Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 9, 2021

Impact of high-intensity ultrasound on the physicochemical and functional properties of a protein isolate from passion fruit (Passiflora edulis) seeds

  • Natalia del Carmen Espinosa-Murillo , José Armando Ulloa ORCID logo EMAIL logo , Judith Esmeralda Urías-Silvas , Petra Rosas-Ulloa , José Carmen Ramírez-Ramírez , Ranferi Gutiérrez-Leyva and Blanca Estela Ulloa-Rangel

Abstract

A protein isolate from passion fruit seeds (PFSPI) obtained by alkaline extraction and isoelectric precipitation was treated with sonication for 15 and 30 min at 40 kHz to evaluate its impact on the physicochemical and functional properties. The PFSPI had a purity of 96.21% protein, with albumins being the main fraction (75.66%). Ultrasound increased the bulk density (ρ) of PFSPI by 13.3% and the formation a more porous structure by a greater separation between particles. Protein solubility of PFSPI in the range of pH 2–12 sonicated for 15 and 30 min, increased on average 5.21 and 9.86%, respectively, in comparison with the control. PFSPI foaming properties were influenced by pH and sonication time, achieving up to 577%, while the minimum gelling concentration was reduced from 4 to 2% at pH 7. Therefore, sonication treatment improved some functional properties of PFSPI for its potential use as a food ingredient.


Corresponding author: José Armando Ulloa, Posgrado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Carretera Tepic-Compostela Km 9, 63780, Xalisco, Nayarit, México; and Centro de Tecnología de Alimentos, Universidad Autónoma de Nayarit, Ciudad de la Cultura Amado Nervo, 63155, Tepic, Nayarit, México, E-mail:

Funding source: Patronage to Administer the Special Tax Destined for the Universidad Autónoma de Nayarit

Award Identifier / Grant number: PUAN-FI-004/2020

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research received financial support from the Patronage to Administer the Special Tax Destined for the Universidad Autónoma de Nayarit (PUAN-FI-004/2020).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Oliveira, CF, Gurak, PD, Cladera-Olivera, F, Ferreira Marczak, LD, Karwe, M. Combined effect of high-pressure and conventional heating on pectin extraction from passion fruit peel. Food Bioprocess Technol 2016;9:1021–30. https://doi.org/10.1007/s11947-016-1691-4.Search in Google Scholar

2. Cheok, CY, Mohd Adzahan, N, Abdul Rahman, R, Abedín, NHZ, Hussanin, N, Sulaiman, R, et al.. Current trends of tropical fruit waste utilization. Crit Rev Food Sci Nutr 2018;58:335–61. https://doi.org/10.1080/10408398.2016.1176009.Search in Google Scholar PubMed

3. Rico, X, Gullon, B, Alonso, JL, Yanez, R. Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: an overview. Food Res Int 2020:e109086. https://doi.org/10.1016/j.foodres.2020.109086.Search in Google Scholar PubMed

4. Santana, FC, Oliveira Torres, LR, Shinagawa, FB, Oliveira e Silva, AM, Tedesco Yoshime, LT, Pereira de Melo, IL, et al.. Optimization of the antioxidant polyphenolic compounds extraction of yellow passion fruit seeds (Passiflora edulis Sims) by response surface methodology. J Food Sci Technol Mys 2017;54:3552–61. https://doi.org/10.1007/s13197-017-2813-3.Search in Google Scholar PubMed PubMed Central

5. Delvar, A, Caro, P, Candy, L, Caro, Y, Cheong Sing, AS, Christine Raynaud, C. Integrated process for extraction and formulation in emulsions of active molecules from fresh passion fruits (Passiflora edulis Sims). J Food Eng 2019;263:388–97. https://doi.org/10.1016/j.jfoodeng.2019.07.014.Search in Google Scholar

6. Fachinello, MR, Pozza, PC, Moreira, I, Oliveira Carvalho, PL, Castilha, LD, Pasquetti, TJ, et al.. Effect of passion fruit seed meal on growth performance, carcass, and blood characteristics in starter pigs. Trop Anim Health Prod 2015;47:1397–403. https://doi.org/10.1007/s11250-015-0877-5.Search in Google Scholar PubMed

7. Selani, MM, Bianchini, A, Ratnayake, WS, Flores, RA, Prado Massarioli, A, Severino Matias Alencar, SM, et al.. Physicochemical, functional and antioxidant properties of tropical fruits co-products. Plant Foods Hum Nutr 2016;71:137–44. https://doi.org/10.1007/s11130-016-0531-z.Search in Google Scholar PubMed

