Skip to main content

Advertisement

Log in

Smart design of universally decorated nanoparticles for drug delivery applications driven by active transport

  • Regular Article - Living Systems
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Targeting the cell nucleus remains a challenge for drug delivery. Here, we present a universal platform for the smart design of nanoparticle (NP) decoration that is based on: (i) a spacer polymer, commonly biotin-polyethylene-glycol-thiol, whose grafting density and molecular weight can be tuned for optimized performance, and (ii) protein binding peptides, such as cell penetrating peptides (CPPs), cancer-targeting peptides, or nuclear localization signal (NLS) peptides, that are linked to the PEG free-end by universal chemistry. We manifested our platform with two different bromo-acetamide (Br-Ac) modified NLSs. We used cell extract-based and live cell assays to demonstrate the recruitment of dynein motor proteins, which drive the NP active transport toward the nucleus, and the enhancement of cellular and nuclear entry, manifesting the properties of NLS as a CPP. Our control of the NP decoration scheme, and the modularity of our platform, carry great advantages for nano-carrier design for drug delivery applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

B-PEG-SH:

 biotin-polyethylene-glycol-thiol

BSA:

Bovine serum albumin

Br-Ac:

Bromo-acetamide

CE:

Hela cells extract

CPP:

Cell penetrating peptides

CPT:

Cancer-targeting peptides

MPBP:

Motor protein binding peptide

MT:

Microtubule

Ne-Avidin:

 Neutravidin

NLS:

Nuclear localization signals

NP:

Nanoparticles

TAMRA:

Tetramethylrhodamine

References

  1. W.H. De Jong, P.J. Borm, Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed. 3(2), 133 (2008)

    Article  Google Scholar 

  2. J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, Rodriguez-Torres M. del Pilar, L.S. Acosta-Torres, L.A. Diaz-Torres, R. Grillo, M.K. Swamy, S. Sharma et al., Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology 16(1), 1–33 (2018)

    Article  Google Scholar 

  3. O.K. Nag, J.B. Delehanty, Active cellular and subcellular targeting of nanoparticles for drug delivery. Pharmaceutics 11(10), 543 (2019)

    Article  Google Scholar 

  4. Y.-P. Chen, C.-T. Chen, T.-P. Liu, F.-C. Chien, S.-H. Wu, P. Chen, C.-Y. Mou, Catcher in the rel: nanoparticles-antibody conjugate as NF-\(\kappa \)B nuclear translocation blocker. Biomaterials 246, 119997 (2020)

    Article  Google Scholar 

  5. J.L. Vivero-Escoto, I.I. Slowing, B.G. Trewyn, V.S.-Y. Lin, Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small 6(18), 1952–1967 (2010)

    Article  Google Scholar 

  6. C.T. de Ilarduya, Y. Sun, N. Düzgüneş, Gene delivery by lipoplexes and polyplexes. Eur. J. Pharm. Sci. 40(3), 159–170 (2010)

    Article  Google Scholar 

  7. G. Sarfati, T. Dvir, M. Elkabets, R.N. Apte, S. Cohen, Targeting of polymeric nanoparticles to lung metastases by surface-attachment of YIGSR peptide from laminin. Biomaterials 32(1), 152–161 (2011)

    Article  Google Scholar 

  8. N. Nishiyama, K. Kataoka, Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Ther. 112(3), 630–648 (2006)

  9. I. Cohen-Erez, H. Rapaport, Negatively charged polypeptide-peptide nanoparticles showing efficient drug delivery to the mitochondria. Colloids Surf. B 162, 186–192 (2018)

    Article  Google Scholar 

  10. H. Tian, J. Chen, X. Chen, Nanoparticles for gene delivery. Small 9(12), 2034–2044 (2013)

    Article  Google Scholar 

  11. S.C. McBain, H.H. Yiu, J. Dobson, Magnetic nanoparticles for gene and drug delivery. Int. J. Nanomed. 3(2), 169 (2008)

    Google Scholar 

  12. J. Panyam, V. Labhasetwar, Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55(3), 329–347 (2003)

    Article  Google Scholar 

  13. T. Vangijzegem, D. Stanicki, S. Laurent, Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin. Drug Deliv. 16(1), 69–78 (2019)

    Article  Google Scholar 

  14. V. Balan, I.A. Petrache, M.I. Popa, M. Butnaru, E. Barbu, J. Tsibouklis, L. Verestiuc, Biotinylated chitosan-based SPIONs with potential in blood-contacting applications. J. Nanoparticle Res. 14(2), 1–14 (2012)

