Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access May 17, 2018

Bio-surface engineering with DNA scaffolds for theranostic applications

  • Xiwei Wang , Wei Lai , Tiantian Man , Xiangmeng Qu , Li Li , Arun Richard Chandrasekaran and Hao Pei EMAIL logo
From the journal Nanofabrication

Abstract

Biosensor design is important to bioanalysis yet challenged by the restricted target accessibility at the biomolecule-surface (bio-surface). The last two decades have witnessed the appearance of various “art-like” DNA nanostructures in one, two, or three dimensions, and DNA nanostructures have attracted tremendous attention for applications in diagnosis and therapy due to their unique properties (e.g., mechanical flexibility, programmable control over their shape and size, easy and high-yield preparation, precise spatial addressability and biocompatibility). DNA nanotechnology is capable of providing an effective approach to control the surface functionality, thereby increasing the molecular recognition ability at the biosurface. Herein, we present a critical review of recent progress in the development of DNA nanostructures in one, two and three dimensions and highlight their biological applications including diagnostics and therapeutics. We hope that this review provides a guideline for bio-surface engineering with DNA nanostructures.

References

[1] Seeman N., Nucleic acid junctions and lattices, J. Theor. Biol., 1982, 99, 237-247.10.1016/0022-5193(82)90002-9Search in Google Scholar

[2] Winfree E., Liu F.R., Wenzler L.A., Seeman N.C., Design and self-assembly of two-dimensional DNA crystals, Nature, 1998, 394, 539-544.10.1038/28998Search in Google Scholar PubMed

[3] Rothemund P.W.K., Folding DNA to create nano- scale shapes and patterns, Nature, 2006, 440, 297-302.10.1038/nature04586Search in Google Scholar PubMed

[4] Yin P., Choi H.M.T., Calvert C.R., Pierce N.A., Programming biomolecular self-assembly pathways, Nature, 2008, 451, 318-322.10.1038/nature06451Search in Google Scholar PubMed

[5] He Y., Ye T., Su M., Zhang C., Ribbe A.E., Jiang W., Mao C., Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra, Nature, 2008, 452, 198-201.10.1038/nature06597Search in Google Scholar PubMed

[6] Douglas S.M., Dietz H., Liedl T., Hoegberg B., Graf F., Shih W.M., Self-assembly of DNA into nanoscale three-dimensional shapes, Nature, 2009, 459, 414-418.10.1038/nature08016Search in Google Scholar PubMed PubMed Central

[7] Adleman L.M., Molecular computation of solutions to combinatorial problems, Science, 1994, 266, 1021-1024.10.1126/science.7973651Search in Google Scholar PubMed

[8] Barish R.D., Schulman R., Rothemund P.W.K., Winfree E., An information-bearing seed for nucleating algorithmic self-assembly, Proc. Natl. Acad. Sci. U.S.A., 2009, 106, 6054-6059.10.1073/pnas.0808736106Search in Google Scholar PubMed PubMed Central

[9] Seelig G., Soloveichik D., Zhang D.Y., Winfree E., Enzyme-free nucleic acid logic circuits, Science, 2006, 314, 1585-1588.10.1126/science.1132493Search in Google Scholar PubMed

[10] Yurke B., Turberfield A.J., Mills A.P., Simmel F.C., Neumann J.L., A DNA-fuelled molecular machine made of DNA, Nature, 2000, 406, 605-608.10.1038/35020524Search in Google Scholar PubMed

[11] Lund K., Manzo A.J., Dabby N., Michelotti N., Johnson-Buck A., Nangreave J., Taylor S., Pei R., Stojanovic M.N., Walter N.G., Winfree E., Yan H., Molecular robots guided by prescriptive landscapes, Nature, 2010, 465, 206-210.10.1038/nature09012Search in Google Scholar PubMed PubMed Central

[12] Zhong R., Xiao M., Zhu C., Shen X., Tang Q., Zhang W., Wang L., Song S., Qu X., Pei H., Wang, C., Li L., Logic catalytic interconversion of G-molecular hydrogel, ACS Appl. Mater. Inter., 2018, 10, 4512-4518.10.1021/acsami.7b17926Search in Google Scholar PubMed

[13] Xiao M., Man T., Zhu C., Pei H., Shi J., Li L., Qu X., Shen X., Li J., MoS2 nanoprobe for microRNA quantification based on duplexspecific nuclease signal amplification, ACS Appl. Mater. Inter., DOI: 10.1021/acsami.7b18984.10.1021/acsami.7b18984Search in Google Scholar PubMed

[14] Gu H., Chao J., Xiao S.-J., Seeman N.C., A proximity-based programmable DNA nanoscale assembly line, Nature, 2010, 465, 202-205.10.1038/nature09026Search in Google Scholar PubMed PubMed Central

[15] Voigt N.V., Torring T., Rotaru A., Jacobsen M.F., Ravnsbaek J.B., Subramani R., Mamdouh W., Kjems J., Mokhir A., Besenbacher F., Gothelf K.V., Single-molecule chemical reactions on DNA origami, Nat. Nanotechnol., 2010, 5, 200-203.10.1038/nnano.2010.5Search in Google Scholar PubMed

