Skip to main content

Advertisement

Log in

Organic amendments minimize the migration of potentially toxic elements in soil–plant system in degraded agricultural lands

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The contamination of agricultural soil with potentially toxic elements (PTEs) such as cadmium (Cd), lead (Pb), chromium (Cr), zinc (Zn), nickel (Ni), and copper (Cu) persists and intensifies in food crops posing a risk to human health. When used as effective soil manures, biomass conversion to organic amendments can help to deal with this deteriorating problem and, at the same time, remediate PTEs within contaminated soil. The present study compared the potential of orange peel-derived biochar (OPDBC) and poultry manure (PM) toward reducing the bioavailability of PTEs when they are applied to degraded agricultural soil (DAS). It further evaluated PTEs bioaccumulation in okra (Abelmoschus esculentus L.) and the associated health risks. The DAS was amended with OPDBC and PM at 1%, 3%, and 5% application rates, and okra was grown in these modified soils in pots (2.5 kg soils each). Compared to control (contaminated soil), OPDBC treatments significantly reduced Cd availability, reduced Cd uptake to plants (21–37%), followed by Ni (18–27%), and increased okra plant biomass (15–39%) and fruits weight (40–93%). PM effectiveness was lower than OPDBC and reduced Cd uptake (8–33%) and increased vegetative biomass and fruit yield (3–22% and 13–33%, respectively). OPDBC 5% demonstrated the best results in terms of immobilization and reduction of Cd uptake by plants (37%) and fruits (41%). The contamination factor and pollution load index (PLI) of PTEs showed low pollution level (PLI < 1) in terms of PTEs except Cd, in OPDBC treatments, as compared to PM and control. When compared to other PTEs, the Cd bioavailability in okra fruits decreased with 5% application rate of OPDBC. In the current study, OPDBC5 decreased the daily intake and health risk index (HRI˂1) of Cd and other selected PTEs. The total hazard index (THI) values of selected PTEs were relatively lower for the adults than the children, thereby reduced by OPDBC and PM applications, while OPDBC5 reduced the incremental lifetime cancer risk (ILTCR) of Cd from (25–41%) via okra fruits consumption for both the adults and children when compared with 1%, 3%, and control treatments. The study results show that among amendments, orange peel waste conversion to biochar as OPDBC amendment and its addition to DAS should be a viable alternate method that could mitigate the health risk by remediating and immobilizing the PTEs like Cd and minimize its subsequent accumulation in vegetables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

Potentially Toxic Elements:

PTEs

Orange Peel-Derived Biochar:

OPDBC

Poultry Manure:

PM

Degraded Agricultural Soil:

DAS

Contamination Factor:

CF

Pollution Load Index:

PLI

Concentration Index:

CI

Enrichment factor:

EF

Daily Intake of Metal:

DIM

Total Hazard Index:

THI

Incremental Lifetime Cancer Risk:

ILTCR

Cancer Slope Factors:

CSF

Integrated Risk Information System:

IRIS

State Environmental Protection Administration:

SEPA

References

  1. Ifon BE, Togbé ACF, Tometin LAS et al (2019) Metal-contaminated soil remediation: phytoremediation, chemical leaching and electrochemical remediation. Metals in Soil-Contamination and Remediation. IntechOpen, London, pp 534–554

    Google Scholar 

  2. Pan L-b, Ma J, Wang X-l et al (2016) Heavy metals in soils from a typical county in Shanxi Province, China: levels, sources and spatial distribution. Chemosphere 148:248–254

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Nawab J, Khan S, Aamir M et al (2016) Organic amendments impact the availability of heavy metal (loid) s in mine-impacted soil and their phytoremediation by Penisitum americanum and Sorghum bicolor. Environ Sci Pollut Res 23(3):2381–2390

    Article  CAS  Google Scholar 

  4. Chen D, Guo H, Li R et al (2016) Low uptake affinity cultivars with biochar to tackle Cd-tainted rice—a field study over four rice seasons in Hunan, China. Sci Total Environ 541:1489–1498

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Nawab J, Khan S, Shah MT et al (2016) Heavy metal bioaccumulation in native plants in chromite impacted sites: A search for effective remediating plant species. Clean-Soil Air Water 44(1):37–46

