Skip to main content
Log in

Thoracic interstitial injection of drug-liposomes in mice for treating atherosclerosis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Intervaginal space injection (ISI) is a novel mode of administration investigated over the last decade. After injecting nanoparticles into the intervaginal space, they can be transported along low flow resistance channels into the interstitial space. This transport has a certain delivery direction, and site-specific injection can work on specific organs or tissues. In this study, the thorax, a new ISI site in the interstitial surrounding the internal thoracic artery named the thoracic interstitial injection (tISI) was investigated. To prove the targeting ability of the tISI, two sizes of gold nanoparticles (AuNPs) (47 and 87 nm) were administered to mice. After 1 h, the biodistribution of AuNPs in the tissues was measured via single particle inductively coupled plasma mass spectrometry (spICP-MS). The results showed that the concentration of AuNPs in the aorta after tISI injection was significantly higher than that after intravenous injection. Moreover, fewer nanoparticles with larger particle sizes were observed to have entered the blood and were better targeted to the aorta. Thereafter, tanshinone IIa sodium sulfonate liposomes were administered for the treatment of aortic atherosclerosis. The proportion of aortic plaques in atherosclerotic Apoe-/- mice administered via tISI was significantly lower than that in other model animals (P < 0.001). Furthermore, the proteoglycan content and CD68-positive cell count in the plaques were significantly reduced. The vascular elastic fibers at the plaque site were thickened, and fractures were reduced. tISI was, therefore, determined to be an effective strategy for the treatment of atherosclerotic aortic plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, W. T.; Cao, Y. P.; Zhou, X. H.; Han, D. Interstitial fluid behavior and diseases. Adv. Sci. (Weinh.) 2022, 9, 2100617.

    Google Scholar 

  2. Feng, J. T.; Wang, F.; Han, X. X.; Ao, Z.; Sun, Q. M.; Hua, W. D.; Chen, P. P.; Jing, T. W.; Li, H. Y.; Han, D. A “green pathway” different from simple diffusion in soft matter: Fast molecular transport within micro/nanoscale multiphase porous systems. Nano Res. 2014, 7, 434–442.

    CAS  Google Scholar 

  3. Zhang, Q.; Ao, Z.; Hu, N.; Zhu, Y. T.; Liao, F. L.; Han, D. Neglected interstitial space in malaria recurrence and treatment. Nano Res. 2020, 13, 2869–2878.

    CAS  Google Scholar 

  4. Shi, X. L.; Zhu, Y. T.; Hua, W. D.; Ji, Y. L.; Ha, Q.; Han, X. X.; Liu, Y.; Gao, J. W.; Zhang, Q.; Liu, S. D. et al. An in vivo study of the biodistribution of gold nanoparticles after intervaginal space injection in the tarsal tunnel. Nano Res. 2016, 9, 2097–2109.

    CAS  Google Scholar 

  5. Sun, H. Z.; Han, D.; Gao, Y.; Yan, T.; Li, T. T.; Shi, Y. H.; Gao, S. K.; Li, Z. X.; Guo, Y. T.; Shi, X. L. Particle-size-dependent biological distribution of gold nanoparticles after interstitial injection. Mater. Chem. Front. 2022, 6, 2760–2767.

    CAS  Google Scholar 

  6. Li, J.; Zhao, J. Q.; Tan, T. T.; Liu, M. M.; Zeng, Z. W.; Zeng, Y. Y.; Zhang, L. L.; Fu, C. M.; Chen, D. J.; Xie, T. Nanoparticle drug delivery system for glioma and its efficacy improvement strategies: A comprehensive review. Int. J. Nanomedicine 2020, 15, 2563–2582.

    CAS  Google Scholar 

  7. Hu, N.; Cao, Y. P.; Ao, Z.; Han, X. X.; Zhang, Q.; Liu, W. T.; Liu, S. D.; Liao, F. L.; Han, D. Flow behavior of liquid metal in the connected fascial space: Intervaginal space injection in the rat wrist and mice with tumor. Nano Res. 2018, 11, 2265–2276.

    CAS  Google Scholar 

  8. Chen, P. Y.; Qin, L.; Li, G. X.; Wang, Z.; Dahlman, J. E.; Malagon-Lopez, J.; Gujja, S.; Cilfone, N. A.; Kauffman, K. J.; Sun, L. L. et al. Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nat. Metab. 2019, 1, 912–926.

    CAS  Google Scholar 

  9. Libby, P. The biology of atherosclerosis comes full circle: Lessons for conquering cardiovascular disease. Nat. Rev. Cardiol. 2021, 18, 683–684.