[16] Liu M., Fu J., Hejesen C., Yang Y., Woodbury N.W., Gothelf K., Liu Y., Yan H., A DNA tweezer-actuated enzyme nanoreactor, Nat. Commun., 2013, 4, 3127.Search in Google Scholar

[17] Kuzyk A., Schreiber R., Fan Z., Pardatscher G., Roller E.-M., Hoegele A., Simmel F.C., Govorov A.O., Liedl T., DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response, Nature, 2012, 483, 311-314.10.1038/nature10889Search in Google Scholar PubMed

[18] Thacker V.V., Herrmann L.O., Sigle D.O., Zhang T., Liedl T., Baumberg J.J., Keyser U.F., DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering, Nat. Commun., 2014, 5, 4448.Search in Google Scholar

[19] Chao J., Lin Y., Liu H., Wang L., Fan C., DNA-based plasmonic nanostructures, Mater. Today, 2015, 18, 326-335.10.1016/j.mattod.2015.01.018Search in Google Scholar

[20] Shen X., Song C., Wang J., Shi D., Wang Z., Liu N., Ding B., Rolling up gold nanoparticle-dressed DNA origami into threedimensional plasmonic chiral nanostructures, J. Am. Chem. Soc., 2011, 134, 146-149.10.1021/ja209861xSearch in Google Scholar PubMed

[21] Pei H., Zuo X.L., Zhu D., Huang Q., Fan C.H., Functional DNA nanostructures for theranostic applications, Acc. Chem. Res., 2014, 47, 550-559.10.1021/ar400195tSearch in Google Scholar PubMed

[22] Chen J., Seeman N.C., Synthesis from DNA of a molecule with the connectivity of a cube, Nature, 1991, 350, 631.10.1038/350631a0Search in Google Scholar PubMed

[23] Zhang C., Ko S.H., Su M., Leng Y., Ribbe A.E., Jiang W., Mao C., Symmetry controls the face geometry of DNA polyhedra, J. Am. Chem. Soc., 2009, 131, 1413-1415.10.1021/ja809666hSearch in Google Scholar PubMed

[24] Goodman R.P., Schaap I.A.T., Tardin C.F., Erben C.M., Berry R.M., Schmidt C.F., Turberfield A.J., Rapid chiral assembly of rigid DNA buildingblocks for molecular nanofabrication, Science, 2005, 310, 1661.Search in Google Scholar

[25] He Y., Ye T., Su M., Zhang C., Ribbe A.E., Jiang W., Mao C., Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra, Nature, 2008, 452, 198.10.1038/nature06597Search in Google Scholar PubMed

[26] Zhang Y., Seeman N.C., Construction of a DNA-truncated octahedron, J. Am. Chem. Soc., 1994, 116, 1661-1669.10.1021/ja00084a006Search in Google Scholar

[27] Shih W.M., Quispe J.D., Joyce G.F., A 1.7-kilobase singlestranded DNA that folds into a nanoscale octahedron, Nature, 2004, 427, 618.10.1038/nature02307Search in Google Scholar PubMed

[28] Bhatia D., Mehtab S., Krishnan R., Indi S.S., Basu A., Krishnan Y., Icosahedral DNA nanocapsules by modular assembly, Angew. Chem. Int. Edit., 2009, 48, 4134-4137.10.1002/anie.200806000Search in Google Scholar PubMed

[29] Zhang C., Su M., He Y., Zhao X., Fang P.A., Ribbe A.E., Jiang W., Mao C.D., Conformational flexibility facilitates self-assembly of complex DNA nanostructures, Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 10665-10669.10.1073/pnas.0803841105Search in Google Scholar PubMed PubMed Central

[30] Aldaye F.A., Sleiman H.F., Modular access to structurally switchable 3D discrete DNA assemblies, J. Am. Chem. Soc., 2007, 129, 13376-13377.10.1021/ja075966qSearch in Google Scholar PubMed

[31] Chandrasekaran A.R., Levchenko O., DNA nanocages, Chem. Mater., 2016, 28, 5569-5581.10.1021/acs.chemmater.6b02546Search in Google Scholar

[32] Schnitzler T., Herrmann A., DNA block copolymers: functional materials for nanoscience and biomedicine, Accounts Chem. Res., 2012, 45, 1419-1430.10.1021/ar200211aSearch in Google Scholar PubMed

[33] Zhong R., Tang Q., Wang S., Zhang H., Zhang F., Xiao M., Man T., Qu X., Li L., Zhang W., Pei H., Self‐assembly of enzyme‐like nanofibrous G‐molecular hydrogel for printed flexible electrochemical sensors, Adv. Mater., 2018, 1706887.https://doi.org/10.1002/adma.201706887.10.1002/adma.201706887Search in Google Scholar PubMed

[34] Rodriguez‐Pulido A., Kondrachuk A.I., Prusty D.K., Gao J., Loi M.A., Herrmann A. Light‐triggered sequence‐specific cargo release from DNA block copolymer-lipid vesicles, Angew. Chem. Int. Ed., 2013, 125, 1042-1046.10.1002/ange.201206783Search in Google Scholar

[35] LaBean T.H., Yan H., Kopatsch J., Liu F., Winfree E., Reif J.H., Seeman N.C., Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes, J. Am. Chem. Soc., 2000, 122, 1848-1860.10.1021/ja993393eSearch in Google Scholar

