarf shrubs (D~mpunctata). mosses (Torment/;ypt;uri~ nitens, H~~loco~nium 
.~j~letidet~s), lichens (Cetraria ci~cullata, T/zat;~i~ol;a vern~;cularis, StereocauJoti spp.) 
Frost crack: sedges (Carex stans), dwarf shrubs (Sa1i.x reptms, Dryas punctata) 
Fluviatile sands 
Centre: poorly drained, apex: imperfectly to moderately drained, frost crack: very 
poorly drained 

Description 

Weakly decomposed plant debris, 0 vol.% gravel, pH [CaCI;] 6.6 
Moderately decomposed plant debris, 0 vol.% gravel, pH [CaCl;] 5.4 
Moderately decomposed plant debris, 0 vol.% gravel, pH [CaCl;] 5.8; Fe3"- 
band 
Very dark gray (2.5Y 311) silty loam, brown iron mottling (7.5YR 414), 
dipyridyl [+I, moderately humic, coherent structure, pH [CaCl;] 5.8, densely 
rooted, stagnating horizon 
Black (10YR 211) strongly decomposed organic matter, 0 vol.% gravel, 
fluviatile sands, pH [CaCl;] 5.6 
Permafrost table 

Description 

Plumified plant debris, 0 vol.% gravel, densely rooted, pH [CaCl;] 5.9 
Humified plant debris, 0 vol.% gravel, extremly densely rooted, 
pH [CaC12] 6.5 
Humified plant debris, 0 vol.% gravel, weakly rooted, pH [CaCl;] 6.4, Fe3^- 
band 
Dark olive gray (5Y 312) silty loam, 0 vol.% gravel, brown (10YR 313) iron 
mottling, dipyridyl [+I, weakly humic, coherent structure, pH [CaCl;] 6.3, no 
roots 
Black (10YR 211) strongly decomposed organic matter, 0 vol.% gravel, 
fluviatile sands, pH [CaCl;] 6.1 
Permafrost table 

Profile showed irregular horizons with respect to thickness and boundaries 
due to cryoturbation 

Profile LL7196 (frost crack): 

Depth (cm) HorizonDescription 

-16- 11 Oi Weakly decomposed plant debris, 0 vol.% gravel, densely rooted, 
pH [CaCl;] 6.2 

1 1 -  0 Oe Decomposed plant debris. 0 vol.% gravel, extremely densely rooted, 
pH [CaCl;] 6.1 

> 0 ~ f t  Silty loam, 0 vol.% gravel, no roots, perrnafrost 

Tab. A2.2-2: Profile description intermediate polygon (Profile LL5196, LL6196 and LL7/96), Levinson- 
Lessing. 
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Profile LL11196: Ruptic-Histic Aquiturbel (Pergelic Cryaquept) (S.T.) 
Turbic Cryosol 1 Histic Cryosol (WRB) 

Relief: 
Altitude: 
Vegetation 

Substrate: 
Drainage: 

Upper slope, moderately steeply sloping ( 1  Y), east exposition 
90 m a.s.1. 
Arctic and arctic-alpine vegetation (1 00% uoverage): dwarf shrubs ( D ~ y a s  punctala, 
Salix pola~is,  Salix reticula), Asfragalus spp., Polyson~i~m vivparuri~, sedges (Carex 
spp.), niosses, lichens (Tl~amnolia sermicularis} 
Kolluvium of fine-grained grcywacke 
mpert'ectiy to poorly drained, slopc watcr ahove pennafrost 

Profile LLll.1/96 (overgrown mud pit): 

Depth (cm) Horizon Description 

0 - 3 AC Very dark gray (2.5Y 311) sandy loan~.  25-50 vol.% gravel, coherent to 
granular structure, weakly humified, very densely rooted, pH [CaC12] 6.2 

3 - 2 1  c g  1 Veiy dark gray (2.5Y 311) loamy sand. 2-10 vol.% gravel. coherent structure, 
no humus, weakly rooted, pH [CaCl;] 5.4, Diyridyl [-I 

