新疆北山坡一镍矿床中钴的赋存状态、地球化学特征及其对钴成矿的启示

王路阳, 薛胜超, 王晓曼, 王亚磊, 王恒, 王鹏, 辛雨, 田洪庆. 2023. 新疆北山坡一镍矿床中钴的赋存状态、地球化学特征及其对钴成矿的启示. 岩石学报, 39(2): 445-462. doi: 10.18654/1000-0569/2023.02.10
引用本文: 王路阳, 薛胜超, 王晓曼, 王亚磊, 王恒, 王鹏, 辛雨, 田洪庆. 2023. 新疆北山坡一镍矿床中钴的赋存状态、地球化学特征及其对钴成矿的启示. 岩石学报, 39(2): 445-462. doi: 10.18654/1000-0569/2023.02.10
WANG LuYang, XUE ShengChao, WANG XiaoMan, WANG YaLei, WANG Heng, WANG Peng, XIN Yu, TIAN HongQing. 2023. Occurrence and geochemical characteristics of cobalt of the Poyi nickel deposit in the Beishan region, Xinjiang: Insights into cobalt mineralization. Acta Petrologica Sinica, 39(2): 445-462. doi: 10.18654/1000-0569/2023.02.10
Citation: WANG LuYang, XUE ShengChao, WANG XiaoMan, WANG YaLei, WANG Heng, WANG Peng, XIN Yu, TIAN HongQing. 2023. Occurrence and geochemical characteristics of cobalt of the Poyi nickel deposit in the Beishan region, Xinjiang: Insights into cobalt mineralization. Acta Petrologica Sinica, 39(2): 445-462. doi: 10.18654/1000-0569/2023.02.10

新疆北山坡一镍矿床中钴的赋存状态、地球化学特征及其对钴成矿的启示

  • 基金项目:

    本文受国家自然科学基金面上和青年项目(42172076、41802076)及求真学人计划项目(265QZ2022008)联合资助

详细信息
    作者简介:

    王路阳,男,1998年生,硕士生,矿床学专业,E-mail: lywangbox@163.com

    通讯作者: 薛胜超,男,1987年生,副教授,主要从事矿床学的教学和科研,E-mail: xuesc@cugb.edu.cn
  • 中图分类号: P611.1;P618.62;P618.63

Occurrence and geochemical characteristics of cobalt of the Poyi nickel deposit in the Beishan region, Xinjiang: Insights into cobalt mineralization

More Information
  • 钴作为当今社会必需的一种关键矿产资源, 岩浆铜镍矿床是我国钴资源供应的重要矿床种类之一, 该类矿床中钴元素通常赋存于镁铁质硅酸盐矿物、硫化物、类硫化物和铁氧化物中, 然而镁铁质硅酸盐和铁氧化物中的钴难以分选利用, 因此钴赋存状态的厘定是铜镍矿床中钴资源评价和利用的重要前提。新疆东天山-北山地区发育大量晚古生代、普遍伴生钴的岩浆铜镍矿床, 其中位于北山地区的坡一镍矿床以赋含高镍硫化物为特色, 是研究岩浆铜镍矿床中钴元素的赋存状态、分布特征以及钴与镍相互关系的理想对象。坡一镍矿的含矿岩相主要为单辉橄榄岩、纯橄岩和橄长岩, 以稀疏浸染状矿化为主, 钴主要以类质同象形式赋存于镍黄铁矿, 其次为铬尖晶石、橄榄石和磁黄铁矿, 少见独立钴矿物。矿物微区原位分析结果显示原生矿物中钴含量由高到低依次为镍黄铁矿(~8404×10-6)>>铬尖晶石(~475×10-6)>磁黄铁矿(高Ni含量)(~299×10-6)>橄榄石(~137×10-6)>黄铜矿(~13.0×10-6)>磁黄铁矿(低Ni含量)(~8.35×10-6)。坡一岩体的蚀变橄榄岩中发育三种产状的次生磁铁矿: 蚀变橄榄石裂理中细脉状磁铁矿、铬尖晶石边部环状磁铁矿边、硫化物矿边部和裂隙中次生磁铁矿边。元素面扫描结果显示次生磁铁矿中Co含量明显高于原生硫化物、氧化物和硅酸盐矿物, 且显示富Co贫Ni特征。坡一矿床中硫化物和硅酸盐矿物表现出明显的Co-Ni正相关, 而铬尖晶石中Co和Ni显示负相关, 表明Co2+主要以类质同象形式替代Fe2+进入硫化物和硅酸盐矿物晶格, 以替代Fe2+、Ni2+的形式进入铬尖晶石。坡一矿床中Ni和Co的共生行为, 主要归因于岩浆演化过程硫化物熔离和硅酸盐矿物分离结晶过程中相近的配分行为, 而Ni和Co的离散特征主要受控于铬尖晶石的分离结晶和R值(岩浆和硫化物质量比)的变化、热液蚀变过程中次生磁铁矿Co富集作用。由于铬尖晶石与硅酸盐矿物中的钴难以分选利用, 北山地区的钴矿资源勘查应关注贫铬尖晶石、橄榄石镍亏损的富硫化物超镁铁质岩体。

  • 加载中
  • 图 1 

    中亚造山带南缘北山地区地质简图(据Xiao et al., 2004修改)

    Figure 1. 

    Simplified geologic map of the Beishan region in the southern Central Asian Orogenic Belt (CAOB) (modified after Xiao et al., 2004)

    图 2 

    北山坡北地区二叠纪镁铁-超镁铁质岩分布图(a)、坡一镁铁-超镁铁质岩体地质图(b)及其勘探线剖面图(c)(据Xue et al., 2016修改)

    Figure 2. 

    Distribution map of Permian mafic-ultramafic rocks in the Pobei area (a), geological map (b) and cross section of the prospecting line (c) of the Poyi mafic-ultramafic complex (modified after Xue et al., 2016)

    图 3 

    坡一岩体矿化超镁铁质岩相正交偏光显微照片(a-c)和背散射电子图像(d)

    Figure 3. 

    Photomicrographs (a-c) and back-scattered electron images (d) of mineralized ultramafic rocks of Poyi

    图 4 

    坡一矿化岩体中金属硫化物和氧化物反射光显微照片(a, f)和背散射电子图像(b-e)

    Figure 4. 

    Photomicrographs (a, f) and back-scattered electron images (b-e) of mineralized related sulfide minerals

    图 5 

    坡一矿床单辉橄榄岩(样品ZK22-4-1030)矿物自动化定量分析照片

    Figure 5. 

    TIMA images of wehrlite (Sample ZK22-4-1030) of the Poyi deposit

    图 6 

    坡一岩体纯橄岩(样品ZK22-4-893)矿物自动化定量分析照片

    Figure 6. 

    TIMA images of dunite (Sample ZK22-4-893) of the Poyi deposit

    图 7 

    坡一矿床矿石中原生硫化物和次生磁铁矿矿物自动化定量分析照片

    Figure 7. 