[36] Majumder U., Rangnekar A., Gothelf K.V., Reif J.H., LaBean T.H., Design and construction of double-decker Tile as a route to Three-Dimensional periodic assembly of DNA, J. Am. Chem. Soc., 2011, 133, 3843-3845.10.1021/ja1108886Search in Google Scholar PubMed

[37] Liu D., Wang M., Deng Z., Walulu R., Mao C., Tensegrity: construction of rigid DNA Triangles with flexible four-arm DNA junctions, J. Am. Chem. Soc., 2004, 126, 2324-2325.10.1021/ja031754rSearch in Google Scholar PubMed

[38] Zheng J., Constantinou P.E., Micheel C., Alivisatos A.P., Kiehl R.A., Seeman N.C., Two-Dimensional nanoparticle arrays show the organizational power of robust DNA motifs, Nano Lett., 2006, 6, 1502-1504.10.1021/nl060994cSearch in Google Scholar PubMed PubMed Central

[39] He Y., Chen Y., Liu H., Ribbe A.E., Mao C., Self-assembly of hexagonal DNA Two-Dimensional (2D) Arrays, J. Am. Chem. Soc., 2005, 127, 12202-12203.10.1021/ja0541938Search in Google Scholar PubMed

[40] He Y., Tian Y., Chen Y., Deng Z., Ribbe A.E., Mao C., Sequence symmetry as a tool for designing DNA nanostructures, Angew. Chem., 2005, 117, 6852-6854.10.1002/ange.200502193Search in Google Scholar

[41] He Y., Tian Y., Ribbe A.E., Mao C., Highly connected Two-Dimensional crystals of DNA six-point-stars, J. Am. Chem. Soc., 2006, 128, 15978-15979.10.1021/ja0665141Search in Google Scholar PubMed

[42] Shen W., Liu Q., Ding B., Shen Z., Zhu C., Mao C., The study of the paranemic crossover (PX) motif in the context of self-assembly of DNA 2D crystals, Org. Biomol. Chem., 2016, 14, 7187-7190.10.1039/C6OB01146BSearch in Google Scholar PubMed

[43] Shen W.L., Liu Q., Ding B.Q., Zhu C.Q., Shen Z.Y., Seeman N.C., Facilitation of DNA self-assembly by relieving the torsional strains between building blocks, Org. Biomol. Chem., 2017, 15, 465-469.10.1039/C6OB02281BSearch in Google Scholar

[44] Chandrasekaran A.R., Programmable DNA scaffolds for spatially-ordered protein assembly, Nanoscale, 2016, 8, 4436-4446.10.1039/C5NR08685JSearch in Google Scholar PubMed

[45] Zheng J.P., Birktoft J.J., Chen Y., Wang T., Sha R.J., Constantinou P.E., Ginell S.L., Mao C.D., Seeman N.C., From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal, Nature, 2009, 461, 74-77.10.1038/nature08274Search in Google Scholar PubMed PubMed Central

[46] Nguyen N., Birktoft J.J., Sha R., Wang T., Zheng J., Constantinou P.E., Ginell S.L., Chen Y., Mao C., Seeman N.C., The absence of tertiary interactions in a self-assembled DNA crystal structure, J. Mol. Recognit., 2012, 25, 234-237.10.1002/jmr.2183Search in Google Scholar PubMed PubMed Central

[47] Rusling D.A., Chandrasekaran A.R., Ohayon Y.P., Brown T., Fox K.R., Sha R., Mao C., Seeman N.C., Functionalizing designer DNA crystals with a triple-helical veneer, Angew. Chem., 2014, 53, 3979-3982.10.1002/anie.201309914Search in Google Scholar PubMed PubMed Central

[48] Wang X., Sha R.J., Kristiansen M., Hernandez C., Hao Y.D., Mao C.D., Canary J.W., Seeman N.C., An organic semiconductor organized into 3D DNA arrays by “bottom-up” rational design, Angew. Chem. Int. Edit., 2017, 56, 6445-6448.10.1002/anie.201700462Search in Google Scholar PubMed

[49] Hao Y.D., Kristiansen M., Sha R.J., Birktoft J.J., Hernandez C., Mao C.D., Seeman N.C., A device that operates within a self-assembled 3D DNA crystal, Nat. Chem., 2017, 9, 824-827.10.1038/nchem.2745Search in Google Scholar PubMed

[50] Hernandez C., Birktoft J.J., Ohayon Y.P., Chandrasekaran A.R., Abdallah H., Sha R.J., Stojanoff V., Mao C.D., Seeman N.C., Self-assembly of 3D DNA crystals containing a torsionally stressed component, Cell. Chem. Biol., 2017, 24, 1401-1406.10.1016/j.chembiol.2017.08.018Search in Google Scholar PubMed

[51] Dietz H., Douglas S.M., Shih W.M., Folding DNA into twisted and curved nanoscale shapes, Science, 2009, 325, 725-730.10.1126/science.1174251Search in Google Scholar PubMed PubMed Central

[52] Douglas S.M., Dietz H., Liedl T., Hogberg B., Graf F., Shih W.M., Self-assembly of DNA into nanoscale three-dimensional shapes, Nature, 2009, 459, 414-418.10.1038/nature08016Search in Google Scholar PubMed PubMed Central

