Skip to main content

Advertisement

Log in

Chicken Feather Waste Hydrolysate as a Potential Biofertilizer for Environmental Sustainability in Organic Agriculture Management

  • Review Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The global requirement for food enhances the synthetic fertilizers utilization, mostly for the nitrogen (N) supply in the soil, the most limiting nutrient for plant growth. The key principle of fertilizer is to intensify the plant’s growth and productivity. The soil gets polluted because of the burst discharge of chemical fertilizer and as a result, the soil loses its fertility. Also, water gets polluted because of leaching along with undesirable/harmful consequences on the plant such as a decrease in productivity, root burn, etc. So, it has become important to look for a substitute for synthetic fertilizers. On the other hand, chicken feathers waste in large amounts has been produced by the poultry industry, that requires proper management. Also, the weak recyclability of chicken feathers leads to environmental pollution as a major part of the poultry waste is disposed off in landfills or burnt. Chicken feathers contain approximately 92% keratin is a good source of amino acids, peptides, and minerals. Although it is challenging to utilize them directly as a fertilizer as their recalcitrance results in slow degradation and mineralization of N in the soil. Nevertheless, hydrolysates attained from microbial or enzymatic processing of feathers provide a rich source of peptides, soluble proteins, and amino acids that support microbial growth in the rhizosphere, which encourages the uptake and use of nutrients from the soil. The water holding capacity, soil mineral content, and C/N ratio are also enhanced. Therefore, feathers biomass from animals is a good source of N and might be utilized as biofertilizers in the agroindustry to decrease the extreme utilization of traditional inorganic fertilizers. The characteristics of chicken feather waste hydrolysate show its potential utilization in organic farming, improving the microbiota and ecosystem of the soil. Thus, the present review deliberated on the importance of biofertilizers from chicken feathers waste, other biowaste, and biopolymers, along with the potential of keratin and chicken feather waste hydrolysate in the agricultural industry.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Brandelli, A., Daroit, D.J., Riffel, A.: Biochemical features of microbial keratinases and their production and applications. Appl. Microbiol. Biotechnol. 85, 1735–1750 (2010)

    Article  Google Scholar 

  2. Sharma, S., Gupta, A.: Sustainable management of keratin waste biomass: Applications and future perspectives. Brazilian Arch. Biol. Technol. (2016). https://doi.org/10.1590/1678-4324-2016150684

    Article  Google Scholar 

  3. Qiu, J., Wilkens, C., Barrett, K., Meyer, A.S.: Microbial enzymes catalyzing keratin degradation: Classification, structure, function. Biotechnol. Adv. 44, 107607 (2020)

    Article  Google Scholar 

  4. Brandelli, A., Sala, L., Kalil, S.J.: Microbial enzymes for bioconversion of poultry waste into added-value products. Food Res. Int. 73, 3–12 (2015)

    Article  Google Scholar 

  5. Ramakrishnan, N., Sharma, S., Gupta, A., Alashwal, B.Y.: Keratin based bioplastic film from chicken feathers and its characterization. Int. J. Biol. Macromol. 111, 352–358 (2018). https://doi.org/10.1016/j.ijbiomac.2018.01.037

    Article  Google Scholar 

  6. Tamreihao, K., Mukherjee, S., Khunjamayum, R., Devi, L.J., Asem, R.S., Ningthoujam, D.S.: Feather degradation by keratinolytic bacteria and biofertilizing potential for sustainable agricultural production. J. Basic Microbiol. 59, 4–13 (2019)

    Article  Google Scholar 

  7. Vinayak, A., Sharma, S., Singh, G.B.: Biopolymers from industrial Waste. In: Nadda, A.K., Sharma, S., Bhat, R. (eds.) Biopolymers: Recent updates, challenges and opportunities, pp. 129–149. Springer International Publishing, Cham (2022)

    Chapter  Google Scholar 

  8. Singh, J., Kumar, S., Sharma, S.: Biopolymer in wastewater treatment. In: Nadda, A.K., Sharma, S., Bhat, R. (eds.) Biopolymers: Recent updates, challenges and opportunities, pp. 323–351. Springer International Publishing, Cham (2022)

    Chapter  Google Scholar 

  9. Kakkalameli, S., Daphedar, A.B., Faniband, B., Sharma, S., Nadda, A.K., Ferreira, L.F.R., Bilal, M., Américo-Pinheiro, J.H.P., Mulla, S.I. Biopolymers and environment. In: Biopolymers, pp. 19–33. Springer (2022)

  10. Gupta, S., Ghosal, A., Goswami, A., Nadda, A.K., Sharma, S., et al.: The scope of biopolymers in food industry. In: Biopolymers, pp. 173–198. Springer (2022)