    TIMA images of co-located primary sulfide mineral and secondary magnetite in the Poyi deposit

    图 8 

    坡一矿床矿石的硫、镍、铜和钴元素相关性图解

    Figure 8. 

    Correlation diagrams of S, Ni, Cu and Co of the sulfide ores in the Poyi deposit

    图 9 

    坡一矿床矿石中硫化物、硅酸盐矿物和尖晶石氧化物的镍、铁和钴元素相关性图解

    Figure 9. 

    Correlation diagrams of Ni, Fe and Co of the sulfide ores, silicate mineral and spinel oxides in the Poyi deposit

    图 10 

    坡一矿床矿化超镁铁质岩相矿物质量比例图

    Figure 10. 

    Diagrams of mineral proportion of mineralized ultramafic rocks in the Poyi deposit

    表 1 

    坡一矿床矿化超镁铁质岩中硫、镍、铜和钴(wt%)组成

    Table 1. 

    Concentrations of S, Ni, Cu and Co (wt%) of the sulfide-mineralized ultramafic rocks in the Poyi deposit

    样品号 岩性 S Ni Cu Co
    PY23-2-760.5* 纯橄岩 1.37 0.96 0.29 0.019
    ZK23-3-1124 0.11 0.25 0.01 0.013
    ZK23-3-1193.5 0.06 0.26 0.01 0.013
    ZK23-3-1273 0.04 0.25 0.01 0.013
    ZK23-3-1360 0.06 0.25 0.01 0.014
    PY23-2-446 单辉橄榄岩 0.06 0.25 0.01 0.012
    PY23-2-493 0.04 0.23 0.01 0.013
    PY23-2-539.2* 0.37 0.4 0.07 0.016
    PY23-2-551.7 0.13 0.25 0.05 0.016
    PY23-2-795.6 0.22 0.29 0.07 0.013
    PY23-2-844 0.12 0.19 0.03 0.014
    PY23-2-868.2 0.13 0.19 0.03 0.015
    PY23-3-772* 0.34 0.34 0.08 0.016
    PY23-3-790* 0.68 0.52 0.15 0.019
    PY23-3-817.5* 0.46 0.33 0.10 0.018
    PY23-3-882 0.69 0.43 0.13 0.019
    PY23-3-886* 0.69 0.25 0.13 0.019
    PY23-3-948.6 0.22 0.35 0.07 0.013
    PY23-3-1057* 1.01 0.57 0.23 0.018
    PY27-5-643.7 0.05 0.26 0.01 0.013
    PY27-5-821 0.05 0.27 0.01 0.013
    PY23-3-589 0.09 0.28 0.02 0.015
    PY23-2-894.5 0.52 0.34 0.09 0.019
    PY23-3-846 0.13 0.22 0.03 0.015
    PY23-2-728.5 橄长岩 0.05 0.29 0.01 0.013
    PY23-2-742 0.05 0.29 0.01 0.013
    PY23-2-746* 0.63 0.54 0.16 0.014
    PY23-3-761* 0.92 0.7 0.24 0.018
    PY23-3-874.5* 0.44 0.23 0.06 0.010
    ZK26-4-572.8 橄榄辉长岩 0.10 0.06 0.01 0.008
    ZK38-3-774 0.03 0.06 0.01 0.008
    PYC-11 0.12 0.04 0.01 0.006
    PYC-14 0.19 0.04 0.01 0.006
    PYC-15 0.11 0.06 0.03 0.006
    PYG-1 辉长岩 0.04 0.01 0.00 0.002
    PYG-5 0.05 0.03 0.01 0.003
    注:*样品的S、Ni、Cu含量引自Xue et al. (2016)
    下载: 导出CSV

    表 2 

    坡一矿床矿石中硫化物的主量和微量元素组成(×10-6)

    Table 2. 

    Major and trace element compositions of the sulfides in the Poyi deposit (×10-6)

    样品号 岩性 矿物 S Co Ni Cu Cr As Se Te Bi
    ZK224-803-12 单辉橄榄岩 黄铜矿 411497 0.08 5751 350551 15.3 0.01 115 30.8 4.31
    ZK224-803-13 单辉橄榄岩 417535 0.15 3555 338492 3.36 0.00 116 30.4 0.54
    ZK224-803-14 单辉橄榄岩 398491 0.11 5104 350078 6.22 0.00 104 35.9 1.25
    ZK224-893-11 纯橄岩 408316 0.04 377 383262 1.09 0.00 101 18.4 24.6
    ZK224-893-12 纯橄岩 389812 0.03 438 386243 0.97 0.00 102 22.8 24.5
    ZK224-893-13 纯橄岩 412208 0.06 440 380554 1.34 0.02 103 11.6 14.8
    ZK224-893-14 纯橄岩 408475 0.10 626 379771 11.8 0.03 96.3 21.4 32.6
    ZK224-1030-11 单辉橄榄岩 411470 2.16 211 392313 1.77 0.00 109 29.6 0.63
    ZK224-1030-12 单辉橄榄岩 422892 0.02 12.8 397112 1.20 0.05 117 22.2 23.1
    ZK224-1030-13 单辉橄榄岩 416701 0.04 34.1 390073 1.16 0.00 105 15.3 24.7
    ZK224-1030-14 单辉橄榄岩 210791 152 2592 208269 12.0 4.14 56.5 14.8 23.8
    ZK224-1030-15 单辉橄榄岩 423931 0.18 33.3 399923 7.19 0.00 131 3.80 3.89
    ZK224-803-4 单辉橄榄岩 镍黄铁矿 457955 2742 152340 5613 15.1 2.31 139 2.73 9.43
    ZK224-803-6 单辉橄榄岩 309789 8290 289997 532 16.8 35.5 85.9 25.0 2.05
    ZK224-803-7 单辉橄榄岩 358082 10325 395594 134 46.7 2.02 109 8.25 1.43
    ZK224-803-8 单辉橄榄岩 346237 11329 379491 6813 23.3 22.7 95.3 21.9 1.57
    ZK224-803-9 单辉橄榄岩 370160 10307 408915 0.94 1.39 0.81 111 1.36 0.15
    ZK224-803-10 单辉橄榄岩 345138 9518 385263 259 31.1 0.15 98.9 1.40 0.51
    ZK224-893-6 纯橄岩 369549 7955 437471 0.12 1.95 378 169 112 1.00
    ZK224-893-7 纯橄岩 359072 4152 410891 0.22 2.28 381 143 145 0.10
    ZK224-893-8 纯橄岩 338450 3777 301871 203 11.3 20.9 136 2.76 14.9
    ZK224-893-9 纯橄岩 353399 3533 410595 0.16 1.09 35.4 136 4.01 3.01
    ZK224-893-10 纯橄岩 352966 4931 397798 0.47 9.87 258 133 85.9 0.31
    ZK224-1030-6 单辉橄榄岩 350502 10749 366903 0.04 0.96 51.6 108 65.9 0.00
    ZK224-1030-7 单辉橄榄岩 320116 12229 347992 0.21 0.97 258 114 88.5 0.07
    ZK224-1030-8 单辉橄榄岩 379420 12523 376388 9.22 22.8 58.0 88.4 31.0 0.15
    ZK224-1030-9 单辉橄榄岩 338897 10513 361028 2.11 1.79 99.3 97.2 106 8.08
    ZK224-1030-10 单辉橄榄岩 358582 11584 409873 0.05 1.38 12.4 91.8 16.0 0.01
    ZK224-803-1 单辉橄榄岩 磁黄铁矿 358932 8.00 422 9.61 1.26 29.64 102 5.19 1.00
    ZK224-803-2 单辉橄榄岩 394691 3.57 138 337 3.01 21.8 120 7.89 2.02
    ZK224-803-3 单辉橄榄岩 384670 3.39 148 11.1 1.68 1.83 112 1.98 0.71
    ZK224-803-5 单辉橄榄岩 361572 18.5 175 15.0 0.56 40.8 108 6.74 2.48
    ZK224-893-1 纯橄岩 395028 10.7 4500 2.41 0.34 17.4 140 3.51 9.01
    ZK224-893-2 纯橄岩 380639 6.86 1121 3.49 0.85 51.4 140 5.12 13.7
    ZK224-893-3 纯橄岩 393412 5.69 3564 2.80 1.28 6.49 155 2.67 11.8
    ZK224-893-4 纯橄岩 379597 0.87 122 129 2.35 9.48 138 2.72 9.65
    ZK224-893-5 纯橄岩 403275 1.48 10.4 0.85 0.79 1.47 160 0.85 3.87
    ZK224-1030-1 单辉橄榄岩 425638 5.38 3475 1.49 1.53 0.04 117 0.08 0.51
    ZK224-1030-2 单辉橄榄岩 417895 150 7534 3.19 1.42 0.77 115 2.45 4.45
    ZK224-1030-3 单辉橄榄岩 443788 491 19858 0.22 1.53 12.5 120 1.13 5.67
    ZK224-1030-4 单辉橄榄岩 418492 255 6792 3.67 1.45 0.92 116 1.42 1.71
    ZK224-1030-5 单辉橄榄岩 413496 27.4 4610 1.50 0.97 0.02 111 0.07 0.51
    下载: 导出CSV