[53] Andersen E.S., Dong M., Nielsen M.M., Jahn K., Subramani R., Mamdouh W., Golas M.M., Sander B., Stark H., Oliveira C.L.P., Pedersen J.S., Birkedal V., Besenbacher F., Gothelf K.V., Kjems J., Self-assembly of a nanoscale DNA box with a controllable lid, Nature, 2009, 459, 73-U75.10.1038/nature07971Search in Google Scholar PubMed

[54] Han D.R., Pal S., Nangreave J., Deng Z.T., Liu Y., Yan H., DNA origami with complex curvatures in Three-Dimensional space, Science, 2011, 332, 342-346.10.1126/science.1202998Search in Google Scholar PubMed

[55] Zhang F., Jiang S.X., Wu S.Y., Li Y.L., Mao C.D., Liu Y., Yan H., Complex wireframe DNA origami nanostructures with multi-arm junction vertices, Nat. Nanotechnol., 2015, 10, 779-784.10.1038/nnano.2015.162Search in Google Scholar PubMed

[56] Benson E., Mohammed A., Gardell J., Masich S., Czeizler E., Orponen P., Hogberg B., DNA rendering of polyhedral meshes at the nanoscale, Nature, 2015, 523, 441-444.10.1038/nature14586Search in Google Scholar PubMed

[57] Liu W.Y., Zhong H., Wang R.S., Seeman N.C., Crystalline Two-Dimensional DNA-origami Arrays, Angew. Chem. Int. Edit., 2011, 50, 264-267.10.1002/anie.201005911Search in Google Scholar PubMed PubMed Central

[58] Yin P., Hariadi R.F., Sahu S., Choi H.M.T., Park S.H., LaBean T.H., Reif J.H., Programming DNA tube circumferences, Science, 2008, 321, 824-826.10.1126/science.1157312Search in Google Scholar PubMed

[59] Wei B., Dai M.J., Yin P., Complex shapes self-assembled from single-stranded DNA tiles, Nature, 2012, 485, 623-626.10.1038/nature11075Search in Google Scholar PubMed PubMed Central

[60] Ke Y.G., Ong L.L., Shih W.M., Yin P., Three-Dimensional structures self-assembled from DNA bricks, Science, 2012, 338, 1177-1183.10.1126/science.1227268Search in Google Scholar PubMed PubMed Central

[61] Kwak M., Herrmann A., Nucleic acid/organic polymer hybrid materials: synthesis, superstructures, and applications, Angew. Chem. Int. Ed., 2010, 49, 8574-8587.10.1002/anie.200906820Search in Google Scholar PubMed

[62] Kwak M., Herrmann, A., Nucleic acid amphiphiles: synthesis and self-assembled nanostructures, Chem. Soc. Rev., 2011, 40, 5745-5755.10.1039/c1cs15138jSearch in Google Scholar PubMed

[63] Kwiat M., Elnathan R., Kwak M., de Vries J.W., Pevzner A., Engel Y., Burstein L., Khatchtourints A., Lichtenstein A., Flaxer E., Herrmann A., Patolsky F., Non-covalent monolayer-piercing anchoring of lipophilic nucleic acids: preparation, characterization, and sensing applications, J. Am. Chem. Soc., 2012, 134, 280-292.10.1021/ja206639dSearch in Google Scholar PubMed

[64] Liu K., Chen D., Marcozzi A., Zheng L., Su J., Pesce D., Zajaczkowski W., Kolbe A., Pisula W., Mullen K., Clark N.A., Herrmann A., Thermotropic liquid crystals from biomacromolecules, P. Natl. Acad. Sci. U.S.A., 2014, 111, 18596-18600.10.1073/pnas.1421257111Search in Google Scholar PubMed PubMed Central

[65] Liu K., Varghese J., Gerasimov J.Y., Polyakov A.O., Shuai M., Su J., Zajaczkowski W., Marcozzi A., Pisula W., Noheda, B. Palstra T. T.M., Clark N. A. Herrmann A., Controlling the volatility of the written optical state in electrochromic DNA liquid crystals, Nat. Commun., (2016), 7, 11476.10.1038/ncomms11476Search in Google Scholar PubMed PubMed Central

[66] Liu K., Zheng L., Ma C., Gostl R., Herrmann A., DNA-surfactant complexes: self-assembly properties and applications, Chem. Soc. Rev., 2017, 46, 5147-5172.10.1039/C7CS00165GSearch in Google Scholar PubMed

[67] Liu K., Zheng L., Liu Q., de Vries J.W., Gerasimov J.Y., Herrmann A., Nucleic acid chemistry in the organic phase: from functionalized oligonucleotides to DNA side chain polymers, J. Am. Chem. Soc., 2014, 136, 14255-14262.10.1021/ja5080486Search in Google Scholar PubMed

[68] Wilks T.R., Bath J., de Vries J.W., Raymond J.E., Herrmann A., Turberfield A.J., O’Reilly R.K., “Giant surfactants” created by the fast and efficient functionalization of a DNA tetrahedron with a temperature-responsive polymer, ACS Nano, 2013, 7, 8561-8572.10.1021/nn402642aSearch in Google Scholar PubMed