21 - 51 C@- Black (5Y 2.511) loamy sand, 0 vol.% gravel, coherent structure, no roots, 
dipyridyl [-I, pH [CaCl;] 5.4, slope water 

>5 1 ~ f t  Permafrost table 

Profile LLll.2196 (vegetation ring): 

Depth (cm) Horizon Description 

-14-11 Oi Weakly decomposed plant debris, 0 vol.% gravel, extremly densely rooted, 
pH [CaCl,] 6.2 

11-0 Oe Moderately decomposed plant debris, 0 vol.% gravel, pH [CaCl;] 5.7 
0 -  15 c g  Black (5Y2.511) loamy sand, 2-10 vol.% gravel, no humus, no roots, 

pH [CaCl;] 5.7. dipyridyl [+] 
>15 ~ f t  Pem~afrost table 

Tab. A2.2-3: Profile description overgrown non-sorted step at the solifluction slope (Profile LL11.1196 and 
LL11.2/96), Levinson-Lessing. 



Non-sorted stripes 

Profile LL9196: Typic Aquorthel (Pergelic Cryorthent) (S.T.) 
Leptic Cryosol (WRB) 

Relief: 
Altitude. 
Vegetation 

Substrate: 
Drainage: 

Foot dope at mountain top plateau, moderately steeply sloping (16') 
260 m a.s.1. 
Arctic and arctic-alpine vegetation (60% coverage): 
stripes of rock debris (very little vegetation): Ccu'ex reptans 
vegetation stripe: ~Vovosiviersm glacialis, Papaver spp. Salix spp., Carex spp., 
Minnarctic blJora, inosses spp., lichens (Cetaria c ~ ~ c u l a t ( ~ ,  Thamnalia ver~nici~laris) 
Sax fiaga spp . 
Frost shattered rock debris, kolluvium 
Poorly drained at vegetated inicro-site, iinperfectly drained, slope water above 
pennafrost 

Profile LL9.1196 (unvegetated stripe): 

Depth (cm) Horizon Description 

0 - 4 AIC Very dark gray (10YR 3/1) very sandy loam, 25-50 vol.% gravel, no to very 
little humus, coherent structure, moderately rooted, pH [CaCli] 7.2. 
dipyridyl [-] 

4 -60 C Reddish black (2.5YR 2.511) very sandy loam, 50-75 vol.% gravel, no humus 
to very weakly humic, no roots, pH [CaCl;] 7.4, dipyridyl [-] 

>60 ~ f t  Pennafrost table 

Profile LL9.2196 (vegetation stripe): 

Depth (cm) Horizon Description 

- 4 - 2  Oi Weakly decomposed plant debris, pH [CaC12] 7.5 
2 - 0 Oie Moderately decomposed plant debris, pH [CaCli] 7.6 
0- 40 C Reddish black (2.5YR 2.511) moderately sandy loam, 25-50 vo1.N gravel, no 

humus to very weakly humic, moderately rooted, pH [CaCl*] 7.6, dipyridyl [-I 
>40 ~ f t  Permafrost table 

Tab. A2.2-4: Profile description non-sorted stripes (Profile LL9.1196 and LL9.2/96), Levinson-Lessing, 
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A3. Pedological parameters 

Tab. A3-1: C- and N-contents, pH value in the polygonal tundra at 
Levinson-Lessing. 

Profile Horizoiddepth % T C  % N C/N pH [CaCl;] 
1/96 Oi 20.2 0.9 22.3 6.1 

3/96 Oe 27.0 1.0 27.1 6.7 
3/96 Bg 8.2 0.5 16.2 6.3 
3/96 frost boil (0-4) 5.2 0.3 15.8 - 
4/96 Oi 26.1 0.8 34.7 7.0 
4/96 Oe 27.8 0.9 31.4 7.0 