8. Viganó, J, Aguiar, AC, Moraes, DR, Jara, JLP, Eberlin, MN, Cazarin, CBB, et al.. Sequential high pressure extractions applied to recover piceatannol and scirpusin B from passion fruit bagasse. Food Res Int 2016;85:51–8. https://doi.org/10.1016/j.foodres.2016.04.015.Search in Google Scholar PubMed

9. Correa, RCG, Peralta, MR, Haminiuk, CWI, Maciel, GM, Bracht, A, Ferreira, ICFR. The past decade findings related with nutritional composition, bioactive molecules and biotechnological applications of Passiflora spp. (passion fruit). Trends Food Sci Technol 2016;58:79–95. https://doi.org/10.1016/j.tifs.2016.10.006.Search in Google Scholar

10. Mizusaki, A, Nishi, K, Nishiwaki, H, Ishida, M, Tamamoto, T, Sugahara, T. Suppressive effect of ethanol extract from passion fruit seeds on IgE production. J Funct Foods 2017;32:176–84. https://doi.org/10.1016/j.jff.2017.02.030.Search in Google Scholar

11. Lam, SK, Ng, TC. Passiflin, a novel dimeric antifungal protein from seeds of the passion fruit. Phytomedicine 2009;16:172–80. https://doi.org/10.1016/j.phymed.2008.12.025.Search in Google Scholar PubMed

12. Leão, KMM, Sampaio, KL, Pagania, AAC, Da Silva, MAAP. Odor potency, aroma profile and volatiles composition of cold pressed oil from industrial passion fruit residues. Ind Crop Prod 2014;58:280–6. https://doi.org/10.1016/j.indcrop.2014.04.032.Search in Google Scholar

13. Oliveira, DA, Angonese, M, Ferreira, SRS, Gomes, CL. Nanoencapsulation of passion fruit by-products extracts for enhanced antimicrobial activity. Food Bioprod Process 2017;104:137–46. https://doi.org/10.1016/j.fbp.2017.05.009.Search in Google Scholar

14. Chau, CF, Huang, YL. Characterization of passion fruit seed fibres-a potential fibre source. Food Chem 2004;85:189–94. https://doi.org/10.1016/j.foodchem.2003.05.009.Search in Google Scholar

15. Bhargava, N, Mor, RS, Kumar, K, Singh Sharanagat, VS. Advances in application of ultrasound in food processing: a review. Ultrason Sonochem 2021:e105293. https://doi.org/10.1016/j.ultsonch.2020.105293.Search in Google Scholar PubMed PubMed Central

16. Ozuna, C, Paniagua-Martínez, I, Castaño-Tostado, E, Ozimek, L, Amaya-Llano, SL. Innovative applications of high-intensity ultrasound in the development of functional food ingredients: production of protein hydrolysates and bioactive peptides. Food Res Int 2015;77:685–96. https://doi.org/10.1016/j.foodres.2015.10.015.Search in Google Scholar

17. Xiong, T, Xiong, W, Ge, M, Xia, J, Li, B, Chen, Y. Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Res Int 2018;109:260–7. https://doi.org/10.1016/j.foodres.2018.04.044.Search in Google Scholar PubMed

18. Huang, L, Ding, X, Li, Y, Ma, H. The aggregation, structures and emulsifying properties of soybean protein isolate induced by ultrasound and acid. Food Chem 2019;279:114–9. https://doi.org/10.1016/j.foodchem.2018.11.147.Search in Google Scholar PubMed

19. Wang, Y, Wang, Y, Li, L, Bai, Y, Li, B, Xu, W. Effect of high intensity ultrasound on physicochemical, interfacial and gel properties of chickpea protein isolate. LWT-Food Sci Technol 2020:e109563. https://doi.org/10.1016/j.lwt.2020.109563.Search in Google Scholar

20. Biswas, B, Sit, N. Effect of ultrasonication on functional properties of tamarind seed protein isolates. J Food Sci Tech Mys 2020;57:2070–8. https://doi.org/10.1007/s13197-020-04241-8.Search in Google Scholar PubMed PubMed Central