  11. Sharma, S., Kumar, A., Adelere, I.A., Latee, A.: Keratin as a protein biopolymer. Springer (2019)

    Book  Google Scholar 

  12. Verma, A., Singh, H., Anwar, M.S., Kumar, S., Ansari, M.W., Agrawal, S.: Production of thermostable organic solvent tolerant keratinolytic protease from Thermoactinomyces sp RM4: IAA production and plant growth promotion. Front. Microbiol. 7, 1189 (2016)

    Article  Google Scholar 

  13. Sharma, S., Gupta, A., Kumar, A., Kee, C.G., Kamyab, H., Saufi, S.M.: An efficient conversion of waste feather keratin into ecofriendly bioplastic film. Clean Technol. Environ. Policy. 20, 2157–2167 (2018)

    Article  Google Scholar 

  14. Gupta, S., Nadda, A.K., Gupta, A., Singh, J., Mulla, S.I., Sharma, S.: Transforming wastes into high value-added products: An Introduction. In: Biopolymers, pp 1–18 (2022)

  15. Gupta, R., Sharma, R., Beg, Q.K.: Revisiting microbial keratinases: next generation proteases for sustainable biotechnology. Crit. Rev. Biotechnol. 33, 216–228 (2013)

    Article  Google Scholar 

  16. Alashwal, B.Y., Bala, M.S., Gupta, A., Sharma, S., Mishra, P.: Improved properties of keratin-based bioplastic film blended with microcrystalline cellulose: A comparative analysis. J. King Saud Univ. 32, 853–857 (2020)

    Article  Google Scholar 

  17. Sharma, S., Rostamabadi, H., Gupta, S., Nadda, A.K., Kharazmi, M.S., Jafari, S.M.: Nano/micro-formulations of keratin in biocomposites, wound healing and drug delivery systems; recent advances in biomedical applications. Eur. Polym. J. 180, 111614 (2022)

    Article  Google Scholar 

  18. Hadas, A., Kautsky, L.: Feather meal, a semi-slow-release nitrogen fertilizer for organic farming. Fertil. Res. 38, 165–170 (1994)

    Article  Google Scholar 

  19. Jaouadi, N.Z., Rekik, H., Badis, A., Trabelsi, S., Belhoul, M., Yahiaoui, A.B., Aicha, H.B., Toumi, A., Bejar, S., Jaouadi, B.: Biochemical and molecular characterization of a serine keratinase from Brevibacillus brevis US575 with promising keratin-biodegradation and hide-dehairing activities. PLoS One. 8, e76722 (2013)

    Article  Google Scholar 

  20. Kumar, J., Sharma, A., Kumar, P., Kushwaha, R.K.S.: Enhancement of soil nutrition using fermented feather and their efficacy on seed germination. Int J Pure Appl Biosci. 5, 92–98 (2017)

    Article  Google Scholar 

  21. Aggarwal, J., Sharma, S., Kamyab, H., Kumar, A.: The realm of biopolymers and their usage: An overview. J Env. Treat Tech. 8, 1005–1016 (2020)

    Google Scholar 

  22. Bhardwaj, D., Ansari, M.W., Sahoo, R.K., Tuteja, N.: Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb. Cell Fact. 13, 1–10 (2014)

    Article  Google Scholar 

  23. Singh, M., Dotaniya, M.L., Mishra, A., Dotaniya, C.K., Regar, K.L., Lata, M.: Role of biofertilizers in conservation agriculture. In: Bisht, J.K., Meena, V.S., Mishra, P.K., Pattanayak, A. (eds.) Conservation agriculture, pp. 113–134. Springer (2016)

    Chapter  Google Scholar 

  24. Mahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharyya, P., Das, B., Ghosh, A., Tribedi, P.: Biofertilizers: Apotential approach for sustainable agriculture development. Environ. Sci. Pollut. Res. 24, 3315–3335 (2017)

    Article  Google Scholar 

  25. Sun, B., Gu, L., Bao, L., Zhang, S., Wei, Y., Bai, Z., Zhuang, G., Zhuang, X.: Application of biofertilizer containing Bacillus subtilis reduced the nitrogen loss in agricultural soil. Soil Biol. Biochem. 148, 107911 (2020)

    Article  Google Scholar 

  26. Chen, J.-H.: The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. In: International workshop on sustained management of the soil-rhizosphere system for efficient crop production and fertilizer use, pp. 1–11 (2006)

  27. Dehsheikh, A.B., Sourestani, M.M., Zolfaghari, M., Enayatizamir, N.: Changes in soil microbial activity, essential oil quantity, and quality of Thai basil as response to biofertilizers and humic acid. J. Clean. Prod. 256, 120439 (2020)

    Article  Google Scholar 

  28. Mohammadi, K., Sohrabi, Y., et al.: Bacterial biofertilizers for sustainable crop production: A review. ARPN J Agric Biol Sci. 7, 307–316 (2012)