    Article  CAS  Google Scholar 

  6. Nawab J, Farooqi S, Xiaoping W et al (2018) Levels, dietary intake, and health risk of potentially toxic metals in vegetables, fruits, and cereal crops in Pakistan. Environ Sci Pollut Res 25(6):5558–5571

    Article  CAS  Google Scholar 

  7. Khan TF, Salma MU, Hossain SA (2018) Impacts of different sources of biochar on plant growth characteristics. Am J Plant Sci 9(9):1922–1934

    Article  CAS  Google Scholar 

  8. Ding Q, Cheng G, Wang Y et al (2017) Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions. Sci Total Environ 578:577–585

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Qayyum MF, ur Rehman MZ, Ali S, et al (2017) Residual effects of monoammonium phosphate, gypsum and elemental sulfur on cadmium phytoavailability and translocation from soil to wheat in an effluent irrigated field. Chemosphere 174:515–523

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Lajayer BA, Ghorbanpour M, Nikabadi S (2017) Heavy metals in contaminated environment: destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicol Environ Saf 145:377–390

    Article  Google Scholar 

  11. Asgari Lajayer B, Khadem Moghadam N, Maghsoodi MR et al (2019) Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: mechanisms and efficiency improvement strategies. Environ Sci Pollut Res 26(9):8468–8484

    Article  CAS  Google Scholar 

  12. Al Mamun S, Chanson G, Benyas E et al (2016) Municipal composts reduce the transfer of Cd from soil to vegetables. Environ Pollut 213:8–15

    Article  CAS  PubMed  Google Scholar 

  13. Zheng R, Sun G, Li C et al (2017) Mitigating cadmium accumulation in greenhouse lettuce production using biochar. Environ Sci Pollut Res 24(7):6532–6542

    Article  CAS  Google Scholar 

  14. Lajayer BA, Najafi N, Moghiseh E et al (2019) Micronutrient and heavy metal concentrations in basil plant cultivated on irradiated and non-irradiated sewage sludge-treated soil and evaluation of human health risk. Regul Toxicol Pharmac 104:141–150

    Article  Google Scholar 

  15. Khan A, Khan S, Khan MA et al (2015) The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environ Sci Pollut Res 22(18):13772–13799

    Article  CAS  Google Scholar 

  16. Nawab J, Li G, Khan S et al (2016) Health risk assessment from contaminated foodstuffs: a field study in chromite mining-affected areas northern Pakistan. Environ Sci Pollut Res 23(12):12227–12236

    Article  Google Scholar 

  17. Cao S, Duan X, Zhao X et al (2016) Health risks of children’s cumulative and aggregative exposure to metals and metalloids in a typical urban environment in China. Chemosphere 147:404–411

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Han SS, Kim M, Lee SM et al (2013) Cadmium exposure induces hematuria in Korean adults. Environ Res 124:23–27

    Article  CAS  PubMed  Google Scholar 

  19. Satarug S, Vesey DA, Gobe GC (2017) Health risk assessment of dietary cadmium intake: do current guidelines indicate how much is safe? Environ Health Perspect 125(3):284–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Muhammad S, Shah MT, Khan S (2011) Heavy metal concentrations in soil and wild plants growing around Pb–Zn sulfide terrain in the Kohistan region, northern Pakistan. Microchem J 99(1):67–75

    Article  CAS  Google Scholar 

  21. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68(1):167–182

    Article  PubMed  Google Scholar 

  22. Hussain Z, Alam M, Khan MA et al (2020) Bioaccumulation of potentially toxic elements in spinach grown on contaminated soils amended with organic fertilizers and their subsequent human health risk. Arab J Geosci 13(18):1–9

    Article  Google Scholar 

  23. Khan AZ, Khan S, Ayaz T et al (2020) Popular wood and sugarcane bagasse biochars reduced uptake of chromium and lead by lettuce from mine-contaminated soil. Environ Pollut 263:114446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Khan S, Waqas M, Ding F et al (2015) The influence of various biochars on the bioaccessibility and bioaccumulation of PAHs and potentially toxic elements to turnips (Brassica rapa L.). J Hazard Mater 300:243–253

    Article  CAS  PubMed  Google Scholar 

  25. Ok YS, Chang SX, Gao B et al (2015) SMART biochar technology—a shifting paradigm towards advanced materials and healthcare research. Environ Technol Innov 4:206–209