5/96 Oe 1 18.5 1.0 18.9 5.4 
5/96 Oe2 13.4 0.8 16.8 5.8 
5/96 Bg 8.3 0.4 20.2 5.8 
5/96 I1 Oe 13.1 0.7 19.1 5.6 
6/96 Oal 20.1 1.1 18.1 5.9 
6/96 Oa2 16.8 1.0 16.8 6.5 
6/96 Oa3 11.5 0.8 15.1 6.4 
6/96 Bg 6.1 0.3 20.4 6.3 
6/96 I1 Oe 10.7 0.5 19.8 6.1 
7/96 Oe 1 17.0 1.0 17.1 6.2 
7/96 Oe2 15.2 0.9 16.7 6.1 

Tab. A3-2: C- and N-contents, pH value in the solifluction steps at 
Levinson-Lessing. 

Profile Horizonldepth % T C  % N  C/N pH [CaC12] 
8.1196 AC (0-2) 2.7 0.2 13.0 5.5 
8.1196 AC (2-4) 3.3 0.3 13.4 - 

8.1196 Cg 3.9 0.3 13.9 5.3 
8.2196 Oi 20.6 0.7 28.6 4.6 
8.2196 A 8.6 0.5 16.2 5.7 
8.2196 Bg (5-9) 3.6 0.3 13.4 5.3 



Tab. A3-3: C- and N-contents, pH value in the non-sorted stripeslnets at 
Levinson-Lessing. 

Profile Hor~zonldepth % T C  % N C/N pH [CaC12] 
9.1196 surface stones - 
9.1196 AC (0-0.5) 2.5 0.1 19.0 7.0 
9.1196 AC (0-4) 2.2 0.1 16.0 7.2 
9.1196 C 2.9 0.1 22.0 7.4 
9.2196 Oi 19.3 0.7 29.7 7.5 
9.2196 Oie 11.8 0.5 21.9 7.6 
9.2196 BIC 2.6 0.2 12.9 7.6 
10.1196 A 2.2 0.1 18.0 6.2 

Tab. A3-4: C- and N-contents, pH-values in the hummock tundra at Labaz. 

Profile Horizon Horizo~ddepth % T C  % N C/N pH [H20] pH [CaC12] 
Lb2Hl95 A(0-1)  0-2 17.5 0.9 19.7 5.1 4.3 

~ ~ ~ ( 1 -  pft) 2-5 
5-10 
10-20 
20-30 
30-40 

Lb 2FCl95 Oe (0- 10) 0-2 
2-5 
5-10 

Oef (> 10) 10-20 

Tab. A3-5: C- and N-contents, pH-values in the tussock tundra at Labaz. 

Profile Horizon Horizonldepth % TC % N C/N pH [H20] pH [CaCl;] 
Lb 3Tl95 Ah (0-5) 0-2 20.2 0.5 38.1 5.3 4.3 

2-5 3.6 0.2 22.4 5.5 4.6 
Cgl (5-8) 5-10 2.4 0.1 17.7 6.5 5.6 
Cg2 (8-44) 10-20 2.2 0.1 16.6 6.4 5.2 

20-30 2.3 0.1 17.7 6.0 5.2 
30-40 2.2 0.1 17.4 6.1 5.3 

Cg3 (44-50) 40-50 4.7 0.3 18.0 6.5 5.2 
Lb 3Dl95 Oe (0- 17) 0-2 33.2 0.9 36.4 5.8 5.3 

2-5 13.9 0.7 19.3 5.9 5.3 
5-10 17.2 0.9 19.5 5.6 5.2 

ACg (17-27) 10-20 27.2 1.3 21.2 5.65 5.2 
20-30 2.4 0.1 18.4 6.1 5.0 
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Tab. A3-6: C- and N-contents, pH-values in the wet sedge tundra at Labaz. 

Profile Hoz-izon Horizonldepth % T C  % N C/N pH [H20] pH [CaCl;] 
Lb 4/95 Oi (12-0) 0-2 20.5 0.9 23.0 5.7 5.3 . . 