    Google Scholar 

  10. Ait-Oufella, H.; Salomon, B. L.; Potteaux, S.; Robertson, A. K.; Gourdy, P.; Zoll, J.; Merval, R.; Esposito, B.; Cohen, J. L.; Fisson, S. et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 2006, 12, 178–180.

    CAS  Google Scholar 

  11. Wu, Z. Y.; Xu, Z. J.; Pu, H. J.; Li, W. M.; Liu, J. C.; Zhao, Z.; Lu, X. W.; Lin, K. L.; Li, B. Degradable co-delivery nanoplatforms for inflammation-targeted therapy against atherosclerosis. Appl. Mater. Today 2021, 25, 101214.

    Google Scholar 

  12. Houthoofd, S.; Vuylsteke, M.; Mordon, S.; Fourneau, I. Photodynamic therapy for atherosclerosis. The potential of indocyanine green. Photodiagn. Photodyn. Ther. 2020, 29, 101568.

    CAS  Google Scholar 

  13. Chen, J.; Zhang, X. X.; Millican, R.; Sherwood, J.; Martin, S.; Jo, H.; Yoon, Y. S.; Brott, B. C.; Jun, H. W. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. Adv. Drug Deliv. Rev. 2021, 170, 142–199.

    CAS  Google Scholar 

  14. Song, Y. N.; Zhang, N.; Li, Q. Y.; Chen, J.; Wang, Q. Z.; Yang, H. B.; Tan, H. P.; Gao, J. F.; Dong, Z. H.; Pang, Z. Q. et al. Biomimetic liposomes hybrid with platelet membranes for targeted therapy of atherosclerosis. Chem. Eng. J. 2021, 408, 127296.

    CAS  Google Scholar 

  15. Shen, J. W.; Li, C.; Yang, M. Y.; Lin, J. F.; Yin, M. D.; Zou, J. J.; Wu, P. Y.; Chen, L.; Song, L. X.; Shao, J. W. Biomimetic nanoparticles: U937 cell membranes based core—shell nanosystems for targeted atherosclerosis therapy. Int. J. Pharm. 2022, 611, 121297.

    CAS  Google Scholar 

  16. Kim, H.; Han, J.; Park, J. H. Cyclodextrin polymer improves atherosclerosis therapy and reduces ototoxicity. J. Control. Release 2020, 319, 77–86.

    CAS  Google Scholar 

  17. Gao, Y.; Zhang, R. Y.; Sun, H. Z.; Guo, Y. T.; Chen, L.; Shi, X. L.; Ge, G. L. High-efficiency mechanically assisted alkaline extraction of nanoparticles from biological tissues for spICP-MS analysis. Anal. Bioanal. Chem. 2022, 18, 4401–4408.

    Google Scholar 

  18. Qin, Y.; Wang, L. X.; Guo, M. F.; Qu, D.; Chen, Y. Celastrol/sodium tanshinone IIA sulfonate-coloaded liposome: Preparation, characterization, and synergistic anti-breast cancer treatment. Chin. Tradit. Herb. Drugs 2018, 49, 5271–5279.

    Google Scholar 

  19. Henriquez-Pino, J. A.; Gomes, W. J.; Prates, J. C.; Buffolo, E. Surgical anatomy of the internal thoracic artery. Ann. Thorac. Surg. 1997, 64, 1041–1045.

    CAS  Google Scholar 

  20. Sahar, G.; Shavit, R.; Yosibash, Z.; Novack, L.; Matsa, M.; Medalion, B.; Hochhauser, E.; Aravot, D. The physiologic and histologic properties of the distal internal thoracic artery and its subdivisions. J. Thorac. Cardiovasc. Surg. 2015, 149, 1042–1050.

    Google Scholar 

  21. Weinberg, P. M. Aortic arch anomalies. J. Cardiovasc. Magn. Reson. 2006, 8, 633–643.

    Google Scholar 

  22. Han, X. X.; Li, H. Y.; Hua, W. D.; Dai, L. R.; Ao, Z.; Liao, F. L.; Han, D. Fluid in the tissue channels of vascular adventitia investigated by AFM and TEM. Clin. Hemorheol. Microcirc. 2017, 67, 173–182.

    CAS  Google Scholar 

  23. Hu, N.; Shi, X. L.; Zhang, Q.; Liu, W. T.; Zhu, Y. T.; Wang, Y. Q.; Hou, Y.; Ji, Y. L.; Cao, Y. P.; Zeng, Q. et al. Special interstitial route can transport nanoparticles to the brain bypassing the blood-brain barrier. Nano Res. 2019, 12, 2760–2765.