    Article  Google Scholar 

  26. Nawab J, Khan N, Ahmed R et al (2019) Influence of different organic geo-sorbents on Spinacia oleracea grown in chromite mine-degraded soil: a greenhouse study. J Soils Sediments 19(5):2417–2432

    Article  CAS  Google Scholar 

  27. Qi F, Lamb D, Naidu R et al (2018) Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar. Sci Total Environ 610:1457–1466

    Article  ADS  PubMed  Google Scholar 

  28. Qi F, Dong Z, Lamb D et al (2017) Effects of acidic and neutral biochars on properties and cadmium retention of soils. Chemosphere 180:564–573

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Das SK, Ghosh GK (2022) Hydrogel-biochar composite for agricultural applications and controlled release fertilizer: A step towards pollution free environment. Energy 242:122977

    Article  CAS  Google Scholar 

  30. Abbasi MK, Anwar AA (2015) Ameliorating effects of biochar derived from poultry manure and white clover residues on soil nutrient status and plant growth promotion-greenhouse experiments. PLoS ONE 10(6):e0131592

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li G, Khan S, Ibrahim M et al (2018) Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium. J Hazard Mater 348:100–108

    Article  CAS  PubMed  Google Scholar 

  32. Amin M, Alazba A, Shafiq M (2017) Effective adsorption of methylene blue dye using activated carbon developed from the rosemary plant: isotherms and kinetic studies. Desalination Water Treat 74:336–345

    Article  CAS  Google Scholar 

  33. Chi T, Zuo J, Liu F (2017) Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar. Front Environ Sci Eng 11(2):1–8

    Article  ADS  CAS  Google Scholar 

  34. Yu H, Zou W, Chen J et al (2019) Biochar amendment improves crop production in problem soils: A review. J Environ Manag 232:8–21

    Article  CAS  Google Scholar 

  35. Nobaharan K, Abtahi A, Asgari Lajayer B et al (2022) Effects of biochar dose on cadmium accumulation in spinach and its fractionation in a calcareous soil. Arab J Geosci 15(4):1–14

    Article  Google Scholar 

  36. Ghodszad L, Reyhanitabar A, Maghsoodi MR et al (2021) Biochar affects the fate of phosphorus in soil and water: a critical review. Chemosphere 283:131176

    Article  CAS  PubMed  Google Scholar 

  37. Das SK, Ghosh GK (2021) Developing biochar-based slow-release NPK fertilizer for controlled nutrient release and its impact on soil health and yield. Biomass Convers Biorefin 11:1–13

    Google Scholar 

  38. Ahmad M, Lee SS, Lee SE et al (2017) Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils. J Soils Sediments 17(3):717–730

    Article  CAS  Google Scholar 

  39. Hussain M, Farooq M, Nawaz A et al (2017) Biochar for crop production: potential benefits and risks. J Soils Sediments 17(3):685–716

    Article  CAS  Google Scholar 

  40. Borchard N, Wolf A, Laabs V et al (2012) Physical activation of biochar and its meaning for soil fertility and nutrient leaching–a greenhouse experiment. Soil Use Manag 28(2):177–184

    Article  Google Scholar 

  41. Lu K, Yang X, Shen J et al (2014) Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agric Ecosyst Environ 191:124–132

    Article  CAS  Google Scholar 

  42. Beesley L, Moreno-Jiménez E, Gomez-Eyles JL (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158(6):2282–2287

    Article  CAS  PubMed  Google Scholar 

  43. Kamiloglu S, Capanoglu E (2014) In vitro gastrointestinal digestion of polyphenols from different molasses (pekmez) and leather (pestil) varieties. Int J Food Sci 49(4):1027–1039

    Article  CAS  Google Scholar 

  44. McGrath S, Maguire RO, Tracy BF et al (2010) Improving soil nutrition with poultry litter application in low-input forage systems. J Agron 102(1):48–54

    Article  Google Scholar 

  45. Adeli A, Tewolde H, Sistani K et al (2009) Broiler litter fertilization and cropping system impacts on soil properties. J Agron 101(6):1304–1310

    Article  CAS  Google Scholar 

  46. Oladipo OG, Olayinka A, Awotoye OO (2016) Maize (Zea mays L.) performance in organically amended mine site soils. J Environ Manag 181:435–442