    Google Scholar 

  29. Puglia, D., Pezzolla, D., Gigliotti, G., Torre, L., Bartucca, M.L., Del Buono, D.: The opportunity of valorizing agricultural waste, through its conversion into biostimulants, biofertilizers, and biopolymers. Sustainability. 13, 2710 (2021)

    Article  Google Scholar 

  30. Motaung, T.E., Linganiso, L.Z.: Critical review on agrowaste cellulose applications for biopolymers. Int. J. Plast. Technol. 22, 185–216 (2018)

    Article  Google Scholar 

  31. Bayón, B., Berti, I.R., Gagneten, A.M., Castro, G.R.: Biopolymers from wastes to high-value products in biomedicine. In: Waste to wealth, pp. 1–44. Springer (2018)

  32. Procentese, A., Raganati, F., Olivieri, G., Russo, M.E., De La Feld, M., Marzocchella, A.: Agro food wastes and innovative pretreatments to meet biofuel demand in Europe. Chem. Eng. Technol. 42, 954–961 (2019)

    Article  Google Scholar 

  33. Jha, A., Kumar, A.: Biobased technologies for the efficient extraction of biopolymers from waste biomass. Bioprocess Biosyst. Eng. 42, 1893–1901 (2019)

    Article  Google Scholar 

  34. Wang, H., Shen, L.I.U., Zhai, L., Zhang, J., Ren, T., Fan, B., Liu, H.: Preparation and utilization of phosphate biofertilizers using agricultural waste. J. Integr. Agric. 14, 158–167 (2015)

    Article  Google Scholar 

  35. Chojnacka, K., Moustakas, K., Witek-Krowiak, A.: Bio-based fertilizers: A practical approach towards circular economy. Bioresour. Technol. 295, 122223 (2020)

    Article  Google Scholar 

  36. Spiridon, I., Darie-Nita, R.N., Hitruc, G.E., Ludwiczak, J., Spiridon, I.A.C., Niculaua, M.: New opportunities to valorize biomass wastes into green materials. J. Clean. Prod. 133, 235–242 (2016)

    Article  Google Scholar 

  37. Diacono, M., Persiani, A., Testani, E., Montemurro, F., Ciaccia, C.: Recycling agricultural wastes and by-products in organic farming: Biofertilizer production, yield performance and carbon footprint analysis. Sustainability. 11, 3824 (2019)

    Article  Google Scholar 

  38. Westerman, P.W., Bicudo, J.R.: Management considerations for organic waste use in agriculture. Bioresour. Technol. 96, 215–221 (2005)

    Article  Google Scholar 

  39. Toop, T.A., Ward, S., Oldfield, T., Hull, M., Kirby, M.E., Theodorou, M.K.: AgroCycle–developing a circular economy in agriculture. Energy Procedia. 123, 76–80 (2017)

    Article  Google Scholar 

  40. Venanzi, S., Pezzolla, D., Cecchini, L., Pauselli, M., Ricci, A., Sordi, A., Torquati, B., Gigliotti, G.: Use of agricultural by-products in the development of an agro-energy chain: A case study from the Umbria region. Sci. Total Environ. 627, 494–505 (2018)

    Article  Google Scholar 

  41. Alburquerque, J.A., de la Fuente, C., Ferrer-Costa, A., Carrasco, L., Cegarra, J., Abad, M., Bernal, M.P.: Assessment of the fertiliser potential of digestates from farm and agroindustrial residues. Biomass Bioenerg. 40, 181–189 (2012)

    Article  Google Scholar 

  42. Pezzolla, D., Bol, R., Gigliotti, G., Sawamoto, T., López, A.L., Cardenas, L., Chadwick, D.: Greenhouse gas (GHG) emissions from soils amended with digestate derived from anaerobic treatment of food waste. Rapid Commun. Mass Spectrom. 26, 2422–2430 (2012)

    Article  Google Scholar 

  43. Asses, N., Farhat, W., Hamdi, M., Bouallagui, H.: Large scale composting of poultry slaughterhouse processing waste: Microbial removal and agricultural biofertilizer application. Process Saf. Environ. Prot. 124, 128–136 (2019)

    Article  Google Scholar 

  44. Gigliotti, G., Proietti, P., Said-Pullicino, D., Nasini, L., Pezzolla, D., Rosati, L., Porceddu, P.R.: Co-composting of olive husks with high moisture contents: Organic matter dynamics and compost quality. Int. Biodeterior. Biodegrad. 67, 8–14 (2012)

    Article  Google Scholar 

  45. El-Ghamry, A., Mosa, A.A., Alshaal, T., El-Ramady, H.: Nanofertilizers vs biofertilizers: New insights. Environ. Biodivers. Soil Secur. 2, 51–72 (2018)