21. Sun, X, Zhang, W, Zhang, L, Tian, S, Chen, F. Molecular and emulsifying properties of arachin and conarachin of peanut protein isolate from ultrasound-assisted extraction. LTW-Food Sci Technol 2020:e109790. https://doi.org/10.1016/j.lwt.2020.109790.Search in Google Scholar

22. Constantino, ABT, Garcia-Rojas, EE. Modifications of physicochemical and functional properties of amaranth protein isolate (Amaranthus cruentus BRS Alegria) treated with high-intensity ultrasound. J Cereal Sci 2020:e103076. https://doi.org/10.1016/j.jcs.2020.103076.Search in Google Scholar

23. Wang, F, Zhang, Y, Xu, L, Ma, H. An efficient ultrasound-assisted extraction method of pea protein and its effect on protein functional properties and biological activities. LWT-Food Sci. Technol 2020:e109348. https://doi.org/10.1016/j.lwt.2020.109348.Search in Google Scholar

24. Zuñiga-Salcedo, MR, Ulloa, JA, Bautista-Rosales, PU, Rosas-Ulloa, P, Ramírez-Ramírez, JC, Silva-Carrillo, Y, et al.. Effect of ultrasound treatment on physicochemical, functional and nutritional properties of a safflower (Carthamus tinctorius L.) protein isolate. Ital J Food Sci 2019;31:591–602.Search in Google Scholar

25. Flores-Jiménez, NT, Ulloa, JA, Urías Silvas, JE, Ramírez Ramírez, JC, Rosas Ulloa, P, Bautista Rosales, PU, et al.. Effect of high-intensity ultrasound on the compositional, physicochemical, biochemical, functional and structural properties of canola (Brassica napus L.) protein isolate. Food Res Int 2019;121:947–56. https://doi.org/10.1016/j.foodres.2019.01.025.Search in Google Scholar

26. Ulloa, JA, Villalobos Barbosa, MC, Resendiz Vazquez, JA, Rosas Ulloa, P, Ramírez Ramírez, JC, Silva Carrillo, Y. Production, physico-chemical and functional characterization of a protein isolate from jackfruit (Artocarpus heterophyllus) seeds. Cyta-J Food 2017;15:497–507. https://doi.org/10.1080/19476337.2017.1301554.Search in Google Scholar

27. AOAC. Official methods of analysis. Washington, USA: Association of Official Analytical Chemists; 2000.Search in Google Scholar

28. Yousuf, B, Srivastava, AK. Impact of honey treatments and soy protein isolate-based coating on fresh-cut pineapple during storage at 4 °C. Food Packag Shelf Life 2019:e100361. https://doi.org/10.1016/j.fpsl.2019.100361.Search in Google Scholar

29. Roy-Chowdhury, A, Phattacharyya, AK, Chattopadhyay, P. Study on functional properties of raw and blended jackfruit seed flour (a non-conventional source) for food application. Indian J Natural Prod Resour 2012;3:347–53.Search in Google Scholar

30. Tan, E, Ngoh, Y, Gan, C. A comparative study of physicochemical characteristics and functionalities of pinto bean protein isolate (PBPI) against the soybean protein isolate (SPI) after the extraction optimization. Food Chem 2014;152:447–55. https://doi.org/10.1016/j.foodchem.2013.12.008.Search in Google Scholar

31. Bradford, MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle protein-dye binding. Anal Biochem 1976;72:248–54. https://doi.org/10.1016/0003-2697(76)90527-3.Search in Google Scholar

32. Gadalkar, SM, Rathod, VK. Extraction of watermelon seed proteins with enhanced functional properties using ultrasound. Prep Biochem Biotech 2020;50:133–40. https://doi.org/10.1080/10826068.2019.1679173.Search in Google Scholar PubMed

33. Piornos, JA, Burgos-Díaz, C, Ogura, T, Morales, E, Rubilar, M, Maureira-Butler, I, et al.. Functional and physicochemical properties of a protein isolate from AluProt-CGNA: a novel protein-rich lupin variety (Lupinus luteus). Food Res Int 2015;76:719–24. https://doi.org/10.1016/j.foodres.2015.07.013.Search in Google Scholar PubMed

34. Ulloa, JA, Rosas-Ulloa, P, Ulloa-Rangel, BE. Physicochemical and functional properties of a protein isolate produced from safflower (Carthamus tinctorius L.) meal by ultrafiltration. J Sci Food Agric 2011;91:572–7. https://doi.org/10.1002/jsfa.4227.Search in Google Scholar PubMed