2-5 42.9 0.9 47.4 
5-10 14.1 0.9 16.1 5.6 4.7 

ACg (0-33) 10-20 1.9 0.1 18.8 6.1 5.0 
20-30 1.7 0.1 18.4 6. i 5.0 

Cgf (>33) 30-50 2.0 0.1 18.5 6.2 5.3 

Tab. A3-7: C- and N-contents, pH-values in the dry uphill soil at Labaz. 

Profile Horizon Horizonldepth % TC % N CiN pH [H20] pH [CaCI;] 
Lb 1/95 A (0- 1 )  0-2 8.6 0.5 17.5 6.9 6.6 

Tab. A3-8: C- and N-contents, pH-values in the dry podzolised soil at Labaz. 

Profile Horizon Horizonldepth % TC % N C N  pH [H20] pH [CaCl;] 
Lb 7/95 AE (0-10) 0-2 6.9 0.4 17.7 5.6 4.5 

2-5 5.4 0.3 16.8 5.1 4.3 
5-7 1.8 0.1 15.3 5.3 3.8 

AE(0-10) 0-10 3.2 0.2 16.5 5.3 4.3 
Bsg (10-25) 10-25 0.7 0.0 18.3 5.6 4.2 
Bwg (25-60) 25-60 0.1 0.0 14.0 5.8 4.6 
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A4. Biovolume and biomass of fungi and bacteria 
Tab. A4.1-1: Hyphal length L [ni g" d.wt.1, fnngal biovolunie V [mm3 g" d.wt.1, fungal biornass FBM 

[pg C g" d.wt.1, bacterial biomass BBM [pg C g"' d.wt.1 (SCHMIDT & BOLTER, unpubl. data) 
and fungal to bacterial ratio (FB-ratio) at Levinson-Lessing. 

Profile Horizonldepth L V FBM BBM FB-ratio 
Polygonal tundra 
1/96 vegetated mound Oi (0-5) 38.84 0.313 40.71 3.61 11.3 

Oi (5-10) 37.04 0.379 49.21 3.3 1 14.9 
Oe 4.98 0.088 11.46 2.07 5.5 

2/96 centre Oi 6.93 0.089 11.55 14.76 0.8 
Oe 1 28.42 1.193 155.08 11.58 13.4 
Oe2 22.3 1 1.062 138.05 6.23 22.2 

Special features: 
1196 Carex roots Oi ND ND ND ND ND 

Fe-mottling Bg 30.57 0.468 60.86 ND ND 
2/96 surface Fc-Ox. 0.79 0.01 1 1.37 ND ND 
3/96 vegetated mound Ol 3.78 0.022 2.85 7.89 0.4 

Oe 41.19 0.263 34.18 16.05 2.1 
Bg 81.77 0.964 125.33 0.72 1 74.1 

frost boil 0-0.5 9.34 0.083 10.78 3.76 2.9 
0-4 7.48 0.073 9.52 5.45 1.7 

4/96 frost crack Oi 3.60 0.032 4.14 20.38 0.2 
Oe 34.74 0.413 53.70 18.41 2.9 
Bg 0 0 0 2.25 0.0 

Special features: 
3/96 saprophytic fungi Oe 7.92 0.106 13.84 ND ND 
4/96 transition Oe/Bg Bg 53.89 0.631 82.02 ND ND 
5/96 centre Oi 53.62 0.620 80.57 9.78 8.2 

Oe 1 26.95 0.263 34.24 9.39 3.6 
Oe2 12.36 0.125 16.24 4.69 3.5 
Bg 5.30 0.249 32.42 10.48 3.1 
I1 Oe 0 0 0 12.39 0.0 

6/96 nlound Oa 1 101.39 0.925 120.29 5.18 23.2 
Oa2 85.32 0.742 96.46 3.62 26.6 
Oa3 49.35 0.429 55.79 2.67 20.9 
ÃŸ 3.31 0.012 1.59 3.73 0.4 
I1 Oe 0 0 0 5.21 0.0 

7/96 frost crack Oe 1 41.20 0.379 49.31 10.79 4.6 
Oe2 31.51 0.451 58.65 8.74 6.7 