    Article  Google Scholar 

  15. P. Chandna, J.J. Khandare, E. Ber, L. Rodriguez-Rodriguez, T. Minko, Multifunctional tumor-targeted polymer-peptide-drug delivery system for treatment of primary and metastatic cancers. Pharm. Res. 27(11), 2296–2306 (2010)

    Article  Google Scholar 

  16. H. Cohen, R. Levy, J. Gao, I. Fishbein, V. Kousaev, S. Sosnowski, S. Slomkowski, G. Golomb, Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther. 7(22), 1896–1905 (2000)

    Article  Google Scholar 

  17. Z. Cao, D. Li, J. Wang, M. Xiong, X. Yang, Direct nucleus-targeted drug delivery using cascade phe/photo dual-sensitive polymeric nanocarrier for cancer therapy. Small 15(36), 1902022 (2019)

    Article  Google Scholar 

  18. Y. Luo, Q. Wang, Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int. J. Biol. Macromol. 64, 353–367 (2014)

    Article  Google Scholar 

  19. M.T. de Pinho Favaro, U. Unzueta, M. de Cabo, A. Villaverde, N. Ferrer-Miralles, A.R. Azzoni, Intracellular trafficking of a dynein-based nanoparticle designed for gene delivery. Eur. J. Pharm. Sci. 112, 71–78 (2018)

    Article  Google Scholar 

  20. R. Chintakunta, N. Buaron, N. Kahn, A. Moriah, R. Lifshiz, R. Goldbart, T. Traitel, B. Tyler, H. Brem, J. Kost, Synthesis, characterization, and self-assembly with plasmid DNA of a quaternary ammonium derivative of pectic galactan and its fluorescent labeling for bioimaging applications. Carbohyd. Polym. 150, 308–318 (2016)

    Article  Google Scholar 

  21. R. Sieradzki, T. Traitel, R. Goldbart, S. Geresh, J. Kost, Tailoring quaternized starch as a non-viral carrier for gene delivery applications. Polym. Adv. Technol. 25(5), 552–561 (2014)

    Article  Google Scholar 

  22. I. Dalmau-Mena, P. Del Pino, B. Pelaz, M.Á. Cuesta-Geijo, I. Galindo, M. Moros, M. Jesús, C. Alonso, Nanoparticles engineered to bind cellular motors for efficient delivery. J. Nanobiotechnology 16(1), 1–13 (2018)

    Article  Google Scholar 

  23. R. Vankayala, C.-L. Kuo, K. Nuthalapati, C.-S. Chiang, K.C. Hwang, Nucleus-targeting gold nanoclusters for simultaneous in vivo fluorescence imaging, gene delivery, and NIR-light activated photodynamic therapy. Adv. Func. Mater. 25(37), 5934–5945 (2015)

    Article  Google Scholar 

  24. P. Ghosh, G. Han, M. De, C.K. Kim, V.M. Rotello, Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008)

    Article  Google Scholar 

  25. A. Khan, R. Rashid, G. Murtaza, A. Zahra, Gold nanoparticles: synthesis and applications in drug delivery. Trop. J. Pharm. Res. 13(7), 1169–1177 (2014)

    Article  Google Scholar 

  26. E. Korin, T. Bejerano, S. Cohen, Galnac bio-functionalization of nanoparticles assembled by electrostatic interactions improves siRNA targeting to the liver. J. Control. Release 266, 310–320 (2017)

    Article  Google Scholar 

  27. N.H. Abd Ellah, S.A. Abouelmagd, Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opin. Drug Deliv. 14(2), 201–214 (2017)

    Article  Google Scholar 

  28. W. Yu, Y. Zhan, B. Xue, Y. Dong, Y. Wang, P. Jiang, A. Wang, Y. Sun, Y. Yang, Highly efficient cellular uptake of a cell-penetrating peptide (CPP) derived from the capsid protein of porcine circovirus type 2. J. Biol. Chem. 293(39), 15221–15232 (2018)

    Article  Google Scholar 

  29. D. Derossi, A.H. Joliot, G. Chassaing, A. Prochiantz, The third helix of the antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269(14), 10444–10450 (1994)

    Article  Google Scholar 

  30. B. Chen, Q. Liu, Y. Zhang, L. Xu, X. Fang, Transmembrane delivery of the cell-penetrating peptide conjugated semiconductor quantum dots. Langmuir 24(20), 11866–11871 (2008)