    Article  CAS  Google Scholar 

  47. Wu Y-J, Zhou H, Zou Z-J et al (2016) A three-year in-situ study on the persistence of a combined amendment (limestone+ sepiolite) for remedying paddy soil polluted with heavy metals. Ecotoxicol Environ Saf 130:163–170

    Article  CAS  PubMed  Google Scholar 

  48. Yang X, Liu J, McGrouther K et al (2016) Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ Sci Pollut Res 23(2):974–984

    Article  CAS  Google Scholar 

  49. Esmaeilzadeh D, Razavi BM, Hosseinzadeh H (2020) Effect of Abelmoschus esculentus (okra) on metabolic syndrome: A review. Phytother Res 34(9):2192–2202

    Article  CAS  PubMed  Google Scholar 

  50. Chindo S, Agbaji E, Amoniyi K (2016) Determinatioon of some heavy metals in dumpsite soil and Abelmoschus esculentus grown near dumpsites in Kafanchan metropolis, Kaduna state, Nigeria. Ethiop J Environ Stud Manag 9(5):641–652

    Article  Google Scholar 

  51. Amusan A, Ige D, Olawale R (2005) Characteristics of soils and crops’ uptake of metals in municipal waste dump sites in Nigeria. Hum Ecol 17(3):167–171

    Article  Google Scholar 

  52. Srivastava S, Chopra A (2014) Irrigational impact of distillery effluent on Abelmoschus esculentus L. Okra with special reference to heavy metals. Environ Monit Asses 186(7):4169–4179

    Article  CAS  Google Scholar 

  53. Nawab J, Ghani J, Khan S et al (2018) Minimizing the risk to human health due to the ingestion of arsenic and toxic metals in vegetables by the application of biochar, farmyard manure and peat moss. J Environ Manag 214:172–183

    Article  CAS  Google Scholar 

  54. Waqas M, Li G, Khan S et al (2015) Application of sewage sludge and sewage sludge biochar to reduce polycyclic aromatic hydrocarbons (PAH) and potentially toxic elements (PTE) accumulation in tomato. Environ Sci Pollut Res 22(16):12114–12123

    Article  CAS  Google Scholar 

  55. Shah MT, Begum S, Khan S (2010) Pedo and biogeochemical studies of mafic and ultramfic rocks in the Mingora and Kabal areas, Swat, Pakistan. Environ Earth Sci 60(5):1091–1102

    Article  ADS  CAS  Google Scholar 

  56. Mmolawa KB, Likuku AS, Gaboutloeloe GK (2011) Assessment of heavy metal pollution in soils along major roadside areas in Botswana. Afr J Environ Sci Technol 5(3):186–196

    CAS  Google Scholar 

  57. Muhammad S, Shah MT, Khan S (2011) Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchem J 98(2):334–343

    Article  CAS  Google Scholar 

  58. Cabrera F, Clemente L, Barrientos ED et al (1999) Heavy metal pollution of soils affected by the Guadiamar toxic flood. Sci Total Environ 242(1–3):117–129

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Singh A, Sharma RK, Agrawal M et al (2010) Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem Toxicol 48(2):611–619

    Article  CAS  PubMed  Google Scholar 

  60. Khan K, Lu Y, Khan H et al (2013) Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food Chem Toxicol 58:449–458

    Article  CAS  PubMed  Google Scholar 

  61. Khan S, Reid BJ, Li G et al (2014) Application of biochar to soil reduces cancer risk via rice consumption: a case study in Miaoqian village, Longyan, China. Environ Int 68:154–161

    Article  CAS  PubMed  Google Scholar 

  62. USEPA (2010) IRIS Toxicological Review Of Inorganic Arsenic (Cancer). US Environmental Protection Agency 56012, Washington

    Google Scholar 

  63. USEPA (2010) IRIS Toxicological Review of Inorganic Arsenic (Cancer)(2010 External Review Draft), EPA/635/R-10/001. US Environmental Protection Agency, Washington

    Google Scholar 

  64. Khan K, Khan H, Lu Y et al (2014) Evaluation of toxicological risk of foodstuffs contaminated with heavy metals in Swat, Pakistan. Ecotoxicol Environ Saf 108:224–232

    Article  CAS  PubMed  Google Scholar 

  65. U.S. Environmental Protection Agency. Regional Screening Levels. (2017a) https://www.epa.gov/risk/regional-screening-levels-rsls.