Special features: 
5/96 Fe-oxidation ND ND ND ND ND 
6/96 roots Oe3 393.03 3,503 455.34 ND ND 
7/96 roots Oe 1 43.97 0.621 80.72 ND ND 
Non-sorted steps 
8/96 unvegetated mound AC (0-0.5) 

AC (0-2) 
AC (2-4) 
c g  

peat ring Oi 
A 
ÃŸ (5-9) 
B; (>9) 

11/96 vegetated mound A 

Bg 
peat ring Oi 

Oe 
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- continued - 
Non-sorted (transitionary) stripes 
9/96 unvegetated mound 

peat ring 

10196 unvegetated n~ound 

peat ring 

AC (0-0.5) 
AC (0-4) 
C 
Oi 
Oie (2-3) 
Oie (3-4) 
B!C 
A (0-0.5) 
A (0-1 1) 
C 
Oi (0-2) 
Oi (2-3) 
A 
c 

Special features: 
DeÃ¤ Oi (0-2) 12.01 0.093 12.06 ND ND 

x (min) 0 0 0 1 0 
X (max) 393.03 3.503 455.34 20.38 174.1 
mean 37.13 0.379 49.31 6.13 15.7 
median 20.97 0.187 24.27 4.71 4.5 



Tab. A4.1-2: Hyphal length L [ n ~  g" d.wt.1, fungal biovolume V [mm3 g.' d.wt.1, fnngal bion~ass FBM 
[pg C g-' d.wt.1, bacterial bioniass BBM [pg C g" d.wt.1 (BOLTER, 1998) and fungal to 
bacterial ratio (FR-ratio) at  Labaz. 

Profile Horizon/depth L V FBM BBM. FB-ratio 

Lbll95 Dry brown earth Ah (0-2) 14.84 0.082 10.65 9.466 1.1 
Bwl (2-5) 13.86 0.1 12 14.61 5,983 2.4 
Bwl (5-10) 17.31 0.080 10.45 0.849 12.3 
Bwl (10-20) 4.68 0.023 3.01 0.162 18.6 
2Cwl (20-30) 3.28 0.015 1.96 0.178 11.0 

Cg (2-5) 8.88 0.066 8.63 1.484 5.8 
Cg ( 5-10) 11.42 0.071 9.22 0.740 12.5 
Cg (10-20) 12.93 0.1 16 15.14 2.136 7.1 
Cg (20-30) 0.57 0.001 0.19 0.732 0.3 
Cg (30-40) 0 0 0 0.521 0 

frost crack Oe (0-2) 16.91 0.134 17.45 26.015 0.7 
Oe (2-5) 1.96 0.027 3.57 5.571 0.6 
Oe (5- 10) 43.09 0.376 48.91 2.290 21.4 
Of (10.20) 16.23 0.164 21.26 5.374 4.0 
Of (20-30) 0 0 0 1.765 0 

3/95 tussock A ( 0-2) ND ND ND 7.078 ND 
A ( 2-5) 0 0 0 2.234 0 
Cgl (5-10) 4.35 0.022 2.81 0.995 2.8 
Cg2 (10-20) 48.21 0.373 48.51 0.971 50.0 
Cg2 (20-30) 2.02 0.016 2.1 1 0.633 3.3 
Cg2 (30-40) 0 0 0 0.742 0 
Cg3 (40-50) 2.32 0.020 2.57 0.992 2.6 

depression Oe ( 0-2) 64.87 0.532 69.18 7.018 9.9 
Oe ( 2-5) 77.74 0.603 78.37 13.229 5.9 
Oe (5-10) 124.92 0.753 97.86 33.111 3.0 
Oe (10-20) 82.44 0.445 57.83 5.839 9.9 
ACg (20-30) 0 0 0 1.715 0 

