Skip to main content
Log in

On the computational aspects of comminution in discrete element method

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

In this paper, computational aspects of crushing/comminution of granular materials are addressed. For crushing, maximum tensile stress-based criterion is used. Crushing model in discrete element method (DEM) is prone to problems of mass conservation and reduction in critical time step. The first problem is addressed by using an iterative scheme which, depending on geometric voids, recovers mass of a particle. In addition, a global–local framework for DEM problem is proposed which tends to alleviate the local unstable motion of particles and increases the computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. McDowell G, Harireche O (2002) Discrete element modelling of soil particle fracture. Geotech-Lond 52(2):131–136

    Article  Google Scholar 

  2. Cheng Y, Nakata Y, Bolton M (2003) Discrete element simulation of crushable soil. Geotechnique 53(7):633–642

    Article  Google Scholar 

  3. Bolton M, Nakata Y, Cheng Y (2008) Micro-and macro-mechanical behaviour of dem crushable materials. Géotechnique 58(6):471–480

    Article  Google Scholar 

  4. Ben-Nun O, Einav I (2008) A refined DEM study of grain size reduction in uniaxial compression. In: The 12th international conference of international association for computer methods and advances in geomechanics (IACMAG), Goa, India, pp 702–708

  5. Marketos G, Bolton MD (2009) Compaction bands simulated in discrete element models. J Struct Geol 31(5):479–490

    Article  Google Scholar 

  6. Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  7. Gladwell GM (1980) Contact problems in the classical theory of elasticity. Springer Science and Business Media, Berlin

    Book  MATH  Google Scholar 

  8. Johnson KL, Johnson KL (1987) Contact mechanics. Cambridge university press, Cambridge

    MATH  Google Scholar 

  9. Mindlin RD (1949) Compliance of elastic bodies in contact. J Appl Mech 16:259–268

    MathSciNet  MATH  Google Scholar 

  10. Åström J, Herrmann H (1998) Fragmentation of grains in a two-dimensional packing. Eur Phys J B-Condens Matter Complex Syst 5(3):551–554

    Article  Google Scholar 

  11. Tsoungui O, Vallet D, Charmet J-C (1999) Numerical model of crushing of grains inside two-dimensional granular materials. Powder Technol 105(1):190–198

    Article  Google Scholar 

  12. McDowell GR, de Bono JP (2013) On the micro mechanics of one-dimensional normal compression. Géotechnique 63(11):895

    Article  Google Scholar 

  13. Ciantia M, Arroyo Alvarez de Toledo M, Calvetti F, Gens Solé A (2015) An approach to enhance efficiency of dem modelling of soils with crushable grains. Géotechnique 65(2):91–110

    Article  Google Scholar 

  14. Russell AR, Wood DM (2009) Point load tests and strength measurements for brittle spheres. Int J Rock Mech Min Sci 46(2):272–280

  15. Hiramatsu Y, Oka Y (1966) Determination of the tensile strength of rock by a compression test of an irregular test piece, In: International journal of rock mechanics and mining sciences and geomechanics abstracts, Vol. 3, Elsevier, pp 89–90

  16. Cil M, Alshibli K (2012) 3D assessment of fracture of sand particles using discrete element method. Géotechnique Lett 2:161–166

    Article  Google Scholar 

  17. McDowell G, Bolton M (1998) On the micromechanics of crushable aggregates. Géotechnique 48(5):667–679

    Article  Google Scholar 

  18. Jaeger J, Hoskins E (1966) Rock failure under the confined brazilian test. J Geophys Res 71(10):2651–2659

    Article  Google Scholar 

  19. Russell AR, Wood DM, Kikumoto M (2009) Crushing of particles in idealised granular assemblies. J Mech Phys Solids 57(8):1293–1313

    Article  MATH  Google Scholar 

  20. Weibull W (1951) A statistical distribution function of wide application. J Appl Mech 18:293–297

    MATH  Google Scholar 

  21. de Bono JP, McDowell GR (2014) Dem of triaxial tests on crushable sand. Granul Matter 16(4):551–562

    Article  Google Scholar 

  22. Borkovec M, De Paris W, Peikert R (1994) The fractal dimension of the apollonian sphere packing. Fractals 2(04):521–526

    Article  MathSciNet  MATH  Google Scholar 

  23. Wellmann C (2011) A two-scale model of granular materials using a coupled DE-FE approach. Phd thesis, Inst für Kontinuumsmechanik, Gottfried Wilhelm Leibniz Universität Hannover

  24. Einav I (2007) Fracture propagation in brittle granular matter, In: Proceedings of the royal society of London A: mathematical, physical and engineering sciences, Vol. 463, The Royal Society, pp 3021–3035

  25. Yang Z, Jardine R, Zhu B, Foray P, Tsuha C (2010) Sand grain crushing and interface shearing during displacement pile installation in sand. Géotechnique 60(6):469–482

    Article  Google Scholar 

  26. Verlet L (1967) Computer” experiments” on classical fluids. I. thermodynamical properties of Lennard-Jones molecules. Phys Rev 159(1):98

    Article  Google Scholar 

Download references

Acknowledgements

The support of the DFG (Deutsche Forschungsgemeinschaft) under grant number WR 19/55-1 and DU 405/9-1 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsin Ali Chaudry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudry, M.A., Wriggers, P. On the computational aspects of comminution in discrete element method. Comp. Part. Mech. 5, 175–189 (2018). https://doi.org/10.1007/s40571-017-0161-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-017-0161-8

Keywords

Navigation