    Google Scholar 

  46. Bi, S., Barinelli, V., Sobkowicz, M.J.: Degradable controlled release fertilizer composite prepared via extrusion: Fabrication, characterization, and release mechanisms. Polymers. 12, 301 (2020)

    Article  Google Scholar 

  47. Kamaly, N., Yameen, B., Wu, J., Farokhzad, O.C.: Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev. 116, 2602–2663 (2016)

    Article  Google Scholar 

  48. Kumawat, T.K., Kumawat, V., Sharma, S., Sharma, V., Pandit, A., Kandwani, N., Biyani, M.: Sustainable green methods for the extraction of biopolymers. Biopolym. Recent Updat. Challenges Oppor. (2022). https://doi.org/10.1007/978-3-030-98392-5_5

    Article  Google Scholar 

  49. Guilherme, M.R., Aouada, F.A., Fajardo, A.R., Martins, A.F., Paulino, A.T., Davi, M.F.T., Rubira, A.F., Muniz, E.C.: Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. Eur. Polym. J. 72, 365–385 (2015)

    Article  Google Scholar 

  50. Cerri, B.C., Borelli, L.M., Stelutti, I.M., Soares, M.R., da Silva, M.A.: Evaluation of new environmental friendly particulate soil fertilizers based on agroindustry wastes biopolymers and sugarcane vinasse. Waste Manag. 108, 144–153 (2020)

    Article  Google Scholar 

  51. Tovar, A.K., Godinez, L.A., Espejel, F., Ramirez-Zamora, R.-M., Robles, I.: Optimization of the integral valorization process for orange peel waste using a design of experiments approach: Production of high-quality pectin and activated carbon. Waste Manag. 85, 202–213 (2019)

    Article  Google Scholar 

  52. Lim, S.-F., Matu, S.U.: Utilization of agro-wastes to produce biofertilizer. Int. J. Energy Environ. Eng. 6, 31–35 (2015)

    Article  Google Scholar 

  53. Yang, Y., Tong, Z., Geng, Y., Li, Y., Zhang, M.: Biobased polymer composites derived from corn stover and feather meals as double-coating materials for controlled-release and water-retention urea fertilizers. J. Agric. Food Chem. 61, 8166–8174 (2013)

    Article  Google Scholar 

  54. Xia, H., Xu, S., Yang, L.: Efficient conversion of wheat straw into furan compounds, bio-oils, and phosphate fertilizers by a combination of hydrolysis and catalytic pyrolysis. RSC Adv. 7, 1200–1205 (2017)

    Article  Google Scholar 

  55. Campos, E.V.R., de Oliveira, J.L., Fraceto, L.F., Singh, B.: Polysaccharides as safer release systems for agrochemicals. Agron. Sustain. Dev. 35, 47–66 (2015)

    Article  Google Scholar 

  56. Arslanoglu, H.: Adsorption of micronutrient metal ion onto struvite to prepare slow release multielement fertilizer: Copper (II) doped-struvite. Chemosphere 217, 393–401 (2019)

    Article  Google Scholar 

  57. Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S.A., Ur Rehman, H., Ashraf, I., Sanaullah, M.: Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci. Total Environ. 721, 137778 (2020)

    Article  Google Scholar 

  58. Naz, M.Y., Sulaiman, S.A.: Testing of starch-based carbohydrate polymer coatings for enhanced urea performance. J. Coatings Technol. Res. 11, 747–756 (2014)

    Article  Google Scholar 

  59. Kumaran, P., Gupta, A., Sharma, S.: Synthesis of wound-healing keratin hydrogels using chicken feathers proteins and its properties. Int J Pharm Pharm Sci. 9, 171–178 (2017)

    Article  Google Scholar 

  60. Nadda, A.K.: Biopolymers: Recent updates, challenges and opportunities

  61. Tang, J., Hong, J., Liu, Y., Wang, B., Hua, Q., Liu, L., Ying, D.: Urea controlled-release fertilizer based on gelatin microspheres. J. Polym. Environ. 26, 1930–1939 (2018)

    Article  Google Scholar 

  62. Akalin, G.O., Pulat, M.: Controlled release behavior of zinc-loaded carboxymethyl cellulose and carrageenan hydrogels and their effects on wheatgrass growth. J. Polym. Res. 27, 1–11 (2020)

    Article  Google Scholar 

  63. Perez, J.J., Francois, N.J.: Chitosan-starch beads prepared by ionotropic gelation as potential matrices for controlled release of fertilizers. Carbohydr. Polym. 148, 134–142 (2016)

    Article  Google Scholar 

  64. Jiao, G.-J., Xu, Q., Cao, S.-L., Peng, P., She, D.: Controlled-release fertilizer with lignin used to trap urea/hydroxymethylurea/urea-formaldehyde polymers. BioResources 13, 1711–1728 (2018)

