Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 12, 2017

Towards dynamic PET reconstruction under flow conditions: Parameter identification in a PDE model

  • Louise Reips EMAIL logo , Martin Burger ORCID logo and Ralf Engbers

Abstract

The aim of this paper is to discuss potential advances in PET kinetic models and direct reconstruction of kinetic parameters. As a prominent example we focus on a typical task in perfusion imaging and derive a system of transport-reaction-diffusion equations, which is able to include macroscopic flow properties in addition to the usual exchange between arteries, veins, and tissues. For this system we propose an inverse problem of estimating all relevant parameters from PET data. We interpret the parameter identification as a nonlinear inverse problem, for which we formulate and analyze variational regularization approaches. For the numerical solution we employ gradient-based methods and appropriate splitting methods, which are used to investigate some test cases.

MSC 2010: 35K57

Funding statement: This work was carried out when Louise Reips was with the Institute for Computational and Applied Mathematics, WWU Münster. Martin Burger and Ralf Engbers acknowledge partial support by the German Science Foundation (DFG) via SFB 656, Subproject B2, and Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), WWU Münster, Germany.

A Adjoint equations

The purpose of this section is the development of the parameter identification problem to allow the calculation of all the biological parameters that composes the vector p. Thus, minimizing the function below (with the regularization added) we can find the values that correspond to the desired physiological parameters

120TΩ(u-uk+12)2uk𝑑x𝑑t+(p)+0TΩ(G(p)-u)q𝑑x𝑑tminp

with

G(p)=G(p(x,t))=u(x,t)for all (x,t)Ω×[0,T].

With the associated Lagrange functional one has

(u,p;q)=120TΩ(u-uk+12)2uk𝑑x𝑑t+(p)+0TΩ(G(p)-u)q𝑑x𝑑t.

One must now calculate the optimality conditions to the problem, which means that all the partial Fréchet-derivatives must be zero. Thus, we obtain

u=u(x,t)-uk+12(x,t)uk(x,t)-q(x,t)=0.

The optimality conditions for k1(x), k2(x), k3(x), V𝒯(x), V𝒜(x), V𝒱(x), D𝒯(x), D𝒜(x) and D𝒱(x) are

k1=α(Λ𝒯(x)(k1(x)-k1*)+Λ𝒜(x)(k1(x)-k1*))-ξ(Λ𝒯(x)Δk1(x)+Λ𝒜(x)Δk1(x))
-0TC𝒜(x,t)μ(x,t)𝑑t+0TC𝒜(x,t)η(x,t)𝑑t,
k2=α(Λ𝒯(x)(k2(x)-k2*)+Λ𝒱(x)(k2(x)-k2*))-ξ(Λ𝒯(x)Δk2(x)+Λ𝒱(x)Δk2(x))
+0TC𝒯(x,t)μ(x,t)𝑑t-0TC𝒯(x,t)γ(x,t)𝑑t,
k3=α(Λ𝒜(x)(k3(x)-k3*)+Λ𝒱(x)(k3(x)-k3*))-ξ(Λ𝒜(x)Δk3(x)+Λ𝒱(x)Δk3(x))
-0TC𝒱(x,t)η(x,t)𝑑t+0TC𝒱(x,t)γ(x,t)𝑑t,
V𝒯=0TV𝒯(x)μ(x,t)𝑑t+α(V𝒯(x)-V𝒯*)-ξ(Λ𝒯(x)ΔV𝒯(x)),
V𝒜=0TV𝒜(x)η(x,t)𝑑t+α(V𝒜(x)-V𝒜*)-ξ(Λ𝒜(x)ΔV𝒜(x)),
V𝒱=0TV𝒱(x)γ(x,t)𝑑t+α(V𝒱(x)-V𝒱*)-ξ(Λ𝒱(x)ΔV𝒱(x)),
D𝒯=0TC𝒯(x)μ(x,t)𝑑t+α(D𝒯(x)-D𝒯*)-ξ(Λ𝒯(x)ΔD𝒯(x)),
D𝒜=0TC𝒜(x)η(x,t)𝑑t+α(D𝒜(x)-D𝒜*)-ξ(Λ𝒜(x)ΔD𝒜(x)),
D𝒱=0TC𝒱(x)γ(x,t)𝑑t+α(D𝒱(x)-D𝒱*)-ξ(Λ𝒱(x)ΔD𝒱(x)).