    Article  Google Scholar 

  31. G. Ruan, A. Agrawal, A.I. Marcus, S. Nie, Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J. Am. Chem. Soc. 129(47), 14759–14766 (2007)

    Article  Google Scholar 

  32. Q. He, X. Jiang, X. Zhou, J. Weng, Targeting cancers through TCR-peptide/MHC interactions. J. Hematol. Oncol 12(1), 1–17 (2019)

    Article  Google Scholar 

  33. I. Gessner, I. Neundorf, Nanoparticles modified with cell-penetrating peptides: conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy. Int. J. Mol. Sci. 21(7), 2536 (2020)

    Article  Google Scholar 

  34. M. Lindgren, M. Hällbrink, A. Prochiantz, Ü. Langel, Cell-penetrating peptides. Trends Pharmacol. Sci. 21(3), 99–103 (2000)

    Article  Google Scholar 

  35. E.L. Snyder, S.F. Dowdy, Cell penetrating peptides in drug delivery. Pharm. Res. 21(3), 389–393 (2004)

    Article  Google Scholar 

  36. D. Zhu, H. Yan, Z. Zhou, J. Tang, X. Liu, R. Hartmann, W.J. Parak, N. Feliu, Y. Shen, Detailed investigation on how the protein corona modulates the physicochemical properties and gene delivery of polyethylenimine (PEI) polyplexes. Biomater. Sci. 6(7), 1800–1817 (2018)

    Article  Google Scholar 

  37. A. Erazo-Oliveras, N. Muthukrishnan, R. Baker, T.-Y. Wang, J.-P. Pellois, Improving the endosomal escape of cell-penetrating peptides and their cargos: strategies and challenges. Pharmaceuticals 5(11), 1177–1209 (2012)

    Article  Google Scholar 

  38. E. Oh, J.B. Delehanty, K.E. Sapsford, K. Susumu, R. Goswami, J.B. Blanco-Canosa, P.E. Dawson, J. Granek, M. Shoff, Q. Zhang et al., Cellular uptake and fate of pegylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. ACS Nano 5(8), 6434–6448 (2011)

    Article  Google Scholar 

  39. S. Modi, B.D. Anderson, Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method. Mol. Pharm. 10(8), 3076–3089 (2013)

    Article  Google Scholar 

  40. G. Tosi, L. Costantino, B. Ruozi, F. Forni, M.A. Vandelli, Polymeric nanoparticles for the drug delivery to the central nervous system. Expert Opin. Drug Deliv. 5(2), 155–174 (2008)

    Article  Google Scholar 

  41. B. Haley, E. Frenkel, Nanoparticles for drug delivery in cancer treatment, in Urologic Oncology: Seminars and original investigations, vol. 26 (Elsevier, 2008), pp. 57–64

  42. S.P. Gross, M.A. Welte, S.M. Block, E.F. Wieschaus, Dynein-mediated cargo transport in vivo: a switch controls travel distance. J. Cell Biol. 148(5), 945–956 (2000)

    Article  Google Scholar 

  43. I. Neri, N. Kern, A. Parmeggiani, Modeling cytoskeletal traffic: an interplay between passive diffusion and active transport. Phys. Rev. Lett. 110(9), 098102 (2013)

    Article  ADS  Google Scholar 

  44. J. Suh, D. Wirtz, J. Hanes, Efficient active transport of gene nanocarriers to the cell nucleus. Proc. Natl. Acad. Sci. 100(7), 3878–3882 (2003)

    Article  ADS  Google Scholar 

  45. D. McDonald, M.A. Vodicka, G. Lucero, T.M. Svitkina, G.G. Borisy, M. Emerman, T.J. Hope, Visualization of the intracellular behavior of HIV in living cells. J. Cell Biol. 159(3), 441–452 (2002)

    Article  Google Scholar 

  46. B. Sodeik, Unchain my heart, baby let me go-the entry and intracellular transport of HIV. J. Cell Biol. 159(3), 393 (2002)

    Article  Google Scholar 

  47. K. Radtke, D. Kieneke, A. Wolfstein, K. Michael, W. Steffen, T. Scholz, A. Karger, B. Sodeik, Plus-and minus-end directed microtubule motors bind simultaneously to herpes simplex virus capsids using different inner tegument structures. PLoS Pathog. 6(7), e1000991 (2010)