4/95 wet sedge tundra 0-2 79.04 0.800 103.98 29.384 3.5 

30-50 0 0 0 0.518 0 
7/95 Dry brown earth Oi ( 0-2) 0.83 0.012 1.50 1.162 1.3 

(podzolised) Oi ( 2-5) 1.12 0.004 0.49 0.826 0.6 
Oi ( 5-7) 1.35 0.006 0.78 0.606 1.3 
AE (0-10) 0.48 0.003 0.39 0.743 0.5 
Bhs (10-25) 2.81 0.017 2.21 1.300 1.7 
Bwg (25-60) 0 0 0 0.157 0 
X (niin) 0 0 0 0.12 0 
X (niax) 919.46 9.597 1247.66 33.11 170.0 
mean 46.83 0.431 56.09 5.42 10.3 
median 4.07 0.025 3.29 1.48 2.7 



Tab. A4.2-1: Total bacterial number (TBN n*109 g" d.wt.), mean bacterial biovolume (MCV um3) and 
bacterial bion~ass (pg C g-' d.wt.) in tbe soils of the polygonal tundra at Levinson-Lessing 
(SCHMIDT & BOLTER, unpubl. data). 

Profile Sample TBN MCV BBM 

n*lO g d.wt.1 IW'I [us, C g '  d.wt.1 

1/96 20 1 1.48 0.024 3.61 

202 0.97 0.034 3.31 

203 0.44 0.047 2.07 

2/96 204 2.80 0.053 14.76 

205 3.07 0.038 11.58 

206 1.32 0.047 6.23 

3/96 207 1 .52 0.052 7.89 

208 3.12 0.052 16.05 

209 0.16 0.046 0.72 

3/96 (mud pit) 252 1.05 0.036 3.76 

253 1.37 0.040 5.45 

4/96 210 3.66 0.056 20.38 

211 3.62 0.05 1 18.41 

212 0.44 0.052 2.25 

5/96 213 2.08 0.047 9.78 

214 1.69 0.056 9.39 

215 1.09 0.043 4.69 

216 2.07 0.05 1 10.48 

217 2.54 0.049 12.39 

6/96 218 1.22 0.042 5.18 

219 0.72 0.050 3.62 

220 0.69 0.039 2.67 

22 1 0.88 0.042 3.73 

222 1.79 0.029 5.21 

7/96 223 2.30 0.047 10.79 

224 2.00 0.044 8.74 

X (min) 0.156 0.024 0.719 

X (max) 3.659 0.056 20.383 

mean 1.696 0.045 7.812 

median 1.500 0.047 5.838 
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Tab. A4.2-2: Total bacterial number (TBN n*109 g" d.wt.), mean bacterial biovolume (MCV pm3) and  
bacterial biomass (pg C g f  d.wt.) in the soils of the non-sorted steps at Levinson-Lessing 
(Schmidt & BÃ¶lter unpubl. data). 

Profile Sample TBN MCV BBM 

11*109 g-l d.wt.1 [um3] [pg C g-l d.wt.1 

8.1196 239 1.27 0.039 4.99 

240 0.71 0.03 1 2,19 

24 1 0.55 0.026 1.39 

242 0.79 0.026 2.02 

8.2196 243 I .90 0.038 7.13 

244 0.69 0.037 2.53 

245 0.20 0.034 0.68 

246 0.27 0.033 0.87 

1.1196 247 1.37 0.040 5.42 

248 2.37 0.043 10.21 

1 1.2196 249 7.38 0.022 16.32 

250 1.6 1 0.029 4.72 

25 1 0.47 0.040 1.87 

X (min) 0.20 1 0.022 0.679 

X (max) 7.384 0.043 16.320 

mean 1.507 0.034 4.642 

median 0.791 0.034 2.529 

Profile Sample TBN MCV BBM 

[ I ~ * I O ~  g.ld.wt.~ [um3] [pg C g -  d . ~ t . ]  

9.1!96 225 1 .05 0.034 4.8 1 

10.1196 232 0.55 0.029 1.59 

233 0.48 0.029 1.37 

234 0.34 0.032 1 .07 

10.2/96 235 2.17 0.037 8.1 1 

236 1.90 0.040 7.51 

237 1.05 0.042 4.44 

238 0.28 0.03 1 0.87 

X (min) 0.273 0.029 0.874 

X (max) 3.440 0.047 16.109 

mean 1.072 0.035 4.256 

median 0.785 0.035 2.915 



Tab. A4.2-4: Total bacterial number (TBN n*109 g-' d.wt.), mean bacterial biovolun~e (MCV um3) and 
bacterial biomass (pg C g" d.wt.) in the soils at Labaz (BÃ¶lter 1998). 