We apply the Forward-Backward Splitting method for all parameters that composes the vector p to obtain

k1k+1(x,y)=(1+2ατ-2ξτBx-2ξτBy)-1
×(k1k(x,y)+τ0TC𝒜(x,y,t)μ(x,y,t)𝑑t-τ0TC𝒜(x,y,t)η(x,y,t)𝑑t+2ατk1*),
k2k+1(x,y)=(1+2ατ-2ξτBx-2ξτBy)-1
×(k2k(x,y)-τ0TC𝒯(x,y)μ(x,y)𝑑t+τ0TC𝒯(x,y,t)γ(x,y,t)𝑑t+2ατk2*),
k3k+1(x,y)=(1+2ατ-2ξτBx-2ξτBy)-1
×(k3k(x,y,t)+τ(x,y,t)0TC𝒱(x,y,t)η(x,y,t)𝑑t+τ0TC𝒱(x,y,t)γ(x,y,t)𝑑t+2ατk3*),
V𝒯k+1(x,y)=(1-ατ+ξτBx+ξτBy)-1(V𝒯k(x,y)-τV𝒯k(x,y)0Tμ(x,y,t)𝑑t+ατV𝒯*),
V𝒜k+1(x,y)=(1-ατ+ξτBx+ξτBy)-1(V𝒜k(x,y)-τV𝒜k(x,y,t)0Tη(x,y,t)𝑑t+ατV𝒜*),
V𝒱k+1(x,y)=(1-ατ+ξτBx+ξτBy)-1(V𝒱k(x,y)-τV𝒱k(x,y)0Tγ(x,y,t)𝑑t+ατV𝒱*),
D𝒯k+1(x,y)=(1+ατ-ξτBx-ξτBy)-1(D𝒯k(x,y)-τ(D𝒯k(x,y)0Tμ(x,y,t)𝑑t)+ατD𝒯*),
D𝒜k+1(x,y)=(1+ατ-ξτBx-ξτBy)-1(D𝒜k(x,y)-τ(D𝒜k(x,y)0Tη(x,y,t)𝑑t)+ατD𝒜*),
D𝒱k+1(x,y)=(1+ατ-ξτBx-ξτBy)-1(D𝒱k(x,y)-τ(D𝒱k(x,y)0Tγ(x,y,t)𝑑t)+ατD𝒱*).

A good choice of τ defines a significant speedup, because the dependence on the ill-posedness of the operator K (the ill-conditioning of the matrix that represents the discretization of K) can make the iterative scheme very slow.

B Example 1: Small defects in perfusion – Regularization parameters

Table 3 shows all the regularization parameters for Example 1. The ()* refers to a-priori knowledge in the regularization functional for each parameter of the problem. Whereas, for example, the velocity of the radioactive concentration in the artery has a typical value of V𝒜*, we can regularize V𝒜 by

(V𝒜(x))=α2Ω(V𝒜-V𝒜*)2𝑑x,

where α (values shown in the third column) denotes the regularization parameter, α+.

Table 3

Input regularization parameters for a first real example.

Parameter()*A-p. regularization (α)Gradient regularization (ξ)
k10.890.01710.0008
k20.70.01580.0001
k30.850.01640.0001
Vx𝒜0.10.00100.0001
Vy𝒜151.10000.0001
Vx𝒯-51.12200.0001
Vy𝒯0.10.00100.0001
Vx𝒱0.10.00100.0001
Vy𝒱151.10000.0001
D𝒜10(-3)0.00030.0004
D𝒯10(-2)0.00030.0004
D𝒱10(-3)0.00030.0004

Like the a-priori regularization we apply the Gradient regularization in each parameter independently. The regularization of the gradient is designed to ensure (guarantee) smoothness in space and time, adding a bound to the spatial gradients (k1,k2,k3,V𝒜,V𝒯,V𝒱,D𝒜,D𝒯,D𝒱). The regularization added to the terms is given by

ξ,Φ(g)=ξ2Φ|g(x)|2𝑑x

with ΦΩ. Thus, the fourth column refers to the terms ξ for each biological parameter in the above equation.

References

[1] J. Y. Ahn, D. S. Lee, S. Kim, G. J. Cheon, J. S. Yeo, S. Shin, J. Chung and M. C. Lee, Quantification of regional myocardial blood flow using dynamic H215O PET and factor analysis, J. Nucl. Med 42 (2001), no. 5, 782–787. Search in Google Scholar

[2] R. E. Bank, W. Coughran, Jr. and L. C. Cowsar, The finite volu-me scharfetter-gummel method for steady convection diffusion equations, Comput. Vis. Sci. 1 (1998), no. 3, 123–136. 10.1007/s007910050012Search in Google Scholar

[3] M. Benning, A nonlinear variational method for improved quantification of myocardial blood flow using dynamic H215O PET, Diplomarbeit, Westfälische Wilhelms-Universität Münster, Münster, 2008. 10.1109/NSSMIC.2008.4774274Search in Google Scholar