    Article  Google Scholar 

  65. Sharma, S., Sharma, A., Mulla, S.I., Pant, D., Sharma, T., Kumar, A.: Lignin as potent industrial biopolymer: An introduction. In: Lignin, pp. 1–15. Springer (2020)

  66. Sharma, S., Kumar, A.: Lignin: Biosynthesis and transformation for industrial applications. Springer Nature (2020)

    Book  Google Scholar 

  67. Mignon, A., De Belie, N., Dubruel, P., Van Vlierberghe, S.: Superabsorbent polymers: A review on the characteristics and applications of synthetic, polysaccharide-based, semi-synthetic and ‘smart’ derivatives. Eur. Polym. J. 117, 165–178 (2019)

    Article  Google Scholar 

  68. Kumar, S., Kumar, D., Dilbaghi, N., et al.: Preparation, characterization, and bio-efficacy evaluation of controlled release carbendazim-loaded polymeric nanoparticles. Environ. Sci. Pollut. Res. 24, 926–937 (2017)

    Article  Google Scholar 

  69. Maruyama, C.R., Guilger, M., Pascoli, M., Bileshy-José, N., Abhilash, P.C., Fraceto, L.F., de Lima, R.: Correction: Corrigendum: Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci. Rep. 6, 1–2 (2016)

    Google Scholar 

  70. Eggum, B.O.: Evaluation of protein quality of feather meal under different treatments. Acta Agric. Scand. 20, 230–234 (1970)

    Article  Google Scholar 

  71. Colla, G., Hoagland, L., Ruzzi, M., Cardarelli, M., Bonini, P., Canaguier, R., Rouphael, Y.: Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 8, 2202 (2017)

    Article  Google Scholar 

  72. Bhari, R., Kaur, M., Sarup Singh, R.: Chicken feather waste hydrolysate as a superior biofertilizer in agroindustry. Curr. Microbiol. 78, 2212–2230 (2021)

    Article  Google Scholar 

  73. Bhange, K., Chaturvedi, V., Bhatt, R.: Ameliorating effects of chicken feathers in plant growth promotion activity by a keratinolytic strain of Bacillus subtilis PF1. Bioresour. Bioprocess. 3, 1–10 (2016)

    Article  Google Scholar 

  74. Teale, W.D., Paponov, I.A., Palme, K.: Auxin in action: signalling, transport and the control of plant growth and development. Nat. Rev. Mol. cell Biol. 7, 847–859 (2006)

    Article  Google Scholar 

  75. Dzhuvinov, V., Staneva, I., Gandev, S., Stefanova, D., Kornov, G., Stoeva, M., et al.: Fertilization of apple trees with organic fertilizers “Keratin” and “Lumbreco” in Bulgaria-preliminary results. Proc. Ecofruit 2020, 81–85 (2020)

    Google Scholar 

  76. Choi, J.-M., Nelson, P.V.: Developing a slow-release nitrogen fertilizer from organic sources: II. Using poultry feathers. J. Am. Soc. Hortic. Sci. 121, 634–638 (1996)

    Article  Google Scholar 

  77. Brandelli, A.: Bacterial keratinases: Useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess Technol. 1, 105–116 (2008). https://doi.org/10.1007/s11947-007-0025-y

    Article  Google Scholar 

  78. Bose, A., Pathan, S., Pathak, K., Keharia, H.: Keratinolytic protease production by Bacillus amyloliquefaciens 6B using feather meal as substrate and application of feather hydrolysate as organic nitrogen input for agricultural soil. Waste Biomass Valorization. 5, 595–605 (2014)

    Article  Google Scholar 

  79. Nurdiawati, A., Suherman, C., Maxiselly, Y., Akbar, M.A., Purwoko, B.A., Prawisudha, P., Yoshikawa, K.: Liquid feather protein hydrolysate as a potential fertilizer to increase growth and yield of patchouli (Pogostemon cablin Benth) and mung bean (Vigna radiata). Int. J. Recycl. Org. Waste Agric. 8, 221–232 (2019)

    Article  Google Scholar 

  80. Sahoo, S., Dash, S., Rath, B., Mondal, K.C., Mandal, A.: Commercial initiation of feather hydrolysate as supreme fertilizer: A smart bio-cleaning strategy of poultry waste. Waste Biomass Valorization (2022). https://doi.org/10.1007/s12649-022-01982-9

    Article  Google Scholar 

  81. Joardar, J.C., Rahman, M.M.: Poultry feather waste management and effects on plant growth. Int. J. Recycl. Org. Waste Agric. 7, 183–188 (2018)