[69] Herne T.M., Tarlov M.J., Characterization of DNA probes immobilized on gold surfaces, J. Am. Chem. Soc., 1997, 119, 8916-8920.10.1021/ja9719586Search in Google Scholar

[70] Kimura-Suda H., Petrovykh D.Y., Tarlov M.J., Whitman L.J., Base-dependent competitive adsorption of single-stranded DNA on gold, J. Am. Chem. Soc., 2003, 125, 9014-9015.10.1021/ja035756nSearch in Google Scholar PubMed

[71] Walker H.W., Grant S.B., Conformation of DNA block copolymer molecules adsorbed on latex particles as revealed by hydroxyl radical footprinting, Langmuir, 1995, 11, 3772-3777.10.1021/la00010a030Search in Google Scholar

[72] Charreyre M.T., Tcherkasskaya O., Winnik M.A., Hiver A., Delair T., Cros P., Pichot C., Mandrand B., Fluorescence energy transfer study of the conformation of oligonucleotides covalently bound to polystyrene latex particles, Langmuir, 1997, 13, 3103-3110.10.1021/la961034gSearch in Google Scholar

[73] Petrovykh D.Y., Perez-Dieste V., Opdahl A., Kimura-Suda H., Sullivan J.M., Tarlov M.J., Himpsel F.J., Whitman L.J., Nucleobase orientation and ordering in films of single-stranded DNA on gold, J. Am. Chem. Soc., 2006, 128, 2-3.10.1021/ja052443eSearch in Google Scholar PubMed

[74] Levicky R., Herne T.M., Tarlov M.J., Satija S.K., Using self-assembly to control the structure of DNA monolayers on gold: A neutron reflectivity study, J. Am. Chem. Soc., 1998, 120, 9787-9792.10.1021/ja981897rSearch in Google Scholar

[75] Qu X., Li M., Zhang H., Lin C., Wang F., Xiao M., Zhou Y., Shi J., Aldalbahi A., Pei H., Chen H., Li L., Real-time continuous identification of greenhouse plant pathogens based on recyclable microfluidic bioassay system, ACS Appl. Mater. Inter., 2017, 9, 31568-31575.10.1021/acsami.7b10116Search in Google Scholar PubMed

[76] Liu D.S., Bruckbauer A., Abell C., Balasubramanian S., Kang D.J., Klenerman D., Zhou D.J., A reversible pH-driven DNA nanoswitch array, J. Am. Chem. Soc., 2006, 128, 2067-2071.10.1021/ja0568300Search in Google Scholar PubMed

[77] Qu X., Zhu D., Yao G., Su S., Chao J., Liu H., Zuo X., Wang L., Shi J., Wang L., Huang W., Pei H., Fan C., An exonuclease III-powered, on-particle stochastic DNA walker, Angew. Chem., 2017, 56, 1855-1858.10.1002/anie.201611777Search in Google Scholar PubMed

[78] Josephs E.A., Ye T., A Single-Molecule View of Conformational Switching of DNA Tethered to a Gold Electrode, J. Am. Chem. Soc., 2012, 134, 10021-10030.10.1021/ja3010946Search in Google Scholar PubMed

[79] Fan C.H., Plaxco K.W., Heeger A.J., Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA, Proc. Natl. Acad. Sci. U.S.A., 2003, 100, 9134-9137.10.1073/pnas.1633515100Search in Google Scholar PubMed PubMed Central

[80] Lai R.Y., Lagally E.T., Lee S.H., Soh H.T., Plaxco K.W., Heeger A.J., Rapid, sequence-specific detection of unpurified PCR amplicons via a reusable, electrochemical sensor, Proc. Natl. Acad. Sci. U.S.A., 2006, 103, 4017-4021.10.1073/pnas.0511325103Search in Google Scholar PubMed PubMed Central

[81] Bockisch B., Grunwald T., Spillner E., Bredehorst R., Immobilized stem-loop structured probes as conformational switches for enzymatic detection of microbial 16S rRNA, Nucleic Acids Res., 2005, 33.10.1093/nar/gni101Search in Google Scholar PubMed PubMed Central

[82] Liu G., Wan Y., Gau V., Zhang J., Wang L., Song S., Fan C., An enzyme-based E-DNA sensor for sequence-specific detection of femtomolar DNA targets, J. Am. Chem. Soc., 2008, 130, 6820-6825.10.1021/ja800554tSearch in Google Scholar PubMed

[83] Wei F., Wang J., Liao W., Zimmermann B.G., Wong D.T., Ho C.-M., Electrochemical detection of low-copy number salivary RNA based on specific signal amplification with a hairpin probe, Nucleic Acids Res., 2008, 36.10.1093/nar/gkn299Search in Google Scholar PubMed PubMed Central

[84] Du H., Disney M.D., Miller B.L., Krauss T.D., Hybridizationbased unquenching of DNA hairpins on Au surfaces: Prototypical “molecular beacon” biosensors, J. Am. Chem. Soc., 2003, 125, 4012-4013.10.1021/ja0290781Search in Google Scholar PubMed

[85] Du H., Strohsahl C.M., Camera J., Miller B.L., Krauss T.D., Sensitivity and specificity of metal surface-immobilized “molecular beacon” biosensors, J. Am. Chem. Soc., 2005, 127, 7932-7940.10.1021/ja042482aSearch in Google Scholar PubMed