    表 3 

    坡一矿床矿石中硅酸盐矿物的主量和微量元素组成(×10-6)

    Table 3. 

    Major and trace element composition of the silicate mineral in the Poyi deposit (×10-6)

    样品号 岩性 矿物 Fe Co Ni Li Mg Al Ti V Cr Mn
    ZK224-803-1 单辉橄榄岩 橄榄石 83969 142 2292 2.62 260751 3.10 35.3 0.26 3.79 1336
    ZK224-803-2 单辉橄榄岩 83789 139 2196 3.14 262885 6.07 35.5 0.49 14.9 1324
    ZK224-803-3 单辉橄榄岩 82903 140 2233 2.72 262649 13.7 53.2 1.06 47.0 1328
    ZK224-803-4 单辉橄榄岩 82206 141 2196 4.27 261709 5.69 53.8 0.90 20.4 1286
    ZK224-803-5 单辉橄榄岩 82267 131 2268 5.80 264504 0.75 30.9 0.08 4.40 1293
    ZK224-803-6 单辉橄榄岩 82907 123 1967 3.30 264518 12.2 29.3 0.26 17.5 1314
    ZK224-893-1 纯橄岩 82647 129 3115 5.77 259634 31.5 93.6 1.88 37.5 1301
    ZK224-893-2 纯橄岩 82143 130 3035 2.94 262293 20.1 36.3 1.26 27.4 1294
    ZK224-893-3 纯橄岩 82339 134 3178 3.84 261233 5.78 50.9 0.38 5.58 1310
    ZK224-893-4 纯橄岩 82776 136 3275 5.83 263483 6.41 59.8 0.76 12.0 1304
    ZK224-893-5 纯橄岩 82350 134 3381 7.18 263784 1.32 54.4 0.28 12.2 1267
    ZK224-893-6 纯橄岩 82551 132 3167 2.65 260876 22.8 47.4 1.97 41.8 1293
    ZK224-1030-1 单辉橄榄岩 85090 140 2077 2.45 259265 49.4 56.2 1.60 119 1321
    ZK224-1030-2 单辉橄榄岩 85504 140 2231 4.60 261300 2.75 52.5 0.44 20.1 1331
    ZK224-1030-3 单辉橄榄岩 84905 146 2234 2.75 263257 93.0 49.1 2.32 33.3 1332
    ZK224-1030-4 单辉橄榄岩 84382 149 2235 2.96 263944 1.15 27.9 0.17 5.70 1322
    ZK224-1030-5 单辉橄榄岩 83856 142 2217 2.45 263801 24.0 51.9 1.28 6.93 1311
    ZK224-1030-6 单辉橄榄岩 84377 133 1960 1.84 260108 29.7 21.1 0.28 14.4 1329
    ZK224-803-1 单辉橄榄岩 单斜辉石 33121 38.5 628 2.53 100700 76992 8348 526 11800 428
    ZK224-803-2 单辉橄榄岩 17908 21.7 314 0.74 116649 17303 1595 107 2829 275
    ZK224-803-3 单辉橄榄岩 32745 36.6 573 2.60 102366 76330 8561 524 11804 436
    ZK224-803-4 单辉橄榄岩 23585 25.9 429 1.97 108302 41461 3490 230 7224 307
    ZK224-893-1 纯橄岩 18165 19.3 437 1.50 104401 19342 2020 172 6747 279
    ZK224-893-2 纯橄岩 32799 37.2 914 2.11 102240 77728 12696 591 9495 403
    ZK224-893-3 纯橄岩 32007 37.9 894 2.08 98896 74997 17418 605 11730 408
    ZK224-893-4 纯橄岩 13832 13.8 241 8.20 55942 10549 2557 147 4143 450
    ZK224-1030-1 单辉橄榄岩 32448 35.2 563 4.45 113355 69902 2752 210 10092 493
    ZK224-1030-2 单辉橄榄岩 35361 41.3 638 4.62 104568 76946 9471 524 13704 442
    ZK224-1030-3 单辉橄榄岩 35785 40.9 605 4.03 104947 77136 9639 505 13266 439
    ZK224-1030-4 单辉橄榄岩 36603 39.9 629 9.48 112399 82978 1788 231 8707 634
    下载: 导出CSV

    表 4 

    坡一矿床矿石中尖晶石的主量和微量元素组成(×10-6)

    Table 4. 