[4] M. Benning, P. Heins and M. Burger, A solver for dynamic pet reconstruction based on forward-backward splitting, AIP Conf. Proc. 1281 (2010), 10.1063/1.3498318. 10.1063/1.3498318Search in Google Scholar

[5] M. Benning, T. Kösters, F. Wübbeling, K. Schäfers and M. Burger, A nonlinear variational method for improved quantification of myocardial blood flow using dynamic H215O PET, IEEE Nuclear Science Symposium Conference Record (NSS ’08), IEEE Press, Piscataway (2009), 4472–4477. 10.1109/NSSMIC.2008.4774274Search in Google Scholar

[6] C. Brune, A. Sawatzky and M. Burger, Primal and dual Bregman methods with application to optical nanoscopy, Int. J. Comput. Vis. 92 (2011), no. 2, 211–229. 10.1007/s11263-010-0339-5Search in Google Scholar

[7] R. E. Carson, Tracer kinetic modeling in PET, Positron Emission Tomography. Basic Sciences, Springer, London (2005), 127–159. 10.1007/1-84628-007-9_6Search in Google Scholar

[8] M. Castelani, A. Colombo, R. Giordano, E. Pusineri, C. Canzi, V. Longari, E. Piccaluga, S. Palatresi, L. Dellavedova, D. Soligo, P. Rebulla and P. Gerundini, The role of PET with  13N-ammonia and  18F-FDG in the assessment of myocardial perfusion and metabolism in patients with recent AMI and intracoronarystem cell injection, J. Nucl. Med. 51 (2010), no. 12, 1908–1916. 10.2967/jnumed.110.078469Search in Google Scholar PubMed

[9] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5: Evolution Problems I, Springer, Berlin, 1992. Search in Google Scholar

[10] L. Eriksson, C. Bohm, M. Kesselberg, G. Blomqvist, J. Litton, L. Widen, M. Bergstrom, K. Ericson and T. Greitz, A four ring positron camera system for emission tomography of the brain, IEEE Trans. Nucl. Sci. 29 (1982), 539–543. 10.1109/TNS.1982.4335903Search in Google Scholar

[11] L. C. Evans, Partial Differential Equations, 2nd ed., Grad. Stud. Math. 19, American Mathematical Society, Providence, 2010. Search in Google Scholar

[12] M. Fiechtera, C. Gebharda, J. R. Ghadria, T. A. Fuchsa, A. P. Pazhenkottila, R. N. Nkouloua, B. A. Herzoga, U. Altorfera, O. Gaemperlia and P. A. Kaufmann, Myocardial perfusion imaging with  13N-ammonia PET is a strong predictor for outcome, Internat. J. Cardiology 167 (2012), no. 3, 1023–1026. 10.1016/j.ijcard.2012.03.076Search in Google Scholar PubMed

[13] M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints, Math. Modelling Theory Appl. 23, Springer, New York, 2009. Search in Google Scholar

[14] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Appl. Math. Sci. 160, Springer, New York, 2005. 10.1007/b138659Search in Google Scholar

[15] M. E. Kamasak, C. A. Boumann, E. D. Morris and K. Sauer, Direct reconstruction of kinetic parameter images from dynamic PET data, IEEE Trans. Med. Imaging 24 (2005), 636–650. 10.1109/TMI.2005.845317Search in Google Scholar PubMed

[16] C. Katoh, K. Morita, T. Shiga, N. Kubo, K. Nakada and N. Tamaki, Improvement of algorithm for quantification of regional blood flow using  15O-water with PET, J. Nucl. Med. 45 (2004), no. 11, 1908–1916. Search in Google Scholar

[17] J. Krivokapich, G. T. Smith, S. C. Huang, E. J. Hoffman, O. Ratib, M. E. Phelps and H. R. Schelbert, 13N-ammonia myocardial imaging at rest with exercise in normal volunteers. quantification of absolute myocardial perfusion with dynamic positron emission tomography, Circulation 80 (1989), 1328–1337. 10.1161/01.CIR.80.5.1328Search in Google Scholar PubMed

[18] W. G. Kuhle, G. Porenta, S. C. Huang, D. Buxton, S. S. Gambhir, H. Hansen, M. E. Phelps and H. R. Schelbert, Quantification of regional myocardial blood flow using 13N ammonia and reoriented dynamic positron emission tomographic imaging, Circulation 86 (1992), 1004–1017. 10.1161/01.CIR.86.3.1004Search in Google Scholar