[86] Zuo X., Song S., Zhang J., Pan D., Wang L., Fan C., A targetresponsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP, J. Am. Chem. Soc., 2007, 129, 1042-1043.10.1021/ja067024bSearch in Google Scholar PubMed

[87] Zheng D., Seferos D.S., Giljohann D.A., Patel P.C., Mirkin C.A., Aptamer Nano-flares for Molecular Detection in Living Cells, Nano Lett., 2009, 9, 3258-3261.10.1021/nl901517bSearch in Google Scholar PubMed PubMed Central

[88] Pei H., Lu N., Wen Y., Song S., Liu Y., Yan H., Fan C., A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing, Adv. Mater., 2010, 22, 4754-4758.10.1002/adma.201002767Search in Google Scholar PubMed PubMed Central

[89] Wen Y., Pei H., Shen Y., Xi J., Lin M., Lu N., Shen X., Li J., Fan C., DNA Nanostructure-based Interfacial engineering for PCR-free ultrasensitive electrochemical analysis of microRNA, Sci. Rep., 2012, 2:867.10.1038/srep00867Search in Google Scholar PubMed PubMed Central

[90] Lin M., Wang J., Zhou G., Wang J., Wu N., Lu J., Gao J., Chen X., Shi J., Zuo X., Fan C., Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection, Angew. Chem. Int. Edit., 2015, 54, 2151-2155.10.1002/anie.201410720Search in Google Scholar PubMed

[91] Pei H., Liang L., Yao G., Li J., Huang Q., Fan C., Reconfigurable Three-Dimensional DNA nanostructures for the construction of intracellular logic sensors, Angew. Chem. Int. Edit., 2012, 51, 9020-9024.10.1002/anie.201202356Search in Google Scholar PubMed

[92] Wen Y., Pei H., Wan Y., Su Y., Huang Q., Song S., Fan C., DNA nanostructure-decorated surfaces for enhanced aptamer-target binding and electrochemical cocaine sensors, Anal. Chem., 2011, 83, 7418-7423.10.1021/ac201491pSearch in Google Scholar PubMed

[93] Pei H., Wan Y., Li J., Hu H., Su Y., Huang Q., Fan C., Regenerable electrochemical immunological sensing at DNA nanostructuredecorated gold surfaces, Chem. Commun., 2011, 47, 6254-6256.10.1039/c1cc11660fSearch in Google Scholar PubMed

[94] Qu X., Zhang H., Chen H., Aldalbahi A., Li L., Tian Y., Weitz D.A., Pei H., Convection-driven pull-down assays in nanoliter droplets using scaffolded aptamers, Anal. Chem., 2017, 89, 3468-3473.10.1021/acs.analchem.6b04475Search in Google Scholar PubMed

[95] Qu X., Yang F., Chen H., Li J., Zhang H., Zhang G., Li L., Wang L., Song S., Tian Y., Pei H., Bubble-Mediated Ultrasensitive Multiplex Detection of Metal Ions in Three-Dimensional DNA nanostructure-encoded microchannels, ACS Appl. Mater. Inter., 2017, 9, 16026-16034.10.1021/acsami.7b03645Search in Google Scholar PubMed

[96] Yan W., Xu L., Xu C., Ma W., Kuang H., Wang L., Kotov N.A., Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity, J. Am. Chem. Soc., 2012, 134, 15114-15121.10.1021/ja3066336Search in Google Scholar PubMed

[97] Li Y., Liu Z., Yu G., Jiang W., Mao C., Self-assembly of moleculelike nanoparticle clusters directed by DNA nanocages, J. Am. Chem. Soc., 2015, 137, 4320-4323.10.1021/jacs.5b01196Search in Google Scholar PubMed

[98] Rosi N.L., Mirkin C.A., Nanostructures in biodiagnostics, Chem. Rev., 2005, 105, 1547-1562.10.1021/cr030067fSearch in Google Scholar PubMed

[99] Rosi N.L., Giljohann D.A., Thaxton C.S., Lytton-Jean A.K.R., Han M.S., Mirkin C.A., Oligonucleotide-modified gold nanoparticles for intracellular gene regulation, Science, 2006, 312, 1027-1030.10.1126/science.1125559Search in Google Scholar PubMed

[100] Li L., Hutter T., Finnemore A.S., Huang F.M., Baumberg J.J., Elliott S.R., Steiner U., Mahajan S., Metal oxide nanoparticle mediated enhanced raman scattering and its use in direct monitoring of interfacial chemical reactions, Nano Lett., 2012, 12, 4242-4246.10.1021/nl302029pSearch in Google Scholar PubMed

[101] Li L., Hutter T., Steiner U., Mahajan S., Single molecule SERS and detection of biomolecules with a single gold nanoparticle on a mirror junction, Analyst, 2013, 138, 4574-4578.10.1039/c3an00447cSearch in Google Scholar PubMed

[102] Li L., Steiner U., Mahajan S., Single nanoparticle SERS probes of ion intercalation in metal-oxide electrodes, Nano Lett., 2014, 14, 495-498.10.1021/nl403485eSearch in Google Scholar PubMed