    Major and trace element composition of the spinel in the Poyi deposit (×10-6)

    样品号 岩性 矿物 Fe Co Ni Cu Mg Al Mn Sc Ti V Cr#
    ZK224-803-1 单辉橄榄岩 尖晶石 206530 479 596 7.70 68960 209223 2353 0.25 1966 1278 51.0
    ZK224-803-2 单辉橄榄岩 217487 480 772 1.01 56480 163531 2573 1.71 9006 1514 51.0
    ZK224-803-3 单辉橄榄岩 206576 459 1072 0.02 60680 163420 2300 2.52 7553 1465 51.0
    ZK224-803-4 单辉橄榄岩 226938 531 636 0.75 60092 186255 2587 1.12 6382 1518 51.0
    ZK224-803-5 单辉橄榄岩 215846 516 940 0.48 58943 170290 2560 1.46 7598 1469 51.0
    ZK224-893-1 纯橄岩 218757 410 785 0.53 44033 124350 2736 1.85 9022 1843 55.2
    ZK224-893-2 纯橄岩 218592 445 1153 0.00 52012 140579 2629 1.79 6750 1679 55.2
    ZK224-893-3 纯橄岩 224107 437 1201 0.10 55369 128940 2677 28.6 7867 1951 55.2
    ZK224-893-4 纯橄岩 223773 437 1284 53.4 48417 122821 2713 21.0 9384 1881 55.2
    ZK224-893-5 纯橄岩 237789 405 1432 1.49 47169 124300 2797 29.6 9885 1900 55.2
    ZK224-1030-1 单辉橄榄岩 215842 483 866 0.03 54607 148906 2653 0.84 8239 1427 51.1
    ZK224-1030-2 单辉橄榄岩 234073 500 788 0.33 56805 172841 2613 0.85 4345 1396 51.1
    ZK224-1030-3 单辉橄榄岩 210331 495 714 0.01 68336 201072 2329 0.96 2256 1294 51.1
    ZK224-1030-4 单辉橄榄岩 214013 547 1016 0.82 63818 189266 2440 0.43 6083 1573 51.1
    ZK224-1030-5 单辉橄榄岩 208793 501 925 6.02 63107 182030 2377 0.80 4942 1461 51.1
    注:Cr#=Cr/(Cr+Al+Fe2+)
    下载: 导出CSV
  •  

    Arndt NT, Lesher CM and Czamanske GK. 2005. Mantle-derived magmas and magmatic Ni-Cu-(PGE) deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ and Richards JP (eds.). One Hundredth Anniversary Volume. SEG, 5-24

     

    Audétat A and Pettke T. 2006. Evolution of a porphyry-Cu mineralized magma system at Santa Rita, New Mexico (USA). Journal of Petrology, 47(10): 2021-2046 doi: 10.1093/petrology/egl035

     

    Barnes SJ and Lightfoot PC. 2005. Formation of magmatic nickel sulfide ore deposits and processes affecting their copper and platinum group element contents. In: Hedenquist JW, Thompson JFH, Goldfarb RJ and Richards JP (eds.). One Hundredth Anniversary Volume. SEG, 179-214

     

    Barnes SJ, Godel B, Gürer D, Brenan JM, Robertson J and Paterson D. 2013. Sulfide-olivine Fe-Ni exchange and the origin of anomalously Ni rich magmatic sulfides. Economic Geology, 108(8): 1971-1982 doi: 10.2113/econgeo.108.8.1971

     

    Barnes SJ and Ripley EM. 2016. Highly siderophile and strongly chalcophile elements in magmatic ore deposits. Reviews in Mineralogy and Geochemistry, 81: 725-774 doi: 10.2138/rmg.2016.81.12

     

    Beattie P. 1994. Systematics and energetics of trace-element partitioning between olivine and silicate melts: Implications for the nature of mineral/melt partitioning. Chemical Geology, 117(1-4): 57-71 doi: 10.1016/0009-2541(94)90121-X

     

    Brenan JM. 2003. Effects of fO2, fS2, temperature, and melt composition on Fe-Ni exchange between olivine and sulfide liquid: Implications for natural olivine-sulfide assemblages. Geochimica et Cosmochimica Acta, 67(14): 2663-2681 doi: 10.1016/S0016-7037(02)01416-3

     

    Campbell IH and Naldrett AJ. 1979. The influence of silicate: Sulfide ratios on the geochemistry of magmatic sulfides. Economic Geology, 74(6): 1503-1506 doi: 10.2113/gsecongeo.74.6.1503

     

    Campbell IH and Barnes SJ. 1984. A model for the geochemistry of the platinum-group elements in magmatic sulfide deposits. The Canadian Mineralogist, 22(1): 151-160

     

    Chen B and Qi CM. 2001. The occurrence state of cobalt and its significance in prospecting and resource assessment. Journal of Changchun University of Science and Technology, 31(3): 217-218 (in Chinese with English abstract) doi: 10.3969/j.issn.1671-5888.2001.03.003

     

    Chen C, Yao ZS and Wang CY. 2022. Partitioning behaviors of cobalt and manganese along diverse melting paths of peridotitic and MORB-like pyroxenitic mantle. Journal of Petrology, 63(4): egac021 doi: 10.1093/petrology/egac021

     

    Clark T and Naldrett AJ. 1972. The distribution of Fe and Ni between synthetic olivine and sulfide at 900 degrees C. Economic Geology, 67(7): 939-952 doi: 10.2113/gsecongeo.67.7.939

     

    Dare SAS, Barnes SJ and Beaudoin G. 2012. Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination. Geochimica et Cosmochimica Acta, 88: 27-50 doi: 10.1016/j.gca.2012.04.032

     

    Deng YF, Song XY, Wei X, Chen LM, Yu SY, Yuan F, Hollings P and Wei S. 2022. The role of external sulfur in triggering sulfide immiscibility at depth: Evidence from the Huangshan-Jingerquan Ni-Cu metallogenic Belt, NW China. Economic Geology, 117(8): 1867-1879 doi: 10.5382/econgeo.4928

     

    Feng CY, Zhao YM, Li DX, Liu JN and Liu CZ. 2016. Mineralogical characteristics of the Xiarihamu nickel deposit in the Qiman Tagh Mountain, East Kunlun, China. Geological Review, 62(1): 215-228 (in Chinese with English abstract)

     

    Francis RD. 1990. Sulfide globules in mid-ocean ridge basalts (MORB), and the effect of oxygen abundance in Fe-S-O liquids on the ability of those liquids to partition metals from MORB and komatiite magmas. Chemical Geology, 85(3-4): 199-213 doi: 10.1016/0009-2541(90)90001-N

     

    Gaetani GA and Grove TL. 1997. Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: Constraints on core formation in the Earth and Mars. Geochimica et Cosmochimica Acta, 61(9): 1829-1846 doi: 10.1016/S0016-7037(97)00033-1

     