    Article  Google Scholar 

  82. Raguraj, S., Kasim, S., Jaafar, N.M., Nazli, M.H.: Influence of chicken feather waste derived protein hydrolysate on the growth of tea plants under different application methods and fertilizer rates. Environ. Sci. Pollut. Res. 12, 1–12 (2022)

    Google Scholar 

  83. Schloss, P.D., Hay, A.G., Wilson, D.B., Walker, L.P.: Tracking temporal changes of bacterial community fingerprints during the initial stages of composting. FEMS Microbiol. Ecol. 46, 1–9 (2003)

    Article  Google Scholar 

  84. Geisseler, D., Scow, K.M.: Long-term effects of mineral fertilizers on soil microorganisms—A review. Soil Biol. Biochem. 75, 54–63 (2014)

    Article  Google Scholar 

  85. Paul, T., Halder, S.K., Das, A., Bera, S., Maity, C., Mandal, A., Das, P.S., Mohapatra, P.K. Das., Pati, B.R., Mondal, K.C.: Exploitation of chicken feather waste as a plant growth promoting agent using keratinase producing novel isolate Paenibacillus woosongensis TKB2. Biocatal. Agric. Biotechnol. 2, 50–57 (2013)

    Article  Google Scholar 

  86. Kaur, M., Bhari, R., Singh, R.S.: Chicken feather waste-derived protein hydrolysate as a potential biostimulant for cultivation of mung beans. Biologia (Bratisl). 76, 1807–1815 (2021)

    Article  Google Scholar 

  87. Bala, M.S., Maryam, L., Alashwal, B.Y., Gupta, A., Soubam, T., Sharma, S.: Synthesis of keratin spray from chicken feathers for biomedical applications. Maejo Int. J. Energy Environ. Commun. 3, 18–22 (2021)

    Article  Google Scholar 

  88. Rai, S.K., Mukherjee, A.K.: Optimization for production of liquid nitrogen fertilizer from the degradation of chicken feather by iron-oxide (Fe3O4) magnetic nanoparticles coupled $β$-keratinase. Biocatal. Agric. Biotechnol. 4, 632–644 (2015)

    Article  Google Scholar 

  89. Guo, Z., Usman, M., Alsareii, S.A., Harraz, F.A., Al-Assiri, M.S., Jalalah, M., Li, X., Salama, E.-S.: Synergistic ammonia and fatty acids inhibition of microbial communities during slaughterhouse waste digestion for biogas production. Bioresour. Technol. 337, 125383 (2021)

    Article  Google Scholar 

  90. Chen, H., Gao, S., Li, Y., Xu, H.-J., Li, W., Wang, J., Zhang, Y.: Valorization of livestock keratin waste: Application in agricultural fields. Int. J. Environ. Res. Public Health. 19, 6681 (2022)

    Article  Google Scholar 

  91. Jain, R., Jain, A., Rawat, N., Nair, M., Gumashta, R.: Feather hydrolysate from Streptomyces sampsonii GS 1322: A potential low cost soil amendment. J. Biosci. Bioeng. 121, 672–677 (2016)

    Article  Google Scholar 

  92. Gousterova, A., Nustorova, M., Paskaleva, D., Naydenov, M., Neshev, G., Vasileva, T.E.: Assessment of feather hydrolysate from thermophilic actinomycetes for soil amendment and biological control application (2012)

  93. Andreo-Jimenez, B., Schilder, M.T., Nijhuis, E.H., Te Beest, D.E., Bloem, J., Visser, J.H.M., van Os, G., Brolsma, K., de Boer, W., Postma, J.: Chitin-and keratin-rich soil amendments suppress rhizoctonia solani disease via changes to the soil microbial community. Appl. Environ. Microbiol. 87, e00318-e321 (2021)

    Article  Google Scholar 

  94. Venkateswarlu, B., Balloli, S.S., Ramakrishna, Y.S.: Organic farming in rainfed agriculture. Cent. Res. Inst. dry L. Agric. Hyderabad. 88 (2007)

  95. Singh, J.: Organic farming by biofertilizers. Biofertilizers: Study and Impact. 121–149 (2021)

  96. Mahanta, D., Bisht, J.K., Kant, L.: Concept and global scenario of organic farming. In: Advances in organic farming, pp. 1–16. Elsevier (2021)

  97. Meena, V.S., Meena, S.K., Rakshit, A., Stanley, J., Rao, S.: Advances in organic farming: Agronomic soil management practices. Woodhead Publishing (2021)

    Google Scholar 

  98. Parewa, H.P., Joshi, N., Meena, V.S., Joshi, S., Choudhary, A., Ram, M., Meena, S.C., Jain, L.K.: Role of biofertilizers and biopesticides in organic farming. Adv. Org. Farming. (2021). https://doi.org/10.1016/B978-0-12-822358-1.00009-2