[103] Li L., Hutter T., Li W.W., Mahajan S., Single nanoparticlebased heteronanojunction as a plasmon ruler for measuring dielectric thin films, J. Phys. Chem. Lett., 2015, 6, 2282-2286.10.1021/acs.jpclett.5b00806Search in Google Scholar PubMed

[104] Song S., Liang Z., Zhang J., Wang L., Li G., Fan C., Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis, Angew. Chem. Int. Edit., 2009, 48, 8670-8674.10.1002/anie.200901887Search in Google Scholar PubMed

[105] Li N., Chang C., Pan W., Tang B., A multicolor nanoprobe for detection and imaging of tumor-related mRNAs in living cells, Angew. Chem. Int. Edit., 2012, 51, 7426-7430.10.1002/anie.201203767Search in Google Scholar PubMed

[106] Opdahl A., Petrovykh D.Y., Kimura-Suda H., Tarlov M.J., Whitman L.J., Independent control of grafting density and conformation of single-stranded DNA brushes, Proc. Natl. Acad. Sci. U.S.A., 2007, 104, 9-14.10.1073/pnas.0608568103Search in Google Scholar PubMed PubMed Central

[107] Pei H., Li F., Wan Y., Wei M., Liu H., Su Y., Chen N., Huang Q., Fan C., Designed diblock oligonucleotide for the synthesis of spatially isolated and highly hybridizable functionalization of DNA-gold nanoparticle nanoconjugates, J. Am. Chem. Soc., 2012, 134, 11876-11879.10.1021/ja304118zSearch in Google Scholar PubMed

[108] Zhu D., Song P., Shen J., Su S., Chao J., Aldalbahi A., Zhou Z., Song S., Fan C., Zuo X., Tian Y., Wang L., Pei H., PolyA-mediated DNA assembly on gold nanoparticles for thermodynamically favorable and rapid hybridization analysis, Anal. Chem., 2016, 88, 4949-4954.10.1021/acs.analchem.6b00891Search in Google Scholar PubMed

[109] Chen L., Chao J., Qu X., Zhang H., Zhu D., Su S., Aldalbahi A., Wang L., Pei H., Probing cellular molecules with polyA-based engineered aptamer nanobeacon, ACS Appl. Mater. Inter., 2017, 9, 8014-8020.10.1021/acsami.6b16764Search in Google Scholar PubMed

[110] Chen N., Wei M., Sun Y., Li F., Pei H., Li X., Su S., He Y., Wang L., Shi J., Fan C., Huang Q., Self-Assembly of poly-adeninetailed CpG oligonucleotide-gold nanoparticle nanoconjugates with immunostimulatory activity, Small, 2014, 10, 368-375.10.1002/smll.201300903Search in Google Scholar PubMed

[111] Zhao B., Shen J., Chen S., Wang D., Li F., Mathur S., Song S., Fan C., Gold nanostructures encoded by non-fluorescent small molecules in polyA-mediated nanogaps as universal SERS nanotags for recognizing various bioactive molecules, Chem. Sci., 2014, 5, 4460-4466.10.1039/C4SC01792GSearch in Google Scholar

[112] Zhu Y., Jiang X., Wang H., Wang S., Wang H., Sun B., Su Y., He Y., A poly adenine-mediated assembly strategy for designing surface-enhanced resonance raman scattering substrates in controllable manners, Anal. Chem., 2015, 87, 6631-6638.10.1021/acs.analchem.5b00676Search in Google Scholar PubMed

[113] Qi L., Xiao M., Wang F., Wang L., Ji W., Man T., Aldalbahi A., Naziruddin Khan M., Periyasami G., Rahaman M., Alrohaili A., Qu X., Pei H., Wang C., Li L., Poly-cytosine-mediated nanotags for SERS detection of Hg2+, Nanoscale, 2017, 9, 14184-14191.10.1039/C7NR05165DSearch in Google Scholar PubMed

[114] Zhu D., Chao J., Pei H., Zuo X., Huang Q., Wang L., Huang W., Fan C., Coordination-mediated programmable assembly of unmodified oligonucleotides on plasmonic silver nanoparticles, ACS Appl. Mater. Inter., 2015, 7, 11047-11052.10.1021/acsami.5b03066Search in Google Scholar PubMed

[115] Qi L., Xiao M., Wang X., Wang C., Wang L., Song S., Qu X., Li L., Shi J., Pei H., DNA-encoded raman-active anisotropic nanoparticles for microRNA detection, Anal. Chem., 2017, 89, 9850-9856.10.1021/acs.analchem.7b01861Search in Google Scholar PubMed

[116] Shen J., Tang Q., Li L., Li J., Zuo X., Qu X., Pei H., Wang L., Fan C., Valence-engineering of quantum dots using programmable DNA scaffolds, Angew. Chem. Int. Ed., 2017, 56, 16077.10.1002/anie.201710309Search in Google Scholar PubMed

[117] Lo P.K., Karam P., Aldaye F.A., McLaughlin C.K., Hamblin G.D., Cosa G., Sleiman H.F., Loading and selective release of cargo in DNA nanotubes with longitudinal variation, Nat. Chem., 2010, 2, 319-328.10.1038/nchem.575Search in Google Scholar PubMed

[118] Zhao Z., Jacovetty E.L., Liu Y., Yan H., Encapsulation of gold nanoparticles in a DNA origami cage, Angew. Chem. Int. Edit., 2011, 50, 2041-2044.10.1002/anie.201006818Search in Google Scholar PubMed PubMed Central