    Article  Google Scholar 

  48. R.P. Kulkarni, D.D. Wu, M.E. Davis, S.E. Fraser, Quantitating intracellular transport of polyplexes by spatio-temporal image correlation spectroscopy. Proc. Natl. Acad. Sci. 102(21), 7523–7528 (2005)

    Article  ADS  Google Scholar 

  49. R.D. Vale, The molecular motor toolbox for intracellular transport. Cell 112(4), 467–480 (2003)

    Article  Google Scholar 

  50. G.A.C. Blood et al., Human immunodeficiency virus (HIV). Transfusion Med. Hemotherapy 43(3), 203 (2016)

    Article  Google Scholar 

  51. M.J. McConnell, M.J. Imperiale, Biology of adenovirus and its use as a vector for gene therapy. Hum. Gene Ther. 15(11), 1022–1033 (2004)

    Article  Google Scholar 

  52. S.J. King, T.A. Schroer, Dynactin increases the processivity of the cytoplasmic dynein motor. Nat. Cell Biol. 2(1), 20–24 (2000)

    Article  Google Scholar 

  53. K. Dohner, A. Wolfstein, U. Prank, C. Echeverri, D. Dujardin, R. Vallee, B. Sodeik, Function of dynein and dynactin in herpes simplex virus capsid transport. Mol. Biol. Cell 13(8), 2795–2809 (2002)

    Article  Google Scholar 

  54. R. Tréhin, H.P. Merkle, Chances and pitfalls of cell penetrating peptides for cellular drug delivery. Eur. J. Pharm. Biopharm. 58(2), 209–223 (2004)

    Article  Google Scholar 

  55. C. Ciobanasu, U. Kubitscheck, Cell-penetrating peptides targeting and distorting biological membranes, in Surface and Interface Science: Volume 7: Liquid and Biological Interfaces, vol. 7 (2020), pp. 441–469

  56. T. Kon, T. Oyama, R. Shimo-Kon, K. Imamula, T. Shima, K. Sutoh, G. Kurisu, The 2.8 å crystal structure of the dynein motor domain. Nature 484(7394), 345–350 (2012)

    Article  ADS  Google Scholar 

  57. G. Cingolani, J. Bednenko, M.T. Gillespie, L. Gerace, Molecular basis for the recognition of a nonclassical nuclear localization signal by importin \(\beta \). Mol. Cell 10(6), 1345–1353 (2002)

    Article  Google Scholar 

  58. J. Scherer, R.B. Vallee, Adenovirus recruits dynein by an evolutionary novel mechanism involving direct binding to pH-primed hexon. Viruses 3(8), 1417–1431 (2011)

    Article  Google Scholar 

  59. S.A. Kelkar, K.K. Pfister, R.G. Crystal, P.L. Leopold, Cytoplasmic dynein mediates adenovirus binding to microtubules. J. Virol. 78(18), 10122–10132 (2004)

    Article  Google Scholar 

  60. K. Benihoud, P. Yeh, M. Perricaudet, Adenovirus vectors for gene delivery. Curr. Opin. Biotechnol. 10(5), 440–447 (1999)

    Article  Google Scholar 

  61. J. Scherer, J. Yi, R.B. Vallee, Role of cytoplasmic dynein and kinesins in adenovirus transport. FEBS Lett. 594(12), 1838–1847 (2020)

    Article  Google Scholar 

  62. M.D. Knoll, C. Wonodi, Oxford–AstraZeneca COVID-19 vaccine efficacy. Lancet 397(10269), 72–74 (2021)

    Article  Google Scholar 

  63. E.H. Livingston, P.N. Malani, C.B. Creech, The Johnson & Johnson vaccine for COVID-19. JAMA 325(15), 1575–1575 (2021)

    Article  Google Scholar 

  64. M.R. Holm, G.A. Poland, Critical aspects of packaging, storage, preparation, and administration of mRNA and adenovirus-vectored COVID-19 vaccines for optimal efficacy. Vaccine 39(3), 457 (2021)

    Article  Google Scholar 

  65. I. Jones, P. Roy, Sputnik V COVID-19 vaccine candidate appears safe and effective. Lancet 397(10275), 642–643 (2021)

    Article  Google Scholar 

  66. M. Hasanpourghadi, M. Novikov, H.C. Ertl, COVID-19 vaccines based on adenovirus vectors. Trends Biochem. Sci. 46(5), 429–430 (2021)