    Google Scholar 

  24. Li, H. Y.; Yang, C. Q.; Yin, Y. J.; Wang, F.; Chen, M.; Xu, L.; Wang, N. L.; Zhang, D.; Wang, X. X.; Kong, Y. Y. et al. An extravascular fluid transport system based on structural framework of fibrous connective tissues in human body. Cell Prolif. 2019, 52, e12667.

    Google Scholar 

  25. Sayaca, Ç.; Çalik, M.; Eyüboğlu, F.; Kaya, D. Architecture of fascia and its adaptation to pathological conditions. In Comparative Kinesiology of the Human Body; Angin, S.; Şimşek, I. E., Eds.; Academic Press: New York, 2020; pp 149–154.

    Google Scholar 

  26. Wiig, H.; Swartz, M. A. Interstitial fluid and lymph formation and transport: Physiological regulation and roles in inflammation and cancer. Physiol. Rev. 2012, 92, 1005–1060.

    CAS  Google Scholar 

  27. Fujii, S.; Roche, M.; Jones, P. M.; Vissa, D.; Bainbridge, D.; Zhou, J. R. Transversus thoracis muscle plane block in cardiac surgery: A pilot feasibility study. Reg. Anesth. Pain Med. 2019, 44, 556–560.

    Google Scholar 

  28. Guarnieri, D.; Melone, P.; Moglianetti, M.; Marotta, R.; Netti, P. A.; Pompa, P. P. Particle size affects the cytosolic delivery of membranotropic peptide-functionalized platinum nanozymes. Nanoscale 2017, 9, 11288–11296.

    CAS  Google Scholar 

  29. Wang, T.; Wang, L.; Li, X. M.; Hu, X. J.; Han, Y. P.; Luo, Y.; Wang, Z. J.; Li, Q.; Aldalbahi, A.; Wang, L. H. et al. Size-dependent regulation of intracellular trafficking of polystyrene nanoparticle-based drug-delivery systems. ACS Appl. Mater. Interfaces 2017, 9, 18619–18625.

    CAS  Google Scholar 

  30. Gaumet, M.; Vargas, A.; Gurny, R.; Delie, F. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm. 2008, 69, 1–9.

    CAS  Google Scholar 

  31. Skotland, T.; Iversen, T. G.; Llorente, A.; Sandvig, K. Biodistribution, pharmacokinetics and excretion studies of intravenously injected nanoparticles and extracellular vesicles: Possibilities and challenges. Adv. Drug Deliv. Rev. 2022, 186, 114326.

    CAS  Google Scholar 

  32. Li, Z. Z.; Jiang, C.; Chai, L. X.; Fan, T. J.; Li, C. Z.; Chen, Z.; Huang, W. C.; Zhang, B.; Al-Hartomy, O. A.; Al-Ghamdi, A. et al. New insights to atherosclerosis management: Role of nanomaterials. Appl. Mater. Today 2022, 27, 101466.

    Google Scholar 

  33. Wang, J.; He, W.; Cheng, L.; Zhang, H.; Wang, Y.; Liu, C.; Dong, S.; Zha, W. H.; Kong, X. H.; Yao, C. et al. A modified thin film method for large scale production of dimeric artesunate phospholipid liposomes and comparison with conventional approaches. Int. J. Pharm. 2022, 619, 121714.

    CAS  Google Scholar 

  34. Ulrich, A. S. Biophysical aspects of using liposomes as delivery vehicles. Biosci. Rep. 2002, 22, 129–150.

    CAS  Google Scholar 

  35. Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017, 9, 12.

    Google Scholar 

  36. Levchenko, T. S.; Hartner, W. C.; Torchilin, V. P. Liposomes in diagnosis and treatment of cardiovascular disorders. Methodist DeBakey Cardiovasc. J. 2012, 8, 36–41.

    Google Scholar 

  37. Li, X. T.; Gu, J. Y.; Xiao, Q. Q.; Liu, Y.; Zhou, P.; Fan, L. F.; Zhang, X. L.; Lu, X.; Wu, J.; Liu, Z. X. et al. Liposomal codelivery of inflammation inhibitor and collagen protector to the plaque for effective anti-atherosclerosis. Chin. Chem. Lett. 2023, 34, 107483.

    CAS  Google Scholar 

  38. Duong, T. T.; Yen, T. T. H.; Nguyen, L. T.; Nguyen, T. D.; Nguyen, T. Q. T.; Nghiem, T. H. L.; Pham, H. T.; Raal, A.; Heinämäki, J.; Pham, T. M. H. Berberine-loaded liposomes for oral delivery: Preparation, physicochemical characterization and in-vivo evaluation in an endogenous hyperlipidemic animal model. Int. J. Pharm. 2022, 616, 121525.