    Gao JF, Zhou MF, Lightfoot PC, Wang CY, Qi L and Sun M. 2013. Sulfide saturation and magma emplacement in the formation of the Permian Huangshandong Ni-Cu sulfide deposit, Xinjiang, northwestern China. Economic Geology, 108(8): 1833-1848 doi: 10.2113/econgeo.108.8.1833

     

    Han BF, Ji JQ, Song B, Chen LH and Li ZH. 2004. SHRIMP zircon U-Pb ages of Kalatongke No. 1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications. Chinese Science Bulletin, 49(22): 2424-2429

     

    Han YG and Zhao GC. 2017. Late Paleozoic to Mesozoic tectonic evolution of the Chinese western Tianshan Orogen: Integrating detrital zircon provenance analysis with regional magmatic, stratigraphic, and tectonothermal evidence. In: 19th EGU General Assembly Conference Abstracts. Vienna, Austria: EGU, 10944

     

    Han YX, Liu YH and Li WY. 2020. Mineralogy of nickel and cobalt minerals in Xiarihamu nickel-cobalt deposit, East Kunlun Orogen, China. Frontiers in Earth Science, 8: 597469 doi: 10.3389/feart.2020.597469

     

    Hong DW, Wang SG, Xie XL and Zhang JS. 2001. The Phanerozoic continental crustal growth in Central Asia and the evolution of Laurasia supercontinent. Gondwana Research, 4(4): 632-633 doi: 10.1016/S1342-937X(05)70435-4

     

    Jahn BM, Wu FY and Chen B. 2000a. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91(1-2): 181-193 doi: 10.1017/S0263593300007367

     

    Jahn BM, Wu FY and Chen B. 2000b. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, 23(2): 82-92 doi: 10.18814/epiiugs/2000/v23i2/001

     

    Jiang CY, Cheng SL, Ye SF, Xia MZ, Jiang HB and Dai YC. 2006. Lithogeochemistry and petrogenesis of Zhongposhanbei mafic rock body, at Beishan region, Xinjiang. Acta Petrologica Sinica, 22(1): 115-126 (in Chinese with English abstract)

     

    Jiang CY, Guo NX, Xia MZ, Ling JL, Guo FF, Deng XQ, Jiang HB and Fan YZ. 2012. Petrogenesis of the Poyi mafic-ultramafic layered intrusion, NE Tarim Plate. Acta Petrologica Sinica, 28(7): 2209-2223 (in Chinese with English abstract)

     

    Kerr A and Leitch AM. 2005. Self-destructive sulfide segregation systems and the formation of high-grade magmatic ore deposits. Economic Geology, 100(2): 311-332 http://www.researchgate.net/publication/247864481_Self-Destructive_Sulfide_Segregation_Systems_and_the_Formation_of_High-Grade_Magmatic_Ore_Deposits

     

    Laubier M, Grove TL and Langmuir CH. 2014. Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: An experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth and Planetary Science Letters, 392: 265-278 doi: 10.1016/j.epsl.2014.01.053

     

    Le Roux V, Dasgupta R and Lee CTA. 2011. Mineralogical heterogeneities in the Earth's mantle: Constraints from Mn, Co, Ni and Zn partitioning during partial melting. Earth and Planetary Science Letters, 37(3-4): 395-408

     

    Li C, Ripley EM and Tao Y. 2019. Magmatic Ni-Cu and Pt-Pd sulfide deposits in China. Society of Economic Geologists Special Publications, 22: 483-508

     

    Li CS, Zhang ZW, Li WY, Wang YL, Sun T and Ripley EM. 2015. Geochronology, petrology and Hf-S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai-Tibet Plateau, western China. Lithos, 216-217: 224-240 doi: 10.1016/j.lithos.2015.01.003

     

    Li Y and Audétat A. 2012. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions. Earth and Planetary Science Letters, 355-356: 327-340 doi: 10.1016/j.epsl.2012.08.008

     

    Li Y and Audétat A. 2015. Effects of temperature, silicate melt composition, and oxygen fugacity on the partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and silicate melt. Geochimica et Cosmochimica Acta, 162: 25-45 doi: 10.1016/j.gca.2015.04.036

     

    Liu WH, Borg SJ, Testemale D, Etschmann B, Hazemann JL and Brugger J. 2011. Speciation and thermodynamic properties for cobalt chloride complexes in hydrothermal fluids at 35~440℃ and 600bar: An in-situ XAS study. Geochimica et Cosmochimica Acta, 75(5): 1227-1248 doi: 10.1016/j.gca.2010.12.002

     

    Lüdemann HD and Franck EU. 1968. Absorption spectra with high pressures and temperatures. 2. Cobalt (2)-and nickel (2) halides in concentrated alkalihalide-solutions. Berichte der Bunsengesellschaft für physikalische Chemie, 72: 514-523

     

    Mao JW, Pirajno F, Zhang ZH, Chai FM, Wu H, Chen SP, Cheng LS, Yang JM and Zhang CQ. 2008. A review of the Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang, NW China): Principal characteristics and ore-forming processes. Journal of Asian Earth Sciences, 32(2-4): 184-203 doi: 10.1016/j.jseaes.2007.10.006

     

    Mao YJ, Qin KZ, Barnes SJ, Ferraina C, Iacono-Marziano G, Verrall M, Tang DM and Xue SC. 2018. A revised oxygen barometry in sulfide-saturated magmas and application to the Permian magmatic Ni-Cu deposits in the southern Central Asian Orogenic Belt. Mineralium Deposita, 53(6): 731-755 doi: 10.1007/s00126-017-0771-3

     

    Mao YJ, Qin KZ and Tang DM. 2018. Characteristics, genetic mechanism, and exploration perspective of Ni-rich sulfide in magmatic Ni-Cu systems. Acta Petrologica Sinica, 34(8): 2410-2424 (in Chinese with English abstract)

     

    McFall K, Roberts S, McDonald I, Boyce AJ, Naden J and Teagle D. 2019. Rhenium enrichment in the Muratdere Cu-Mo (Au-Re) porphyry deposit, Turkey: Evidence from stable isotope analyses (δ34S, δ18O, δD) and laser ablation-inductively coupled plasma-mass spectrometry analysis of sulfides. Economic Geology, 114(7): 1443-1466 doi: 10.5382/econgeo.4638

     

    Migdisov AA, Zezin D and Williams-Jones AE. 2011. An experimental study of Cobalt (Ⅱ) complexation in Cl- and H2S-bearing hydrothermal solutions. Geochimica et Cosmochimica Acta, 75(14): 4065-4079 doi: 10.1016/j.gca.2011.05.003

     

    Naldrett AJ. 2010. From the mantle to the bank: The life of a Ni-Cu-(PGE) sulfide deposit. South African Journal of Geology, 113(1): 1-32 doi: 10.2113/gssajg.113.1-1

     

    Naldrett AJ. 2011. Fundamentals of magmatic sulfide deposits. In: Li CS and Ripley EM (eds.). Magmatic Ni-Cu and PGE Deposits: Geology, Geochemistry and Genesis. Society of Economic Geologists, 17: 1-50