    Article  Google Scholar 

  67. K. Lundstrom, Viral vectors for COVID-19 vaccine development. Viruses 13(2), 317 (2021)

    Article  Google Scholar 

  68. S. Raha, T. Paunesku, G. Woloschak, Peptide-mediated cancer targeting of nanoconjugates. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnology 3(3), 269–281 (2011)

    Article  Google Scholar 

  69. G. Halbi, I. Fayer, D. Aranovich, S. Gat, S. Bar, V. Erukhimovitch, R. Granek, A. Bernheim-Groswasser, Nano-particles carried by multiple dynein motors self-regulate their number of actively participating motors. Int. J. Mol. Sci. 22(16), 8893 (2021)

    Article  Google Scholar 

  70. M.-M. Fu, E.L. Holzbaur, JIP1 regulates the directionality of app axonal transport by coordinating kinesin and dynein motors. J. Cell Biol. 202(3), 495–508 (2013)

    Article  Google Scholar 

  71. D. Kalderon, B.L. Roberts, W.D. Richardson, A.E. Smith, A short amino acid sequence able to specify nuclear location. Cell 39(3), 499–509 (1984)

    Article  Google Scholar 

  72. H.M. Johnson, P.S. Subramaniam, S. Olsnes, D.A. Jans, Trafficking and signaling pathways of nuclear localizing protein ligands and their receptors. BioEssays 26(9), 993–1004 (2004)

    Article  Google Scholar 

  73. S. Bondalapati, E. Ruvinov, O. Kryukov, S. Cohen, A. Brik, Rapid end-group modification of polysaccharides for biomaterial applications in regenerative medicine. Macromol. Rapid Commun. 35(20), 1754–1762 (2014)

    Article  Google Scholar 

  74. D. Danino, A. Bernheim-Groswasser, Y. Talmon, Digital cryogenic transmission electron microscopy: an advanced tool for direct imaging of complex fluids. Colloids Surf. A 183, 113–122 (2001)

    Article  Google Scholar 

  75. Á.V. Delgado, F. González-Caballero, R. Hunter, L. Koopal, J. Lyklema, Measurement and interpretation of electrokinetic phenomena. J. Colloid Interface Sci. 309(2), 194–224 (2007)

    Article  ADS  Google Scholar 

  76. K.A. Johnson, J.S. Wall, Structure and molecular weight of the dynein ATPase. J. Cell Biol. 96(3), 669–678 (1983)

    Article  Google Scholar 

  77. C. Stringer, T. Wang, M. Michaelos, M. Pachitariu, Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18(1), 100–106 (2021)

    Article  Google Scholar 

  78. G. Bradski, The openCV library. Dr. Dobb’s J. Softw. Tools Prof. Program. 25(11), 120–123 (2000)

    Google Scholar 

  79. S. Van der Walt, J.L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J.D. Warner, N. Yager, E. Gouillart, T. Yu, scikit-image: image processing in python. PeerJ 2, e453 (2014)

    Article  Google Scholar 

  80. N. Contributors, napari: a multi-dimensional image viewer for python. Zenodo 3555620 (2019). https://doi.org/10.5281/zenod

  81. P. Siman, O. Blatt, T. Moyal, T. Danieli, M. Lebendiker, H.A. Lashuel, A. Friedler, A. Brik, Chemical synthesis and expression of the HIV-1 rev protein. ChemBioChem 12(7), 1097–1104 (2011)

    Article  Google Scholar 

  82. A. Bernheim-Groswasser, S. Wiesner, R.M. Golsteyn, M.-F. Carlier, C. Sykes, The dynamics of actin-based motility depend on surface parameters. Nature 417(6886), 308–311 (2002)

    Article  ADS  Google Scholar 

  83. E.A. Bayer, M. Wilchek, Application of avidin-biotin technology to affinity-based separations. J. Chromatogr. A 510, 3–11 (1990)

    Article  Google Scholar 

  84. C. Rosano, P. Arosio, M. Bolognesi, The X-ray three-dimensional structure of avidin. Biomol. Eng. 16(1–4), 5–12 (1999)

    Article  Google Scholar 

  85. H. Lee, R.M. Venable, A.D. MacKerell Jr., R.W. Pastor, Molecular dynamics studies of polyethylene oxide and polyethylene glycol: hydrodynamic radius and shape anisotropy. Biophys. J . 95(4), 1590–1599 (2008)