[19] J. R. Levick, An Introduction to Cardiovascular Physiology, Hodder Arnold, London, 2010. 10.1201/b13366Search in Google Scholar

[20] L. Lüdermann, G. Sreenivasa, R. Michel, C. Rosner, M. Plotkin, R. Felix, P. Wust and H. Amthauer, Corrections of arterial input function for dynamic H215O PET to assess perfusion of pelvic tumours: Arterial blood sampling versus image extraction, Phys. Med. Biol. 51 (2006), 2883–2900. 10.1088/0031-9155/51/11/014Search in Google Scholar PubMed

[21] O. Muzik, R. S. Beanlands, G. D. Hutchins, T. J. Magner, N. Nguyen and M. Schwaiger, Validation of nitrogen-13-ammonia tracer kinetic model for quantification of myocardial blood flow using PET, J. Nucl. Med 34 (1993), 83–91. Search in Google Scholar PubMed

[22] F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction, Monogr. Math. Model. Comput., SIAM, Philadelphia, 2001. 10.1137/1.9780898718324Search in Google Scholar

[23] M. E. Phelps, E. J. Hoffman, S. C. Huang and D. E. Kuhl, Ecat: A new computerized tomographic imaging system for positron-emitting radiopharmaceuticals, J. Nucl. Med. 19 (1978), 635–647. 10.2172/5423721Search in Google Scholar PubMed

[24] L. Reips, Parameter identification in medical imaging, Ph.D. thesis, University of Münster, Münster, 2013. Search in Google Scholar

[25] W. Rudin, Functional Analysis, McGraw–Hill, New York, 1973. Search in Google Scholar

[26] A. Sawatzky, Nonlocal total variation in medical imaging, Ph.D. thesis, Westfälische Wilhelms-Universität Münster, Münster, 2011. Search in Google Scholar

[27] A. Sawatzky, C. Brune, F. Wübbeling, T. Kösters, K. Schäfers and M. Burger, Accurate EM-TV algorithm in PET with low SNR, IEEE Nuclear Science Symposium Conference Record (NSS ’08), IEEE Press, Piscataway (2009), 5133–5137. 10.1109/NSSMIC.2008.4774392Search in Google Scholar

[28] K. P. Schäfers, T. J. Spinks, P. G. Camici, P. M. Bloomfield, C. G. Rhodes, M. P. Law, C. S. R. Baker and O. Rimoldi, Absolute quantification of myocardial blood flow with H215O and 3-dimensional PET: An experimental validation, J. Nucl. Med. 43 (2002), no. 8, 1031–1040. Search in Google Scholar

[29] L. A. Shepp and Y. Vardi, Maximum likelihood reconstruction for emission tomography, IEEE Trans. Med. Imaging 1 (1982), 113–122. 10.1109/TMI.1982.4307558Search in Google Scholar PubMed

[30] R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Math. Surveys Monogr. 49, American Mathematical Society, Providence, 1997. Search in Google Scholar

[31] P. T. Siegrist, L. Husmann, M. Knabenhans, O. Gaemperli, I. Valenta, T. Hoefflinghaus, H. Scheffel, P. Stolzmann, H. Alkadhi and P. A. Kaufmann,  13N-ammonia myocardial perfusion imaging with a PET/CT scanner: Impact on clinical decision making and cost-effectiveness, Eur. J. Nucl. Med. Mol. Imaging 35 (2008), 889–895. 10.1007/s00259-007-0647-3Search in Google Scholar PubMed

[32] A. Takahashi and C. Takahashi, A summability method, Rev. Colombiana Mat. 2 (1968), 29–44. Search in Google Scholar

[33] Y. Vardi, L. A. Shepp and L. Kaufman, A statistical model for positron emission tomography, J. Amer. Statist. Assoc. 80 (1985), no. 389, 8–37. 10.1080/01621459.1985.10477119Search in Google Scholar

[34] F. Werner and T. Hohage, Convergence rates in expectation for Tikhonov-type regularization of inverse problems with Poisson data, Inverse Problems 28 (2012), no. 10, Article ID 104004. 10.1088/0266-5611/28/10/104004Search in Google Scholar

[35] M. N. Wernick and J. N. Aarsvold, Emission Tomography: The Fundamentals of PET and SPECT, Elsevier Academic Press, Amsterdam, 2004. Search in Google Scholar

Received: 2015-2-2
Revised: 2017-4-11
Accepted: 2017-6-30
Published Online: 2017-8-12
Published in Print: 2018-4-1

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 31.5.2024 from https://www.degruyter.com/document/doi/10.1515/jiip-2015-0016/html
Scroll to top button