    Article  Google Scholar 

  99. Garcia-Fraile, P., Menéndez, E., Rivas, R.: others: Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2, 183–205 (2015)

    Article  Google Scholar 

  100. Lugtenberg, B., Kamilova, F., et al.: Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556 (2009)

    Article  Google Scholar 

  101. Velázquez, E., Silva, L.R., Ramirez-Bahena, M.-H., Peix, A.: Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena, V.S., Maurya, B.R., Verma, J.P., Meena, R.S. (eds.) Potassium solubilizing microorganisms for sustainable agriculture, pp. 99–110. Springer (2016)

    Chapter  Google Scholar 

  102. Gupta, G., Parihar, S.S., Ahirwar, N.K., Snehi, S.K., Singh, V.: Plant growth promoting rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture. J Microb Biochem Technol. 7, 96–102 (2015)

    Google Scholar 

  103. Sundar, I.: Sustainable agriculture and sustainability of Indian agriculture in the context of globalisation. Int. J. Environ. Pollut. 18, 455–462 (2002)

    Article  Google Scholar 

  104. Li, Q.: perspectives on converting keratin-containing wastes into biofertilizers for sustainable agriculture. Front. Microbiol. 13 (2022)

  105. Singh, D.P., Prabha, R., Renu, S., Sahu, P.K., Singh, V.: Agrowaste bioconversion and microbial fortification have prospects for soil health, crop productivity, and eco-enterprising. Int. J. Recycl. Org. Waste Agric. 8, 457–472 (2019)

    Article  Google Scholar 

  106. https://www.iffco.in/en/organic-and-bio-fertilisers

  107. https://www.upl-ltd.com/in/biosolutions

  108. https://biosolutions.novozymes.com/en/bioag/apac/vegetables

  109. Mishra, J., Arora, N.K.: Bioformulations for plant growth promotion and combating phytopathogens: a sustainable approach. In: Bioformulations: For sustainable agriculture. pp. 3–33. Springer (2016)

  110. https://www.tradeindia.com/camson-bio-technologies-ltd-6904118/

  111. https://tstanes.com/

  112. Balashov, A.V., Molchanov, V.N., Naboychenko, K.: V: The response of winter wheat varieties to bacterial fertilizer “Rizoagrin.” Proc Low. Volga Agro-Univ Complex. 12, 7–11 (2008)

    Google Scholar 

  113. Kutyova, T.Y., Durinina, E.P., Muravyova, N.E., Sheyko, A.: V: Microbal fertilizers Bamil, Omug, Ekud, Pudret their properties, influence on soil and crops: Herald of Moscow State University. Soil Sci. Ser. 4, 40–46 (2002)

    Google Scholar 

  114. https://www.novozymes.com/en/advance-your-business/agriculture

  115. https://www.rizobacter.com/argentina/productos/

  116. https://www.mabiotec.com/

  117. FNCA: Biofertilizer manual. Japan At. Ind. Forum, Tokyo. (2006)

  118. Pentón, G., Reynaldo, I., Martin, G.J., Rivera, R., Oropesa, K.: others: Use of EcoMic®and the bioactive product Pectimorf®in the establishment of two forage species. Pastos y Forrajes. 34, 281–294 (2011)

    Google Scholar 

  119. BioScientific: BuRIZE—VA–mycorrhizal soil and root inoculant, for use on production agricultural crops (2008)

  120. Moreno-Sarmiento, N., Moreno-Rodriguez, L., Uribe-Vélez, D.: Biofertilizantes para la agricultura en Colombia. Biofertilizantes en Iberoamérica una visión técnica, cientifica y Empres. Imprenta Denad Int. Montevideo. 38–45 (2007)

  121. Kennedy, I.R., Choudhury, A., Kecskés, M.L.: Non-symbiotic bacterial diazotrophs in crop-farming systems: Can their potential for plant growth promotion be better exploited? Soil Biol. Biochem. 36, 1229–1244 (2004)

    Article  Google Scholar 

  122. Fernandes Júnior, P.I., Rohr, T.G., de Oliveira, P.J., Xavier, G.R., Rumjanek, N.G.: Polymers as carriers for rhizobial inoculant formulations. Pesqui. Agropecuária Bras. 44, 1184–1190 (2009)

    Article  Google Scholar 

  123. Da Silva, M.F., de Souza Antônio, C., de Oliveira, P.J., Xavier, G.R., Rumjanek, N.G., de Barros Soares, L.H., Reis, V.M.: Survival of endophytic bacteria in polymer-based inoculants and efficiency of their application to sugarcane. Plant Soil. 356, 231–243 (2012)

    Article  Google Scholar 

  124. Wu, Z., Guo, L., Qin, S., Li, C.: Encapsulation of R planticola Rs-2 from alginate-starch-bentonite and its controlled release and swelling behavior under simulated soil conditions. J. Ind. Microbiol. Biotechnol. 39, 317–327 (2012)