    Article  Google Scholar 

  86. F. Kienberger, V.P. Pastushenko, G. Kada, H.J. Gruber, C. Riener, H. Schindler, P. Hinterdorfer, Static and dynamical properties of single poly (ethylene glycol) molecules investigated by force spectroscopy. Single Molecules 1(2), 123–128 (2000)

    Article  ADS  Google Scholar 

  87. H. Dobrinski, M. Wilkens, W. Benecke, J. Binder, Flexible microfluidic-device-stamp-system with integrated electrical sensor for real time DNA detection, in 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Proceedings (Cat. No. 00EX451). (IEEE, 2000), pp. 33–35

  88. O. Garbuzenko, Y. Barenholz, A. Priev, Effect of grafted peg on liposome size and on compressibility and packing of lipid bilayer. Chem. Phys. Lipid. 135(2), 117–129 (2005)

    Article  Google Scholar 

  89. P. De Gennes, Model polymers at interfaces, in Physical Basis of Cell–Cell Adhesion (CRC Press, Boca Raton, 1988), pp. 39–60

  90. A. Palm, Raman spectrum of polystyrene. J. Phys. Chem. 55(8), 1320–1324 (1951)

    Article  Google Scholar 

  91. M. Trokter, N. Mücke, T. Surrey, Reconstitution of the human cytoplasmic dynein complex. Proc. Natl. Acad. Sci. 109(51), 20895–20900 (2012)

    Article  ADS  Google Scholar 

  92. S.L. Reck-Peterson, R.D. Vale, A. Gennerich, Motile properties of cytoplasmic dynein, in Handbook of Dynein (2012), pp. 145–172

  93. M.M. Elshenawy, J.T. Canty, L. Oster, L.S. Ferro, Z. Zhou, S.C. Blanchard, A. Yildiz, Cargo adaptors regulate stepping and force generation of mammalian dynein-dynactin. Nat. Chem. Biol. 15(11), 1093–1101 (2019)

  94. L. Urnavicius, C.K. Lau, M.M. Elshenawy, E. Morales-Rios, C. Motz, A. Yildiz, A.P. Carter, Cryo-EM shows how dynactin recruits two dyneins for faster movement. Nature 554(7691), 202–206 (2018)

  95. P.A. Silver, How proteins enter the nucleus. Cell 64(3), 489–497 (1991)

    Article  Google Scholar 

  96. D. Görlich, Transport into and out of the cell nucleus. EMBO J. 17(10), 2721–2727 (1998)

    Article  Google Scholar 

  97. R. Wang, M.G. Brattain, The maximal size of protein to diffuse through the nuclear pore is larger than 60 kda. FEBS Lett. 581(17), 3164–3170 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This research was initially supported (to A.B, R.G., and A.B.-G.) by the Focal Technological Area Program of the Israeli National Nanotechnology Initiative (INNI). The authors thank Dr. Einat Roth Nativ and Dr. Alexander Upcher for NP imaging by cryo-TEM.

Author information

Authors and Affiliations

Authors

Contributions

G.H. Performed experiments, analyzed the experimental results, prepared the Figures and Movies, and wrote the manuscript. I.F. Performed computer simulations and developed analytical tools for data quantification of NP active transport. D.A. Designed, performed, and analyzed the WB experiments. S.G. Rational design and development of the NP cargo. M.J.P. Performed and analyzed the Raman experiments. D.N. Performed the live cell experiments. D.S.S. Image analysis of the live cell experiments. A.B. Designed and synthesized the NLS peptides. R.G. Developed the theoretical model and computer simulations, and wrote the manuscript. A.B.G. Rational design and development of the NP cargo, developed the analytical tools for data quantification and NP active transport, and wrote the manuscript.

Corresponding author

Correspondence to Anne Bernheim-Groswasser.

Additional information

This article is dedicated to Fyl Pincus whose scientific achievements and contributions in condensed and soft matter, polymers, polyelectrolytes, colloids, electrostatic effects, and biological physics had a huge impact on our entire community, and on Rony and Myself, in particular. Festschrift in honor of Philip (Fyl) Pincus. Guest editors: Jean-Marc Di Meglio, David Andelman, and Cyrus R. Safinya.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 2437 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halbi, G., Fayer, I., Aranovich, D. et al. Smart design of universally decorated nanoparticles for drug delivery applications driven by active transport. Eur. Phys. J. E 46, 74 (2023). https://doi.org/10.1140/epje/s10189-023-00331-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00331-5

Navigation