Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 22, 2018

Natural resistance of eight Brazilian wood species from the region Caatinga determined by an accelerated laboratory decay test against four fungi

  • Marcelo F. da Silveira ORCID logo EMAIL logo , Fernando N. Gouveia ORCID logo , Alessandro C.O. Moreira , José Roberto V. Oliveira , Anna Sofya V.S. Silva , Getúlio F. Almeida and Alexandre F. Costa
From the journal Holzforschung

Abstract

Natural resistance of eight wood species from Caatinga, an exclusive Brazilian biome, was evaluated according to [ASTM Standard (2005) D 2017-05. Standard test method of accelerated laboratory test of natural decay resistance of woods.]. Samples were exposed to white rot (WR) and brown rot (BR) fungi, namely to Trametes versicolor (WR), Pycnoporus sanguineus (WR), Gloeophyllum trabeum (BR) and Gloeophyllum striatum (BR). Weight loss, specific gravity and extractive content of each wood species were evaluated. Diptychandra aurantiaca, Pterodon abruptus and Terminalia fagifolia were classified as “highly resistant”, while T. fagifolia was “resistant” to T. versicolor only. Machaerium acutifolium was resistant to all fungi. Aspidosperma multiflorum was resistant to WR fungi and Combretum glaucocarpum to a BR fungus. The species Pityrocarpa moniliformis and Swartzia psilonema were moderately resistant.

Acknowledgments

The authors are grateful to all researchers and technicians involved in this project, as well as Daniel Silva Barcellos for the English revision of this manuscript. We would like to thank the Brazilian Forest Service (SFB) for the opportunity to study these species.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

References

Anttila, A.K., Pirttilä, A.M., Häggman, H., Harju, A., Venäläinen, M., Haapala, A., Holmbom, B.R., Julkunen-Tiitto, R. (2013) Condensed conifer tannins as antifungal agents in liquid culture. Holzforschung 67:825–832.10.1515/hf-2012-0154Search in Google Scholar

Araújo, E.L., Castro, C.C., Albuquerque, U.P. (2007) Dynamics of brazilian Caatinga – a review concerning the plants, environment and people. Funct. Ecosyst. Communities 1:15–28.Search in Google Scholar

ASTM Standard (1999) D 1413-99. Standard test method for wood preservatives by laboratory soil-block cultures.Search in Google Scholar

ASTM Standard (2005) D 2017-05. Standard test method of accelerated laboratory test of natural decay resistance of woods.Search in Google Scholar

Ayres, M.C.C., Chaves, M.H. (2010) Constituintes químicos e atividade antioxidante de extratos das folhas de Terminalia fagifolia Mart. et Zucc Mariane. Quim. Nova 32:1509–1512.10.1590/S0100-40422009000600028Search in Google Scholar

Benevides, D.S., Maracaja, P.B., Sizenando Filho, F.A., Guerra, A.M.N.M., Pereira, T.F.C. (2007) Estudo da flora herbácea da Caatinga no município de caraúbas no estado do Rio Grande do Norte. Revista Verde 2:33–44.Search in Google Scholar

Bolzani, V.D.S., Serur, L.M., Matos, F.J.A.M., Gottlieb, O.R. (1987) Indole alkaloid evolution in Aspidosperma. Biochem. Syst. Ecol. 15:187–200.10.1016/0305-1978(87)90019-6Search in Google Scholar

Carlile, M.J., Watkinson, S.C., Gooday, G.W. The Fungi, 2nd ed. Academic Press, London, UK, 2001.Search in Google Scholar

Carneiro, J.S., Emmert, L., Sternadt, G.H., Mendes, J.C., Almeida, G.F. (2009) Decay susceptibility of Amazon wood species from Brazil against white rot and brown rot decay fungi. Holzforschung 63:767–772.10.1515/HF.2009.119Search in Google Scholar

Celimene, C.C., Micales, J.A., Ferge, L., Young, R.A. (1999) Efficacy of pinosylvins against white-rot and brown-rot fungi. Holzforschung 53:491–497.10.1515/HF.1999.081Search in Google Scholar

Chi-Yin, H.H., Chen-Loung, C. (1991) Antimicrobial activities of aporphine alkaloids isolated from heartwood and discolored sapwood of liriodendron tulipifera. Holzforschung 45:325–332.10.1515/hfsg.1991.45.5.325Search in Google Scholar

COPANT Standard (1972) 461 – maderas: determinación del peso especifico aparente.Search in Google Scholar

Dix, N.J., Webster, J. (1995) Colonization and decay of wood. In: Fungal Ecology, 1st ed. Ed. Dix, N.J. Springer, Dordrecht, Netherlands. p. 145.10.1007/978-94-011-0693-1_6Search in Google Scholar

Donoso-Fierro, C., Becerra, J., Bustos-Concha, E., Silva, M. (2009) Chelating and antioxidant activity of lignans from Chileanwoods (Cupressaceae). Holzforschung 63:559–563.10.1515/HF.2009.123Search in Google Scholar

Eaton, R.A., Hale, M.D.C. Wood-Decay, Pests and Protection, 1st ed. Chapman & Hall, London, UK; New York, USA, 1993.Search in Google Scholar

Garcez, F.R., Garcez, W.S., Santana, A.L.B.D., Alves, M.M., Falcão, T.L. (2003) Estudo químico de Terminalia fagifolia (Combretaceae). In: 28a Reunião Anual da Sociedade Brasileira de Química Sociedade Brasileira de Química. Poços de Caldas, MG. Anais.Search in Google Scholar