    Article  Google Scholar 

  125. Saberi-Rise, R., Moradi-Pour, M.: The effect of Bacillus subtilis Vru1 encapsulated in alginate–bentonite coating enriched with titanium nanoparticles against Rhizoctonia solani on bean. Int. J. Biol. Macromol. 152, 1089–1097 (2020)

    Article  Google Scholar 

  126. Pour, M.M., Saberi-Riseh, R., Mohammadinejad, R., Hosseini, A.: Investigating the formulation of alginate-gelatin encapsulated Pseudomonas fluorescens (VUPF5 and T17–4 strains) for controlling Fusarium solani on potato. Int. J. Biol. Macromol. 133, 603–613 (2019)

    Article  Google Scholar 

  127. Tu, L., He, Y., Yang, H., Wu, Z., Yi, L.: Preparation and characterization of alginate–gelatin microencapsulated Bacillus subtilis SL-13 by emulsification/internal gelation. J. Biomater. Sci. Polym. Ed. 26, 735–749 (2015)

    Article  Google Scholar 

  128. Saberi-Riseh, R., Moradi-Pour, M., Mohammadinejad, R., Thakur, V.K.: Biopolymers for biological control of plant pathogens: Advances in microencapsulation of beneficial microorganisms. Polymers. 13, 1938 (2021)

    Article  Google Scholar 

  129. Young, C.-C., Rekha, P.D., Lai, W.-A., Arun, A.B.: Encapsulation of plant growth-promoting bacteria in alginate beads enriched with humic acid. Biotechnol. Bioeng. 95, 76–83 (2006)

    Article  Google Scholar 

  130. Boza, Y., Barbin, D., Scamparini, A.R.P.: Effect of spray-drying on the quality of encapsulated cells of Beijerinckia sp. Process Biochem. 39, 1275–1284 (2004)

    Article  Google Scholar 

  131. Muñoz-Celaya, A.L., Ortiz-Garcia, M., Vernon-Carter, E.J., Jauregui-Rincón, J., Galindo, E., Serrano-Carreón, L.: Spray-drying microencapsulation of Trichoderma harzianum conidias in carbohydrate polymers matrices. Carbohydr. Polym. 88, 1141–1148 (2012)

    Article  Google Scholar 

  132. Saberi-Riseh, R., Moradi-Pour, M.: A@article{zou2011microencapsulation, title={Microencapsulation of Bifidobacterium bifidum F-35 in reinforced alginate microspheres prepared by emulsification/internal gelation}, author={Zou, Qiang and Zhao, Jianxin and Liu, Xiaoming and Tian Fengwei and. Pest Manag. Sci. 77, 4357–4364 (2021)

    Google Scholar 

  133. Chen, K.-N., Chen, C.-Y., Lin, Y.-C., Chen, M.-J.: Formulation of a novel antagonistic bacterium based biopesticide for fungal disease control using microencapsulation techniques. J. Agric. Sci. 5, 153 (2013)

    Google Scholar 

  134. Maciel, G.M., Chaves, K.S., Grosso, C.R.F., Gigante, M.L.: Microencapsulation of Lactobacillus acidophilus La-5 by spray-drying using sweet whey and skim milk as encapsulating materials. J. Dairy Sci. 97, 1991–1998 (2014)

    Article  Google Scholar 

  135. Nami, Y., Haghshenas, B., Yari Khosroushahi, A.: Effect of psyllium and gum Arabic biopolymers on the survival rate and storage stability in yogurt of Enterococcus durans IW 3 encapsulated in alginate. Food Sci. Nutr. 5, 554–563 (2017)

    Article  Google Scholar 

  136. McGuire, M.R., Shasha, B.S., Eastman, C.E., Oloumi-Sadeghi, H.: Starch-and flour-based sprayable formulations: effect on rainfastness and solar stability of Bacillus thuringiensis. J. Econ. Entomol. 89, 863–869 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

Author [SS] are thankful to Chandigarh University, Mohali, India for providing necessary infrastructure and facilities. Author [SIM] is thankful to REVA University, Bangalore, India for providing necessary infrastructure and facilities.

Funding

The author P. B. thankful  Maejo University for supporting through the Grant No.- MU.3-65-009 and International College Maejo University for supporting with the Internal Grant No.- 18302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Sharma.

Ethics declarations

Conflict of interest

There are no conflict of interest between authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Sharma, S., Aich, A. et al. Chicken Feather Waste Hydrolysate as a Potential Biofertilizer for Environmental Sustainability in Organic Agriculture Management. Waste Biomass Valor 14, 2783–2799 (2023). https://doi.org/10.1007/s12649-023-02123-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02123-6

Keywords

Navigation