     

    Pan PJ and Susak NJ. 1989. Co(Ⅱ)-chloride and -bromide complexes in aqueous solutions up to 5m NaX and 90℃: Spectrophotometric study and geological implications. Geochimica et Cosmochimica Acta, 53(2): 327-341 doi: 10.1016/0016-7037(89)90385-2

     

    Patten C, Barnes SJ, Mathez EA and Jenner FE. 2013. Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid: LA-ICP-MS analysis of MORB sulfide droplets. Chemical Geology, 358: 170-188 doi: 10.1016/j.chemgeo.2013.08.040

     

    Peach CL, Mathez EA and Keays RR. 1990. Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: Implications for partial melting. Geochimica et Cosmochimica Acta, 54(12): 3379-3389 doi: 10.1016/0016-7037(90)90292-S

     

    Palme H and O'Neill HSC. 2014. Cosmochemical estimates of mantle composition. In: Holland HD and Turekian KK (eds.). Treatise on Geochemistry. Oxford: Elsevier, 3: 1-38Qin KZ, Ding KS, Xu YX, Sun H, Xu XW, Tang DM and Mao Q. 2007. Ore potential of protoliths and modes of Co-Ni occurrence in Tulargen and Baishiquan Cu-Ni-Co deposits, East Tianshan, Xinjiang. Mineral Deposits, 26(1): 1-14 (in Chinese with English abstract)

     

    Qin KZ, Su BX, Sakyi PA, Tang DM, Li XH, Sun H, Xiao QH and Liu PP. 2011. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic intrusions in Eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): Constraints on a ca. 280Ma mantle plume. American Journal of Science, 311(3): 237-260 doi: 10.2475/03.2011.03

     

    Qin KZ, Zhai MG, Li GM, Zhao JX, Zeng QD, Gao J, Xiao WJ, Li JL and Sun S. 2017. Links of collage orogenesis of multiblocks and crust evolution to characteristic metallogeneses in China. Acta Petrologica Sinica, 33(2): 305-325 (in Chinese with English abstract)

     

    Righter K, Leeman WP and Hervig RL. 2006. Partitioning of Ni, Co and V between spinel-structured oxides and silicate melts: Importance of spinel composition. Chemical Geology, 227(1-2): 1-25 doi: 10.1016/j.chemgeo.2005.05.011

     

    Ripley EM and Li CS. 2013. Sulfide saturation in mafic magmas: Is external sulfur required for magmatic Ni-Cu-(PGE) ore genesis? Economic Geology, 108(1): 45-58 doi: 10.2113/econgeo.108.1.45

     

    Ruan BX, Wei W, Yu YM and Lv XB. 2021. Geology, geochronology, mineral chemistry and geochemistry of the Hongnieshan mafic-ultramafic complex in the Beishan area, southern Central Asian orogenic Belt, NW China: Implications for petrogenesis and regional Ni mineralization. Ore Geology Reviews, 139: 104423 doi: 10.1016/j.oregeorev.2021.104423

     

    Rudnick RL and Gao S. 2014. Composition of the continental crust. In: Holland HD and Turekian KK (eds.). Treatise on Geochemistry. Oxford: Elsevier, 3: 1-64

     

    Seifert S, O'Neill HSC and Brey G. 1988. The partitioning of Fe, Ni and Co between olivine, metal, and basaltic liquid: An experimental and thermodynamic investigation, with application to the composition of the lunar core. Geochimica et Cosmochimica Acta, 52(3): 603-616 doi: 10.1016/0016-7037(88)90322-5

     

    Song XY, Xiao JF, Zhu D, Zhu WG and Chen LM. 2010. New insights on the formation of magmatic sulfide deposits in magma conduit system. Earth Science Frontiers, 17(1): 153-163 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201001015.htm

     

    Song XY, Xie W, Deng YF, Crawford AJ, Zheng WQ, Zhou GF, Deng G, Cheng SL and Li J. 2011. Slab break-off and the formation of Permian mafic-ultramafic intrusions in southern margin of Central Asian Orogenic Belt, Xinjiang, NW China. Lithos, 127(1-2): 128-143 doi: 10.1016/j.lithos.2011.08.011

     

    Song XY, Chen LM, Deng YF and Xie W. 2013. Syncollisional tholeiitic magmatism induced by asthenosphere upwelling owing to slab detachment at the southern margin of the Central Asian Orogenic Belt. Journal of the Geological Society, 170(6): 941-950 doi: 10.1144/jgs2012-130

     

    Song XY, Yi JN, Chen LM, She YW, Liu CZ, Dang XY, Yang QA and Wu SK. 2016. The giant Xiarihamu Ni-Co sulfide deposit in the East Kunlun orogenic belt, northern Tibet Plateau, China. Economic Geology, 111(1): 29-55 doi: 10.2113/econgeo.111.1.29

     

    Song XY, Deng YF, Xie W, Yi JN, Fu B, Chen LM, Yu SY, Zheng WQ and Liang QL. 2021. Prolonged basaltic magmatism and short-lived magmatic sulfide mineralization in orogenic belts. Lithos, 390-391: 106114 doi: 10.1016/j.lithos.2021.106114

     

    Su BX, Qin KZ, Tang DM, Sakyi PA, Liu PP, Sun H and Xiao QH. 2013. Late Paleozoic mafic-ultramafic intrusions in southern Central Asian Orogenic Belt (NW China): Insight into magmatic Ni-Cu sulfide mineralization in orogenic setting. Ore Geology Reviews, 51: 57-73 doi: 10.1016/j.oregeorev.2012.11.007

     

    Susak NJ and Crerar DA. 1985. Spectra and coordination changes of transition metals in hydrothermal solutions: Implications for ore genesis. Geochimica et Cosmochimica Acta, 49(2): 555-564 doi: 10.1016/0016-7037(85)90047-X

     

    Tang DM, Qin KZ, Li CS, Qi L, Su BX and Qu WJ. 2011. Zircon dating, Hf-Sr-Nd-Os isotopes and PGE geochemistry of the Tianyu sulfide-bearing mafic-ultramafic intrusion in the Central Asian Orogenic Belt, NW China. Lithos, 126(1-2): 84-98 doi: 10.1016/j.lithos.2011.06.007

     

    Tang DM, Qin KZ, Su BX, Mao YJ, Evans NJ, Niu YJ and Kang Z. 2020. Sulfur and copper isotopic signatures of chalcopyrite at Kalatongke and Baishiquan: Insights into the origin of magmatic Ni-Cu sulfide deposits. Geochimica et Cosmochimica Acta, 275: 209-228 doi: 10.1016/j.gca.2020.02.015

     