Profile Depth TBN MCV BBM 
[n*lo9 g-' d.wt.1 [um3] [pg C g"' d.wt.1 

Lb 1/95 0-2 1.970 0.048 9.466 

X (min) 0.025 0.022 0.117 
X (max) 6.807 0.073 33.111 

mean 0.987 0.047 5,424 
median 0,337 0.047 1.478 



A5. Ecological parameters 

Tab.A5-1: Spearman correlation coefficients p for parameters of microbial biomass and activity as well 
as substrate parameters in wet topsoil horizons. Coefficients in bold letters mark when 
correlation was accepted. (where FBM: fungal biomass, BBM: bacterial biomass, FB: ratio of 
fungal to bacterial bion~ass, Q: basal heat output, SIQ: substrate induced heat output, CALQ: 
caloric quotient, ATP: ATP content, ATPIMBM: ATP content per mi t  microbial biomass, C: 
carbon content, N: nitrogen content, CIN: carbon to nitrogen ratio, n. a.: not applicable). 

P FBM BBM FB Q SIQ CALQ ATP ATPI C N 
MBM 

Frequency 11 1 1  1 1  7 10 6 10 10 11 1 1  
FBM 
BBM 0.20 
FB 
Q 0.25 -0.04 0.1 I 
S Id  -0.05 -0.06 0.07 0.14 
CALQ -0.03 -0.49 -0.26 
ATP 0.30 -0.02 0.38 0.87 -0.14 0.80 
ATPIMBM -0.49 -0.36 -0.20 0.29 -0.35 0.67 
C -0.20 0.18 -0.10 -0.81 -0.05 -0.94 -0.03 0.21 
N -0.16 -0.16 -0.18 -0.51 -0.67 -0.25 -0.51 -0.12 0.11 
C/N -0.04 0.30 0.04 -0.47 0.49 -0.89 0.12 0.05 0.82 -039 

Tab.A5-2: Spearman correlation coefficients p for parameters of microbial biomass and activity as well 
as substrate parameters in dry topsoil horizons. Coefficients in bold letters mark when 
correlation was accepted (where FBM: fungal biomass, BBM: bacterial biomass, FB: ratio of 
fungal to bacterial biomass, Q: basal heat output, SIQ: substrate induced heat output, CALQ: 
caloric quotient, ATP: ATP content, ATPIMBM: ATP content per unit microbial biomass, C: 
carbon content, N: nitrogeil content, Cm:  carbon to nitrogen ratio, n. a.: not applicable). 

P FBM BBM FB Q SIQ CALQ ATP ATPI C N 
MBM 

Frequency 26 27 26 12 14 12 27 26 27 27 
FBM 
BBM 0.39 
FB n. a. -0.1 1 

Q -0.05 0.84 -0.26 
SIQ 0.22 0.71 -0.17 0.68 
CALQ -0.21 0.11 -0.11 n .a .  n .a .  
ATP 0.21 0.67 -0.19 0.07 0.42 -0.50 
ATP/MBM -0.45 0.22 -0.66 -0.14 0.02 -0.20 n.a.  
C 0.42 0.79 0.04 0.68 0.85 0.01 0.51 0.08 
N 0.61 0.66 0.29 0.46 0.60 -0.05 0.40 -0.09 0.84 
CiN -0.12 0.53 -0.36 0.51 0.51 0.10 0.33 0.25 n.a.  n .a .  
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Tab  .A5-3: Spearnian correlation coefficients p for paranieters of microbial biomass and activity as well 
as Substrate paran~eters in frontier horizons (at a depth of approximately 10 cm). Coefficients 
in bold letters mark when correlation was accepted (where FBM: fungal biomass, BBM: 
bacterial biomass, FB: ratio of fungal to bacterial biomass, Q: basal heat output, SIQ: 
Substrate induced heat output, CALQ: caloric quotient, ATP: ATP content, ATPIMBM: ATP 
content per unit microbial biomass, C: carbon content, N: nitrogen content, C m :  carbon to 
nitrogen ratio, n. a.: not applicable). 