35. Stone, AK, Avarmenko, NK, Warkentin, TD, Nickerson, MT. Functional properties of protein isolates from different pea cultivars. Food Sci Biotechnol 2015;24:827–33. https://doi.org/10.1007/s10068-015-0107-y.Search in Google Scholar

36. Benelhadj, S, Gharsallaoi, A, Degraeve, P, Attia, H, Ghorbel, D. Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate. Food Chem 2016;194:1056–63. https://doi.org/10.1016/j.foodchem.2015.08.133.Search in Google Scholar PubMed

37. Chaparro Acuña, SP, Lara Sandoval, AE, Sandoval Amador, A, Sosa Suarique, SJ, Martínez Zambrano, JJ, Gil González, JH. Caracterización funcional de la almendra de las semillas de mango (Mangifera indica L.). Rev Cienc Desarro 2015;6:67–75. https://doi.org/10.19053/01217488.3651.Search in Google Scholar

38. Chaparro, SP, Tavera, ML, Martínez, JJ, Gil, JH. Propiedades funcionales de la harina y los aislados proteicos de la semilla de guanábana (Annona muricata). Revista U.D.C.A Actualidad & Divulgación Científica 2014;17:151–9. https://doi.org/10.31910/rudca.v17.n1.2014.950.Search in Google Scholar

39. Siddeeg, A, Yanshun-Xu, Qixing-Jiang, Wenshui-Xia. Physicochemical and functional properties of flour and protein isolates extracted from seinat (Cucumis melo var. tibish) seeds. Food Sci Biotechnol 2014;23:345–53. https://doi.org/10.1007/s10068-014-0048-x.Search in Google Scholar

40. Bernardino-Nicanor, A, Bravo-Delgado, CH, Vivar-Vera, G, Martínez-Sánchez, CE, Pérez-Silva, A, Rodríguez-Miranda, J, et al.. Preparation, composition, and functional properties of a protein isolate from a defatted mamey sapote (Pouteria sapota) seed meal. CyTA-J Food 2014;12:176–82. https://doi.org/10.1080/19476337.2013.810674.Search in Google Scholar

41. Feyzi, S, Varidi, M, Zare, F, Javad Varidi, MJ. Fenugreek (Trigonella foenum graecum) seed protein isolate: extraction optimization, amino acid composition, thermo and functional properties. J Sci Food Agric 2015;95:3165–76. https://doi.org/10.1002/jsfa.7056.Search in Google Scholar PubMed

42. Celik, M, Güzel, M, Yildirim, M. Effect of pH on protein extraction from sour cherry kernels and functional properties of resulting protein concentrate. J Food Sci Tech Mys 2019;5:3023–32. https://doi.org/10.1007/s13197-019-03785-8.Search in Google Scholar PubMed PubMed Central

43. Li, Z, Zhou, B, Li, X, Li, S. Effect of alkaline electrolyzed water on physicochemical and structural properties of apricot protein isolate. Food Sci Biotechnol 2019;28:15–23. https://doi.org/10.1007/s10068-018-0439-5.Search in Google Scholar PubMed PubMed Central

44. Zhou, B, Zhang, M, Fang, ZX, Liu, Y. Effects of ultrasound and microwave pretreatments on the ultrafiltration desalination of salted duck egg white protein. Food Bioprod Process 2015;96:306–13. https://doi.org/10.1016/j.fbp.2015.09.004.Search in Google Scholar

45. Pingret, D, Fabiano-Tixier, A, Chemat, F. Degradation during application of ultrasound in food processing: a review. Food Contr 2013;31:593–606. https://doi.org/10.1016/j.foodcont.2012.11.039.Search in Google Scholar

46. Harasym, J, Satta, E, Kaim, U. Ultrasound treatment of buckwheat grains impacts important functional properties of resulting flour. Molecules 2020:e25133012. https://doi.org/10.3390/molecules25133012.Search in Google Scholar PubMed PubMed Central

47. Ogunbusola, EM, Fagbemi, TN, Osundahunsi, OF. In-vitro protein digestibility, amino acid profile, functional properties and utilization of white melon (Cucumeropsis mannii) protein isolates. Afr J Food Sci 2013;4:153–9.Search in Google Scholar