[119] Walsh A.S., Yin H., Erben C.M., Wood M.J.A., Turberfield A.J., DNA cage delivery to mammalian cells, ACS Nano, 2011, 5, 5427-5432. 10.1021/nn2005574Search in Google Scholar PubMed

[120] Li J., Pei H., Zhu B., Liang L., Wei M., He Y., Chen N., Li D., Huang Q., Fan C., Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides, ACS Nano, 2011, 5, 8783-8789.10.1021/nn202774xSearch in Google Scholar PubMed

[121] Lee H., Lytton-Jean A.K.R., Chen Y., Love K.T., Park A.I., Karagiannis E.D., Sehgal A., Querbes W., Zurenko C.S., Jayaraman M., Peng C.G., Charisse K., Borodovsky A., Manoharan M., Donahoe J.S., Truelove J., Nahrendorf M., Langer R., Anderson D.G., Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery, Nat. Nanotechnol., 2012, 7, 389-393.10.1038/nnano.2012.73Search in Google Scholar PubMed PubMed Central

[122] Modi S., Swetha M.G., Goswami D., Gupta G.D., Mayor S., Krishnan Y., A DNA nanomachine that maps spatial and temporal pH changes inside living cells, Nat. Nanotechnol., 2009, 4, 325-330.10.1038/nnano.2009.83Search in Google Scholar PubMed

[123] Surana S., Bhat J.M., Koushika S.P., Krishnan Y., An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism, Nat. Commun., 2011, 2.10.1038/ncomms1340Search in Google Scholar PubMed

[124] Stevens M.M., George J.H., Exploring and engineering the cell surface interface, Science, 2005, 310, 1135-1138.10.1126/science.1106587Search in Google Scholar

[125] Chandra R.A., Douglas E.S., Mathies R.A., Bertozzi C.R., Francis M.B., Programmable cell adhesion encoded by DNA hybridization, Angew. Chem. Int. Edit., 2006, 45, 896-901.10.1002/anie.200502421Search in Google Scholar

[126] Bokel C., Brown N.H., Integrins in development: Moving on, responding to, and sticking to the extracellular matrix, Dev. Cell, 2002, 3, 311-321.10.1016/S1534-5807(02)00265-4Search in Google Scholar

[127] Qu X., Wang S., Ge Z., Wang J., Yao G., Li J., Zuo X., Shi J., Song S., Wang L., Li L., Pei H., Fan C., Programming cell adhesion for on-chip sequential boolean logic functions, J. Am. Chem. Soc., 2017, 139, 10176-10179.10.1021/jacs.7b04040Search in Google Scholar PubMed

[128] Douglas E.S., Chandra R.A., Bertozzi C.R., Mathies R.A., Francis M.B., Self-assembled cellular microarrays patterned using DNA barcodes, Lab Chip, 2007, 7, 1442-1448.10.1039/b708666kSearch in Google Scholar PubMed

[129] Toriello N.M., Douglas E.S., Thaitrong N., Hsiao S.C., Francis M.B., Bertozzi C.R., Mathies R.A., Integrated microfluidic bioprocessor for single-cell gene expression analysis, Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 20173-20178.10.1073/pnas.0806355106Search in Google Scholar PubMed PubMed Central

[130] Hsiao S.C., Crow A.K., Lam W.A., Bertozzi C.R., Fletcher D.A., Francis M.B., DNA-coated AFM cantilevers for the investigation of cell adhesion and the patterning of live cells, Angew. Chem. Int. Edit., 2008, 47, 8473-8477.10.1002/anie.200802525Search in Google Scholar PubMed PubMed Central

[131] Hsiao S.C., Shum B.J., Onoe H., Douglas E.S., Gartner Z.J., Mathies R.A., Bertozzi C.R., Francis M.B., Direct cell surface modification with DNA for the capture of primary cells and the investigation of myotube formation on defined patterns, Langmuir, 2009, 25, 6985-6991.10.1021/la900150nSearch in Google Scholar PubMed PubMed Central

[132] Gartner Z.J., Bertozzi C.R., Programmed assembly of 3-dimensional microtissues with defined cellular connectivity, Proc. Natl. Acad. Sci. U.S.A., 2009, 106, 4606-4610.10.1073/pnas.0900717106Search in Google Scholar PubMed PubMed Central

[133] Coyle M.P., Xu Q., Chiang S., Francis M.B., Groves J.T., DNA-mediated assembly of protein heterodimers on membrane surfaces, J. Am. Chem. Soc., 2013, 135, 5012-5016.10.1021/ja3101215Search in Google Scholar PubMed PubMed Central

[134] Langecker M., Arnaut V., Martin T.G., List J., Renner S., Mayer M., Dietz H., Simmel F.C., Synthetic lipid membrane channels formed by designed DNA nanostructures, Science, 2012, 338, 932-936.10.1126/science.1225624Search in Google Scholar PubMed PubMed Central

Received: 2017-12-25
Accepted: 2018-03-12
Published Online: 2018-05-17

© 2018

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 1.6.2024 from https://www.degruyter.com/document/doi/10.1515/nanofab-2018-0001/html
Scroll to top button