    Tian Y, Etschmann B, Liu WH, Borg S, Mei Y, Testemale D, O'Neill B, Rae N, Sherman DM, Ngothai Y, Johannessen B, Glover C and Brugger J. 2012. Speciation of nickel (Ⅱ) chloride complexes in hydrothermal fluids: In situ XAS study. Chemical Geology, 334: 345-363 doi: 10.1016/j.chemgeo.2012.10.010

     

    Vasyukova OV and Williams-Jones AE. 2022. Constraints on the genesis of cobalt deposits: Part Ⅱ. Applications to natural systems. Economic Geology, 117(3): 529-544 doi: 10.5382/econgeo.4888

     

    Wang QF, Deng J, Li GJ, Liu JY, Li CS and Ripley EM. 2018. Geochronological, petrological, and geochemical studies of the Daxueshan magmatic Ni-Cu sulfide deposit in the Tethyan Orogenic Belt, Southwest China. Economic Geology, 113(6): 1307-1332 doi: 10.5382/econgeo.2018.4593

     

    Wang Y, Zhong H, Cao YH, Wei B and Chen C. 2020. Genetic classification, distribution and ore genesis of major PGE, Co and Cr deposits in China: A critical review. Chinese Science Bulletin, 65(33): 3825-3838 (in Chinese) doi: 10.1360/TB-2020-0202

     

    Wei B, Wang CY, Li C and Sun Y. 2013. Origin of PGE-depleted Ni-Cu sulfide mineralization in the Triassic Hongqiling No. 7 orthopyroxenite intrusion, Central Asian Orogenic Belt, northeastern China. Economic Geology, 108(8): 1813-1831 doi: 10.2113/econgeo.108.8.1813

     

    Wei B, Wang CY, Lahaye Y, Xie LH and Cao YH. 2019. S and C isotope constraints for mantle-derived sulfur source and organic carbon-induced sulfide saturation of magmatic Ni-Cu sulfide deposits in the Central Asian Orogenic Belt, North China. Economic Geology, 114(4): 787-806 doi: 10.5382/econgeo.4652

     

    Wijbrans CH, Klemme S, Berndt J and Vollmer C. 2015. Experimental determination of trace element partition coefficients between spinel and silicate melt: The influence of chemical composition and oxygen fugacity. Contributions to Mineralogy and Petrology, 169(4): 45 doi: 10.1007/s00410-015-1128-5

     

    Williams-Jones AE and Vasyukova OV. 2022. Constraints on the genesis of cobalt deposits: Part Ⅰ. Theoretical considerations. Economic Geology, 117(3): 513-528 doi: 10.5382/econgeo.4895

     

    Wu FY, Wilde SA, Zhang GL and Sun DY. 2004. Geochronology and petrogenesis of the post-orogenic Cu-Ni sulfide-bearing mafic-ultramafic complexes in Jilin Province, NE China. Journal of Asian Earth Sciences, 23(5): 781-797 doi: 10.1016/S1367-9120(03)00114-7

     

    Xia MZ, Jiang CY, Li C and Xia ZD. 2013. Characteristics of a newly discovered Ni-Cu sulfide deposit hosted in the Poyi ultramafic intrusion, Tarim Craton, NW China. Economic Geology, 108(8): 1865-1878 doi: 10.2113/econgeo.108.8.1865

     

    Xiao WJ, Zhang LC, Qin KZ, Sun S and Li JL. 2004. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): Implications for the continental growth of central Asia. American Journal of Science, 304(4): 370-395 doi: 10.2475/ajs.304.4.370

     

    Xiao YF, Wang DY, Deng JH, Sun Y and Wu DC. 2004. Volcanism during activity period of Beishan craton rift in Xinjiang, China. Journal of Chengdu University of Technology (Science & Technology Edition), 31(4): 331-337 (in Chinese with English abstract) doi: 10.3969/j.issn.1671-9727.2004.04.001

     

    Xie W, Song XY, Chen LM, Deng YF, Zheng WQ, Wang YS, Ba DH, Yin MH and Luan Y. 2014. Geochemistry insights on the genesis of the subduction-related Heishan magmatic Ni-Cu-(PGE) deposit, Gansu, northwestern China, at the Southern Margin of the Central Asian Orogenic Belt. Economic Geology, 109(6): 1563-1583 doi: 10.2113/econgeo.109.6.1563

     

    Xu XY, Chen JL and Wang HL. 2009. Geological Background of Ore Deposit in the Eastern Tianshan-Beishan Area. Beijing: Geological Publishing House (in Chinese with English abstract)

     

    Xue SC, Qin KZ, Li CS, Tang DM, Mao YJ, Qi L and Ripley EM. 2016. Geochronological, petrological, and geochemical constraints on Ni-Cu sulfide mineralization in the Poyi ultramafic-troctolitic intrusion in the northeast rim of the Tarim craton, western China. Economic Geology, 111(6): 1465-1484 doi: 10.2113/econgeo.111.6.1465

     

    Xue SC, Li CS, Qin KZ, Yao ZS and Ripley EM. 2018a. Sub-arc mantle heterogeneity in oxygen isotopes: Evidence from Permian mafic-ultramafic intrusions in the Central Asian Orogenic Belt. Contributions to Mineralogy and Petrology, 173(11): 94 doi: 10.1007/s00410-018-1521-y

     

    Xue SC, Qin KZ, Li CS, Tang DM, Wang QF and Wang XS. 2018b. Permian bimodal magmatism in the southern margin of the Central Asian Orogenic Belt, Beishan, Xinjiang, NW China: Petrogenesis and implication for post-subduction crustal growth. Lithos, 314-315: 617-629 doi: 10.1016/j.lithos.2018.06.021

     

    Xue SC, Li CS, Wang QF, Ripley EM and Yao ZS. 2019. Geochronology, petrology and Sr-Nd-Hf-S isotope geochemistry of the newly-discovered Qixin magmatic Ni-Cu sulfide prospect, southern Central Asian Orogenic Belt, NW China. Ore Geology Reviews, 111: 103002 doi: 10.1016/j.oregeorev.2019.103002

     

    Xue SC, Deng J, Wang QF, Xie W and Wang YN. 2021. The redox conditions and C isotopes of magmatic Ni-Cu sulfide deposits in convergent tectonic settings: The role of reduction process in ore genesis. Geochimica et Cosmochimica Acta, 306: 210-225 doi: 10.1016/j.gca.2021.05.039

     

    Xue SC, Wang QF, Deng J, Wang YN and Peng TP. 2022. Mechanism of organic matter assimilation and its role in sulfide saturation of oxidized magmatic ore-forming system: Insights from C-S-Sr-Nd isotopes of the Tulaergen deposit in NW China. Mineralium Deposita, 57(7): 1123-1141 doi: 10.1007/s00126-021-01087-8

     

    Xue SC, Wang QF, Tang DM, Mao YJ and Yao ZS. 2022. Contamination mechanism of magmatic Ni-Cu sulfide deposits in orogenic belts: Examples from Permian Ni-Cu deposits in Tianshan-Beishan. Mineral Deposits, 41(1): 1-20 (in Chinese with English abstract)