  66. Wang J, Odinga ES, Zhang W et al (2019) Polyaromatic hydrocarbons in biochars and human health risks of food crops grown in biochar-amended soils: A synthesis study. Environ Int 130:104899

    Article  CAS  PubMed  Google Scholar 

  67. Li X, Chen Q, Zhou Y et al (2014) Stabilization of heavy metals in MSWI fly ash using silica fume. Waste Manag 34(12):2494–2504

    Article  CAS  PubMed  Google Scholar 

  68. Zhang X, Wang H, He L et al (2013) Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ Sci Pollut Res 20(12):8472–8483

    Article  CAS  Google Scholar 

  69. SEPA (2005) The limits of pollutants in food. GB 2762–2005.

  70. Park JH, Choppala G, Lee SJ et al (2013) Comparative sorption of Pb and Cd by biochars and its implication for metal immobilization in soils. Wat Air Soil Pollut 224(12):1–12

    Google Scholar 

  71. Walker DJ, Clemente R, Bernal MP (2004) Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere 57(3):215–224

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Escobar MO, Hue N (2008) Temporal changes of selected chemical properties in three manure–Amended soils of Hawaii. Bioresour Technol 99(18):8649–8654

    Article  Google Scholar 

  73. Azeez JO, Olowoboko TB, Ajenifuja MD et al (2019) Speciation of some heavy metals as influenced by poultry manure application in dumpsite soils. J Appl Sci 19(5):487–494

    Article  CAS  Google Scholar 

  74. McLaughlin MJ, Hamon R, McLaren R et al (2000) A bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Soil Res 38(6):1037–1086

    Article  CAS  Google Scholar 

  75. Zheng R, Li C, Sun G et al (2017) The influence of particle size and feedstock of biochar on the accumulation of Cd, Zn, Pb, and As by Brassica chinensis L. Environ Sci Pollut Res 24(28):22340–22352

    Article  CAS  Google Scholar 

  76. Yang W-T, Zhou H, Gu J-F et al (2017) Effects of a combined amendment on Pb, Cd, and as availability and accumulation in rice planted in contaminated paddy soil. Soil Sediment Contam: Int J 26(1):70–83

    Article  CAS  Google Scholar 

  77. Jones S, Bardos RP, Kidd PS et al (2016) Biochar and compost amendments enhance copper immobilisation and support plant growth in contaminated soils. J Environ manag 171:101–112

    Article  CAS  Google Scholar 

  78. Das SK, Ghosh GK, Avasthe R et al (2021) Innovative biochar and organic manure co-composting technology for yield maximization in maize-black gram cropping system. Biomass Convers Biorefin 11:1–13

    Google Scholar 

  79. Lusiba S, Odhiambo J, Ogola J (2018) Growth, yield and water use efficiency of chickpea (Cicer arietinum): response to biochar and phosphorus fertilizer application. Arch Agron Soil Sci 64(6):819–833

    Article  CAS  Google Scholar 

  80. Mohamed I, Zhang G-s, Li Z-g et al (2015) Ecological restoration of an acidic Cd contaminated soil using bamboo biochar application. Ecol Eng 84:67–76

    Article  Google Scholar 

  81. Scheifele M, Hobi A, Buegger F et al (2017) Impact of pyrochar and hydrochar on soybean (Glycine max L.) root nodulation and biological nitrogen fixation. J Soil Sci Plant Nutr 180(2):199–211

    Article  CAS  Google Scholar 

  82. Usman ARA, Al-Wabel MI, Abdulaziz A-H et al (2016) Conocarpus biochar induces changes in soil nutrient availability and tomato growth under saline irrigation. Pedosphere 26(1):27–38

    Article  CAS  Google Scholar 

  83. Das SK, Ghosh GK, Choudhury B et al (2022) Developing biochar and organic nutrient packages/technology as soil policy for enhancing yield and nutrient uptake in maize-black gram cropping system to maintain soil health. Biomass Convers Biorefin 12:1–13

    Google Scholar 

  84. Gonzaga MIS, Mackowiak C, de Almeida AQ et al (2018) Positive and negative effects of biochar from coconut husks, orange bagasse and pine wood chips on maize (Zea mays L.) growth and nutrition. CATENA 162:414–420