FBM BBM FB Q SIQ CALQ ATP ATPI C N 
MBM 

Frequency 22 22 22 14 15 13 22 22 22 22 
FBM 
BBM 0.17 
FB n. a. 11. a. 

Q 0.41 0.14 0.06 
SIQ 0.56 0.38 0.06 0.78 
CALQ -0.18 -0.30 -0.09 11.a. n .a .  
ATP -0.01 0.28 -0.12 -0.13 0.13 -0.51 
ATPIMBM -0.57 -0.09 -0.46 -0.21 -0.01 -0.36 n. a. 
C 0.34 0.61 -0.19 0.34 0.57 -0.15 0.21 -0.16 
N 0.35 0.65 -0.16 0.19 0.47 -0.34 0.30 -0.11 0.94 
C/N -0.05 0.29 -0.30 0.41 0.46 0.30 -0.05 -0.09 0.43 0.20 

Tab.A5-4: Spearman correlation coefficients p for paranieters of microbial biomass and activity as well 
as substrate Parameters in subsoil horizons. Coefficients in bold letters mark when correlation 
was accepted. (where FBM: fungal biomass, BBM: bacterial biomass, FÃŸ ratio of fungal to 
bacterial bioniass, Q: basal heat output, SIQ: substrate induced heat output, CALQ: caloric 
quotient, ATP: ATP content, ATPIMBM: ATP content per unit microbial biomass, C: carbon 
content, N: nitrogen content, C m :  carbon to nitrogen ratio, n. a.: not applicable). 

P FBM BBM F Ã  Q SIQ CALQ ATP ATPI C N 
MBM 

Frequency 19 19 19 7 8 4 19 19 19 19 
FBM 
BBM 0.06 
FB n. a. n. a. 

Q -0.69 0.45 -0.69 
S I 0  0.23 0.63 0.14 0.27 
CALQ -0.89 0.74 -0.89 0.78 -0.32 
ATP 0.07 -0.14 0.31 0.69 0.1 1 -0.06 
ATPIMBM -0.06 -0 15 0.19 0.69 0.11 -0.06 n. a. 
C 0.06 0.83 -0.11 0.19 0.92 -0.32 0.04 0.03 
N 0.05 0.83 -0.14 0.20 0.92 -0.33 0.06 0.06 0.97 
C/N -0.06 0.02 0.05 0.11 -0.73 0.63 0.18 0.20 -0.03 -0.14 
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Tab.AS-5: Significance level p (Mann-Whitney U test) of difference of means of data sets for all topsoil 
(top), wet (wtop) and dry (wtop) topsoil, and all frontier horizons (front: depth of 
approximately 10 c n ~ )  and all subsoils (sub). Bold figures show when difference was rejected 
(where FBM: fungal biomass, BBM: bacterial biomass, FB: ratio of fungal to bacterial 
biomass, Q: basal heat output, SIQ: substrate induced heat output, CALQ: caloric quotient, 
ATP: ATP content, ATPIMBM: ATP content per unit microbial biomass, C: carbon content, 
N: nitrogen content, CIN: carbon to nitrogen ratio). 

P top vs. wtop vs. wtop vs. dtop vs. top vs. wtop vs. dtop vs. front  vs. 
front dtop front front sub sub sub sub 

FBM 0.1933 0,0499 0.5668 0.0426 < 0.0001 < 0.0001 0.0001 < 0.0001 
BBM 
FB 

Q 
SIQ 
CALQ 
ATP 
ATPIMBM 
C 
N 
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