     

    Yan L, Fan Y and Liu YN. 2021. The occurrence and spatial distribution of cobalt in Longqiao iron deposit in Luzong Basin, Anhui Province. Acta Petrologica Sinica, 37(9): 2778-2790 (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.09.11

     

    Zhong H, Song XY, Huang ZL, Lan TG, Bai ZJ, Chen W, Zhu JJ, Yang JH, Xie ZJ and Wang XS. 2021. Summary of progresses in the study of ore deposit geochemistry in China in the past decade. Bulletin of Mineralogy, Petrology and Geochemistry, 40(4): 819-844 (in Chinese with English abstract)

     

    Zhang HR, Hou ZQ, Yang ZM, Song YC, Liu YC and Chai P. 2020. A new division of genetic types of cobalt deposits: Implications for Tethyan cobalt-rich belt. Mineral Deposits, 39(3): 501-510 (in Chinese with English abstract)

     

    Zhao JX, Li GM, Qin KZ and Tang DM. 2019. A review of the types and ore mechanism of the cobalt deposits. Chinese Science Bulletin, 64(24): 2484-2500 (in Chinese) doi: 10.1360/N972019-00134

     

    Zhang ZC, Mao JW, Chai FM, Yan SH, Chen BL and Pirajno F. 2009. Geochemistry of the Permian Kalatongke mafic intrusions, Northern Xinjiang, Northwest China: Implications for the genesis of magmatic Ni-Cu sulfide deposits. Economic Geology, 104(2): 185-203 doi: 10.2113/gsecongeo.104.2.185

     

    Zhang ZW, Li WY, Feng CY, Wang H, Wang YL, Wu JJ, Li DX, Lü XB, Zhu BP, Hui B and Liu HW. 2022. Study on metallogenic regularity of Co-Ni deposits in China and its efficient exploration techniques. Northwestern Geology, 55(2): 14-34 (in Chinese with English abstract)

     

    陈彪, 戚长谋. 2001. 钴的赋存状态及其在找矿和资源评估中的意义. 长春科技大学学报, 31(3): 217-218 doi: 10.3969/j.issn.1671-5888.2001.03.003

     

    丰成友, 赵一鸣, 李大新, 刘建楠, 刘长征. 2016. 东昆仑祁漫塔格山地区夏日哈木镍矿床矿物学特征. 地质论评, 62(1): 215-228 doi: 10.16509/j.georeview.2016.01.017

     

    韩宝福, 季建清, 宋彪, 陈立辉, 李宗怀. 2004. 新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义. 科学通报, 49(22): 2324-2328 doi: 10.3321/j.issn:0023-074X.2004.22.012

     

    姜常义, 程松林, 叶书锋, 夏明哲, 姜寒冰, 代玉财. 2006. 新疆北山地区中坡山北镁铁质岩体岩石地球化学与岩石成因. 岩石学报, 22(1): 115-126 http://www.ysxb.ac.cn/article/id/aps_20060112

     

    姜常义, 郭娜欣, 夏明哲, 凌锦兰, 郭芳放, 邓小芹, 姜寒冰, 范亚洲. 2012. 塔里木板块东北部坡一镁铁质-超镁铁质层状侵入体岩石成因. 岩石学报, 28(7): 2209-2223 https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201207022.htm

     

    毛亚晶, 秦克章, 唐冬梅. 2018. 高镍铜镍矿床的特征、形成机制与勘查展望. 岩石学报, 34(8): 2410-2424 http://www.ysxb.ac.cn/article/id/5ff2d1edbfedb51e1a6ae2f3

     

    秦克章, 丁奎首, 许英霞, 孙赫, 徐兴旺, 唐冬梅, 毛骞. 2007. 东天山图拉尔根、白石泉铜镍钴矿床钴、镍赋存状态及原岩含矿性研究. 矿床地质, 26(1): 1-14 https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200701000.htm

     

    秦克章, 翟明国, 李光明, 赵俊兴, 曾庆栋, 高俊, 肖文交, 李继亮, 孙枢. 2017. 中国陆壳演化、多块体拼合造山与特色成矿的关系. 岩石学报, 33(2): 305-325 http://www.ysxb.ac.cn/article/id/5ff2df09bfedb51e1a6ae46d

     

    宋谢炎, 肖家飞, 朱丹, 朱维光, 陈列锰. 2010. 岩浆通道系统与岩浆硫化物成矿研究新进展. 地学前缘, 17(1): 153-163 https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201001015.htm

     

    王焰, 钟宏, 曹勇华, 魏博, 陈晨. 2020. 我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制. 科学通报, 65(33): 3825-3838 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033015.htm

     

    肖渊甫, 王道永, 邓江红, 孙燕, 吴德超. 2004. 新疆北山晚古生代克拉通裂谷火山作用特征. 成都理工大学学报(自然科学版), 31(4): 331-337 https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200404001.htm

     

    徐学义, 陈隽璐, 王洪亮. 2009. 东天山-北山地区成矿地质背景图. 北京: 地质出版社

     

    薛胜超, 王庆飞, 唐冬梅, 毛亚晶, 姚卓森. 2022. 造山带岩浆铜镍硫化物矿床的混染模式——以天山-北山二叠纪铜镍矿为例. 矿床地质, 41(1): 1-20 https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202201001.htm

     

    阎磊, 范裕, 刘一男. 2021. 安徽庐枞盆地龙桥铁矿床中钴的赋存状态和空间分布规律. 岩石学报, 37(9): 2778-2790 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2021.09.11

     

    钟宏, 宋谢炎, 黄智龙, 蓝廷广, 柏中杰, 陈伟, 朱经经, 阳杰华, 谢卓君, 王新松. 2021. 近十年来中国矿床地球化学研究进展简述. 矿物岩石地球化学通报, 40(4): 819-844 https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202104004.htm

     

    张洪瑞, 侯增谦, 杨志明, 宋玉财, 刘英超, 柴鹏. 2020. 钴矿床类型划分初探及其对特提斯钴矿带的指示意义. 矿床地质, 39(3): 501-510 https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202003007.htm

     

    赵俊兴, 李光明, 秦克章, 唐冬梅. 2019. 富含钴矿床研究进展与问题分析. 科学通报, 64(24): 2484-2500 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201924005.htm

     

    张照伟, 李文渊, 丰成友, 王辉, 王亚磊, 武军杰, 李德贤, 吕新彪, 朱伯鹏, 惠博, 刘会文. 2022. 中国钴-镍成矿规律与高效勘查技术. 西北地质, 55(2): 14-34 https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202202002.htm

  • 加载中

(10)

(4)

计量
  • 文章访问数:  1744
  • PDF下载数:  213
  • 施引文献:  0
出版历程
收稿日期:  2022-10-03
修回日期:  2022-12-21
刊出日期:  2023-02-01

目录