    Article  CAS  Google Scholar 

  85. Oguntade OA, Odusanya O, Olagunju SO et al (2018) Residual effect of composted kitchen waste and poultry manure soil amendments on yield and concentrations of copper, iron, manganese and zinc in leaf tissue of jute mallow (Corchorus olitorius Linn). Ife J Agricult 30(2):65–76

    Google Scholar 

  86. Oguntade OA, Olagbenro TS, Odusanya OA et al (2019) Assessment of composted kitchen waste and poultry manure amendments on growth, yield and heavy metal uptake by Jute mallow Corchorus olitorius Linn. Int J Recycl Org Waste Agric 8(2):187–195

    Article  Google Scholar 

  87. Alvarez-Campos O, Lang TA, Bhadha JH et al (2018) Biochar and mill ash improve yields of sugarcane on a sand soil in Florida. Agric Ecosys Environ 253:122–130

    Article  CAS  Google Scholar 

  88. Yue Y, Cui L, Lin Q et al (2017) Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth. Chemosphere 173:551–556

    Article  ADS  CAS  PubMed  Google Scholar 

  89. Das SK, Ghosh GK, Avasthe R et al (2021) Organic nutrient sources and biochar technology on microbial biomass carbon and soil enzyme activity in maize-black gram cropping system. Biomass Convers Biorefin 11:1–11

    Google Scholar 

  90. Das SK, Ghosh GK (2021) Development and evaluation of biochar-based secondary and micronutrient enriched slow release nano-fertilizer for reduced nutrient losses. Biomass Convers Biorefin 11:1–12

    Google Scholar 

  91. Dikinya O, Mufwanzala N (2010) Chicken manure-enhanced soil fertility and productivity: Effects of application rates. J Soil Sci Environ Manag 1(3):46–54

    Google Scholar 

  92. Emuh FN, (2013) Growth and yield performance of Corchorus olitorious L. influenced by levels of poultry manure in Niger-Delta, Nigeria. Afr J Biotechnol 12(19)

  93. Ullah M, Shamsuzzaman S, Islam M et al (2017) Cadmium availability and uptake by rice from lime, cow-dung and poultry manure amended Ca-contaminated paddy soil. Bangladesh J Bot 46(1):291–296

    Google Scholar 

  94. Houben D, Evrard L, Sonnet P (2013) Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92(11):1450–1457

    Article  ADS  CAS  PubMed  Google Scholar 

  95. ur Rehman MZ, Khalid H, Akmal F et al (2017) Effect of limestone, lignite and biochar applied alone and combined on cadmium uptake in wheat and rice under rotation in an effluent irrigated field. Environ Pollut 227:560–568

    Article  PubMed  Google Scholar 

  96. Tran HN, You S-J, Chao H-P (2016) Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar. Waste Manag Res 34(2):129–138

    Article  CAS  PubMed  Google Scholar 

  97. Huang Z, Lu Q, Wang J et al (2017) Inhibition of the bioavailability of heavy metals in sewage sludge biochar by adding two stabilizers. PLoS ONE 12(8):e0183617

    Article  PubMed  PubMed Central  Google Scholar 

  98. Mendez A, Gomez A, Paz-Ferreiro J et al (2012) Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere 89(11):1354–1359

    Article  ADS  CAS  PubMed  Google Scholar 

  99. Ahmad M, Rajapaksha AU, Lim JE et al (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  ADS  CAS  PubMed  Google Scholar 

  100. Das SK, Ghosh GK, Avasthe R (2021) Conversion of crop, weed and tree biomass into biochar for heavy metal removal and wastewater treatment. Biomass Convers Biorefin 11:1–14

    Google Scholar 

  101. Kim P, Johnson AM, Essington ME et al (2013) Effect of pH on surface characteristics of switchgrass-derived biochars produced by fast pyrolysis. Chemosphere 90(10):2623–2630

    Article  ADS  CAS  PubMed  Google Scholar 

  102. Nobaharan K, Bagheri Novair S, Asgari Lajayer B et al (2021) Phosphorus removal from wastewater: The potential use of biochar and the key controlling factors. Water 13(4):517