48. Wani, AA, Sogi, DS, Singh, P, Shivhare, US. Characterization and functional properties of watermelon (Citrullus lanatus) seed protein isolates and salt assisted protein concentrates. Food Sci Biotechnol 2011;20:877–87. https://doi.org/10.1007/s10068-011-0122-6.Search in Google Scholar

49. Xue, F, Zhu, C, Liu, F, Wang, S, Liu, H, Chen Li, C. Effects of high-intensity ultrasound treatment on functional properties of plum (Prunidomesticae semen) seed protein isolate. J Sci Food Agric 2018;98:5690–9. https://doi.org/10.1002/jsfa.9116.Search in Google Scholar PubMed

50. Resendiz-Vazquez, JA, Ulloa, JA, Urías-Silvas, JE, Bautista-Rosales, PU, Ramírez-Ramírez, JC, Rosas-Ulloa, P, et al.. Effect of high-intensity ultrasound on the technofunctional properties and structure of jackfruit (Artocarpus heterophyllus) seed protein isolate. Ultrason Sonochem 2017;37:436–44. https://doi.org/10.1016/j.ultsonch.2017.01.042.Search in Google Scholar PubMed

51. Malik, MA, Saini, CS. Rheological and structural properties of protein isolates extracted from dephenolized sunflower meal: effect of high intensity ultrasound. Food Hydrocolloids 2018;81:229–41. https://doi.org/10.1016/j.foodhyd.2018.02.052.Search in Google Scholar

52. Jiang, L, Wang, J, Li, Y, Wang, Z, Liang, J, Wang, R, et al.. Effects of ultrasound on the structure and physical properties of black bean protein isolates. Food Res Int 2014;62:595–601. https://doi.org/10.1016/j.foodres.2014.04.022.Search in Google Scholar

53. Ramírez Pimentel, JG, Herrera Herrera, A, Aguirre Mancilla, CL, Covarrubias Prieto, J, Iturriaga de la Fuente, G, Raya Pérez, JC. Caracterización de las proteínas de reserva y contenido mineral de semilla de melón (Cucumis melo L.). Rev Mexicana Cienc Agríc 2016;7:1667–78.10.29312/remexca.v7i7.158Search in Google Scholar

54. Sullivan, AC, Pangloli, P, Dia, VP. Impact of ultrasonication on the physicochemical properties of sorghum kafirin and in vitro pepsin-pancreatin digestibility of sorghum gluten-like flour. Food Chem 2018;240:1121–30. https://doi.org/10.1016/j.foodchem.2017.08.046.Search in Google Scholar PubMed

55. Martínez-Velasco, A, Lobato-Calleros, C, Hernández-Rodríguez, BE, Román-Guerrero, A, Alvarez-Ramirez, J, Vernon-Carter, EJ. High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: effect on surface properties, foaming ability and structural changes. Ultrason Sonochem 2018;44:97–105. https://doi.org/10.1016/j.ultsonch.2018.02.007.Search in Google Scholar PubMed

56. Aguilar-Acosta, LA, Serna-Saldivar, SO, Rodríguez-Rodríguez, J, Escalante-Aburto, A, Chuck-Hernández, C. Effect of ultrasound application on protein yield and fate of alkaloids during lupin alkaline. Biomolecules 2020:e10020292. https://doi.org/10.3390/biom10020292.Search in Google Scholar PubMed PubMed Central

57. Haque, MA, Akter, F, Rahman, H, Baqui, MA. Jackfruit seeds protein isolate by spray drying method: the functional and physicochemical characteristics. Food Nutr Sci 2020;11:355–74. https://doi.org/10.4236/fns.2020.115026.Search in Google Scholar

58. da Silva Lannes, SC, Miquelim, JN. Interfacial behavior of food proteins. Curr Nutr Food Sci 2013;9:10–14. https://doi.org/10.2174/157340113804810914.Search in Google Scholar

59. Withana-Gamge, TS, Wanasundara, JPD, Pietrasik, Z, Shand, P. Physicochemical, thermal and functional characterisation of protein isolates from Kabuliand Desi chickpea (Cicer arietinum L.): a comparative study with soy (Glycine max) and pea (Pisum sativum L.). J Sci Food Agric 2010;91:1022–31. https://doi.org/10.1002/jsfa.4277.Search in Google Scholar PubMed

Received: 2021-02-12
Accepted: 2021-05-23
Published Online: 2021-06-09

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.6.2024 from https://www.degruyter.com/document/doi/10.1515/ijfe-2021-0050/html
Scroll to top button