An autonomous, in situ light-dark bottle device for determining community respiration and net community production

Thumbnail Image
Date
2018-03
Authors
Collins, James R.
Fucile, Paul D.
McDonald, Glenn
Ossolinski, Justin E.
Keil, Richard G.
Valdes, James R.
Doney, Scott C.
Van Mooy, Benjamin A. S.
Alternative Title
Date Created
Location
DOI
Related Materials
Replaces
Replaced By
Keywords
Respiration
Community metabolism
Aquatic microbial ecology
Autonomous instrumentation
Optodes
Dissolved oxygen
Ocean observing
Abstract
We describe a new, autonomous, incubation-based instrument that is deployed in situ to determine rates of gross community respiration and net community production in marine and aquatic ecosystems. During deployments at a coastal pier and in the open ocean, the PHORCYS (PHOtosynthesis and Respiration Comparison-Yielding System) captured dissolved oxygen fluxes over hourly timescales that were missed by traditional methods. The instrument uses fluorescence-quenching optodes fitted into separate light and dark chambers; these are opened and closed with piston-like actuators, allowing the instrument to make multiple, independent rate estimates in the course of each deployment. Consistent with other studies in which methods purporting to measure the same metabolic processes have yielded divergent results, respiration rate estimates from the PHORCYS were systematically higher than those calculated for the same waters using a traditional two-point Winkler titration technique. However, PHORCYS estimates of gross respiration agreed generally with separate incubations in bottles fitted with optode sensor spots. An Appendix describes a new method for estimating uncertainties in metabolic rates calculated from continuous dissolved oxygen data. Multiple successful, unattended deployments of the PHORCYS represent a small step toward fully autonomous observations of community metabolism. Yet the persistence of unexplained disagreements among aquatic metabolic rate estimates — such as those we observed between rates calculated with the PHORCYS and two existing, widely-accepted bottle-based methods — suggests that a new community intercalibration effort is warranted to address lingering sources of error in these critical measurements.
Description
Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography-Methods 16 (2018): 323-338, doi:10.1002/lom3.10247.
Embargo Date
Citation
Cruises
Cruise ID
Cruise DOI
Vessel Name