    Article  CAS  Google Scholar 

  103. Uchimiya M, Cantrell KB, Hunt PG et al (2012) Retention of heavy metals in a Typic Kandiudult amended with different manure-based biochars. J Environ Qual 41(4):1138–1149

    Article  CAS  PubMed  Google Scholar 

  104. Feng N-C, Guo X-Y (2012) Characterization of adsorptive capacity and mechanisms on adsorption of copper, lead and zinc by modified orange peel. Trans Nonferrous Met Soc China 22(5):1224–1231

    Article  CAS  Google Scholar 

  105. Rizwan M, Ali S, Adrees M et al (2016) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut Res 23(18):17859–17879

    Article  CAS  Google Scholar 

  106. Arif MS, Riaz M, Shahzad SM et al (2018) Fresh and composted industrial sludge restore soil functions in surface soil of degraded agricultural land. Sci Total Environ 619:517–527

    Article  ADS  PubMed  Google Scholar 

  107. Wuana RA, Okieimen FE, Ogoh B (2012) Chemical fractionation and phytoavailability of heavy metals in a soil amended with metal salts or metal-spiked poultry manure. Commun Soil Sci Plant Anal 43(20):2615–2632

    Article  CAS  Google Scholar 

  108. Ping L, Xingxiang W, Zhang T et al (2008) Effects of several amendments on rice growth and uptake of copper and cadmium from a contaminated soil. J Environ Sci 20(4):449–455

    Article  Google Scholar 

  109. Hussin F, Aroua MK, Szlachta M (2022) Biochar derived from fruit by-products using pyrolysis process for the elimination of Pb (II) ion: An updated review. Chemosphere 287:132250

    Article  CAS  PubMed  Google Scholar 

  110. Tinker P (1981) Levels, distribution and chemical forms of trace elements in food plants. Philos Trans R Soc Lond B Biol Sci 294(1071):41–55

    Article  ADS  CAS  PubMed  Google Scholar 

  111. Bian R, Chen D, Liu X et al (2013) Biochar soil amendment as a solution to prevent Cd-tainted rice from China: results from a cross-site field experiment. Ecol Eng 58:378–383

    Article  Google Scholar 

  112. Muhammad N, Nafees M, Khan MH et al (2020) Effect of biochars on bioaccumulation and human health risks of potentially toxic elements in wheat (Triticum aestivum L.) cultivated on industrially contaminated soil. Environ Pollut 260:113887

    Article  CAS  PubMed  Google Scholar 

  113. Yousaf B, Liu G, Abbas Q et al (2018) Comparative effects of biochar-nanosheets and conventional organic-amendments on health risks abatement of potentially toxic elements via consumption of wheat grown on industrially contaminated-soil. Chemosphere 192:161–170

    Article  ADS  CAS  PubMed  Google Scholar 

  114. Khan MA, Ding X, Khan S et al (2018) The influence of various organic amendments on the bioavailability and plant uptake of cadmium present in mine-degraded soil. Sci Total Environ 636:810–817

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Pakistan Science Foundation under Project No. PSF/NSLP (AWKUM 827). The authors would like to extend their sincere appreciation to the Researchers Supporting Project Number (RSP-2021/347), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Junaid Ghani contributed to investigation and writing—original draft. Javed Nawab and Sardar Khan contributed to funding acquisition, supervision, project administration, conceptualization, and methodology. Mubarak Ali Khan and Imran Ahmad contributed to software, data curation, and visualization. Valerio Funari and Enrico Dinelli contributed to writing—review and editing.

Corresponding author

Correspondence to Javed Nawab.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights.

• Intensive agricultural practices contaminate agricultural soil with PTEs in degraded areas.

• OPDBC and PM immobilized PTEs and reduced pollution load index (PLI > 1) within the DAS.

• OPDBC5% and PM5% limit the migration of PTEs into the food chain as compared to control.

• OPDBC5% decreased the bioaccumulation, bioavailability, and reduced ILTCR for Cd from (25–41%) via okra fruits consumption.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghani, J., Nawab, J., Khan, S. et al. Organic amendments minimize the migration of potentially toxic elements in soil–plant system in degraded agricultural lands. Biomass Conv. Bioref. 14, 6547–6565 (2024). https://doi.org/10.1007/s13399-022-02816-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02816-3

Keywords

Navigation