Garcez, F.R., Garcez, W.S., Santana, A.L.B.D., Alves, M.M., Matos, M.F.C., Scaliante, A.M. (2006) Bioactive flavonoids and triterpenes from Terminalia fagifolia (Combretaceae). J. Braz. Chem. Soc. 17:1223–1228.10.1590/S0103-50532006000700005Search in Google Scholar

Gierlinger, N., Jacques, D., Schwanninger, M., Wimmer, R., Hinterstoisser, B., Pâques, L. (2003) Rapid prediction of natural durability of larch heartwood using Fourier transform near-infrared spectroscopy. Can. J. For. Res. 33:1727–1736.10.1139/x03-092Search in Google Scholar

Gilbert, B., Duarte, A.P., Nakagawa, Y., Joule, J.A., Flores, S.E., Aguayo Brissolese, J., Campello, J., Carrazoni, E.P., Owellen, R.J., Blossey, E.C., Brown Jr., K.S., Djerassi, C. (1965) Alkaloid studies-L: the alkaloids of twelve Aspidosperma species. Tetrahedron 21:1141–1166.10.1016/0040-4020(65)80057-6Search in Google Scholar

Ibama (2011) Projeto de Monitoramento do Desmatamento dos Biomas Brasileiros por Satélite – PMDBBS. Available in: <http://siscom.ibama.gov.br/monitora_biomas/PMDBBS-CAATINGA.html>. Accessed 20 August 2017.Search in Google Scholar

Itakura, Y., Habermehl, G., Mebs, D. (1987) Tannins occurring in the toxic Brazilian plant Thiloa glaucocarpa. Toxicon 25:1291–1300.10.1016/0041-0101(87)90007-9Search in Google Scholar

Laks, P.E., McKaig, P.A. (1988) Flavonoid biocides: wood preservatives based on condensed tannins. Holzforschung 42:299–306.10.1515/hfsg.1988.42.5.299Search in Google Scholar

Nascimento, M.S., Santana, A.L.B.D., Maranhão, C.A., Oliveira, L.S., Bieber, L. (2013) Phenolic extractives and natural resistance of wood. Available in: <https://www.intechopen.com/books/biodegradation-life-of-science/phenolic-extractives-and-natural-resistance-of-wood>. Access in: 27 September 2017.Search in Google Scholar

Paes, J.B., Brocco, V.F., Moulin, J.C., Motta, J.P., Alves, R.C. (2015) Efeitos dos extrativos e da densidade na resistência natural de madeiras ao térmita Nasutitermes corniger. Cerne 21:569–578.10.1590/01047760201521041849Search in Google Scholar

Råberg, U., Edlund, M., Terziev, N., Land, C.J. (2017) Testing and evaluation of natural durability of wood in above ground conditions in Europe – an overview. J. Wood Sci. 51:429–440.10.1007/s10086-005-0717-8Search in Google Scholar

Ramage, M.H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T., Shah, D.U., Wu, G., Yu, L., Fleming, P., Densley-Tingley, D., Allwood, J., Dupree, P., Linden, P.F., Scherman, O. (2017) The wood from the trees: the use of timber in construction. Renew. Sust. Energy Rev. 68:333–359.10.1016/j.rser.2016.09.107Search in Google Scholar

Reyes-Chilpa, R., Gómez-Garibay, F., Moreno-Torres, G., Jiménez-Estrada, M., Quiroz-Vásquez, R.I. (1998) Flavonoids and isoflavonoids with antifungal properties from platymiscium yucatanum heartwood. Holzforschung 52:459–462.10.1515/hfsg.1998.52.5.459Search in Google Scholar

Scalbert, A., Cahill, D., Dirol, D., Navarrete, M.A., Teresa Troya, M., Van Leemput, M. (1998) A tannin/copper preservation treatment for wood. Holzforschung 52:133–138.10.1515/hfsg.1998.52.2.133Search in Google Scholar

Schwarze, F.W.M.R. (2007) Wood decay under the microscope. Fungal Biol. Rev. 21:133–170.10.1016/j.fbr.2007.09.001Search in Google Scholar

Sundararaj, R., Shanbhag, R.R., Navegani, H.C., Vijayalakshmi, G. (2015) Natural durability of timbers under Indian environmental conditions – an overview. Int. Biodeterior. Biodegrad. 103:196–214.10.1016/j.ibiod.2015.04.026Search in Google Scholar

Tappi Standard (2007) TAPPI T 204. Cm-07, Solvent extractives of wood and pulp.Search in Google Scholar

Van Acker, J., Militz, H., Stevens, M. (1999) The significance of accelerated laboratory testing methods determining the natural durability of wood. Holzforschung 53:449–458.10.1515/HF.1999.075Search in Google Scholar

Wong, A.H.H., Kim, Y.S., Singh, A.P., Ling, W.C. (2005) Natural durability of tropical species with emphasis on Malaysian hardwoods – variations and prospects. Int. Res. Group Wood Prot. 1:1–33.Search in Google Scholar

Received: 2018-03-20
Accepted: 2018-07-24
Published Online: 2018-08-22
Published in Print: 2019-02-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.6.2024 from https://www.degruyter.com/document/doi/10.1515/hf-2018-0051/html
Scroll to top button