    CAS  Google Scholar 

  39. de Bittencourt, P. I. H.Jr.; Lagranha, D. J.; Maslinkiewicz, A.; Senna, S. M.; Tavares, A. M. V.; Baldissera, L. P.; Janner, D. R.; Peralta, J. S.; Bock, P. M.; Gutierrez, L. L. P. et al. Lipocardium: Endothelium-directed cyclopentenone prostaglandin-based liposome formulation that completely reverses atherosclerotic lesions. Atherosclerosis. 2007, 193, 245–258.

    Google Scholar 

  40. Paulis, L. E.; Jacobs, I.; van den Akker, N. M.; Geelen, T.; Molin, D. G.; Starmans, L. W.; Nicolay, K.; Strijkers, G. J. Targeting of ICAM-1 on vascular endothelium under static and shear stress conditions using a liposomal Gd-based MRI contrast agent. J. Nanobiotechnol. 2012, 10, 25.

    CAS  Google Scholar 

  41. van Tilborg, G. A. F.; Mulder, W. J. M.; van der Schaft, D. W. J.; Reutelingsperger, C. P. M.; Griffioen, A. W.; Strijkers, G. J.; Nicolay, K. Improved magnetic resonance molecular imaging of tumor angiogenesis by avidin-induced clearance of nonbound bimodal liposomes. Neoplasia 2008, 10, 1459–1469.

    CAS  Google Scholar 

  42. Karathanasis, E.; Geigerman, C. M.; Parkos, C. A.; Chan, L.; Bellamkonda, R. V.; Jaye, D. L. Selective targeting of nanocarriers to neutrophils and monocytes. Ann. Biomed. Eng. 2009, 37, 1984–1992.

    Google Scholar 

  43. Wu, Y.; Zhang, Y.; Dai, L. L.; Wang, Q. Q.; Xue, L. J.; Su, Z. G.; Zhang, C. An apoptotic body-biomimic liposome in situ upregulates anti-inflammatory macrophages for stabilization of atherosclerotic plaques. J. Control. Release 2019, 316, 236–249.

    CAS  Google Scholar 

  44. Kiaie, N.; Gorabi, A. M.; Penson, P. E.; Watts, G.; Johnston, T. P.; Banach, M.; Sahebkar, A. A new approach to the diagnosis and treatment of atherosclerosis: The era of the liposome. Drug Discov. Today 2020, 25, 58–72.

    CAS  Google Scholar 

  45. Epshtein, M.; Korin, N. Shear targeted drug delivery to stenotic blood vessels. J. Biomech. 2017, 50, 217–221.

    Google Scholar 

  46. Mocanu, C. A.; Fuior, E. V.; Voicu, G.; Rebleanu, D.; Safciuc, F.; Deleanu, M.; Fenyo, I. M.; Escriou, V.; Manduteanu, I.; Simionescu, M. et al. P-selectin targeted RAGE-shRNA lipoplexes alleviate atherosclerosis-associated inflammation. J. Control. Release 2021, 338, 754–772.

    CAS  Google Scholar 

  47. Roces, C. B.; Port, E. C.; Daskalakis, N. N.; Watts, J. A.; Aylott, J. W.; Halbert, G. W.; Perrie, Y. Rapid scale-up and production of active-loaded PEGylated liposomes. Int. J. Pharm. 2020, 586, 119566.

    CAS  Google Scholar 

  48. Stenmark, K. R.; Davie, N.; Frid, M.; Gerasimovskaya, E.; Das, M. Role of the adventitia in pulmonary vascular remodeling. Physiology 2006, 21, 134–145.

    CAS  Google Scholar 

  49. Simion, V.; Zhou, H. Y.; Haemmig, S.; Pierce, J. B.; Mendes, S.; Tesmenitsky, Y.; Pérez-Cremades, D.; Lee, J. F.; Chen, A. F.; Ronda, N. et al. A macrophage-specific lncRNA regulates apoptosis and atherosclerosis by tethering HuR in the nucleus. Nat. Commun. 2020, 11, 6135.

    CAS  Google Scholar 

  50. Ogeng’o, J.; Ominde, B. S.; Ongeti, K.; Olabu, B.; Obimbo, M.; Mwachaka, P. Reappraisal of the structure of arterial tunica adventitia and its involvement in atherosclerosis. Anat. J. Afr. 2017, 6, 824–833.

    Google Scholar 

  51. Gujral, D. M.; Cheung, W. K.; Shah, B. N.; Chahal, N. S.; Bhattacharyya, S.; Hooper, J.; Senior, R.; Tang, M. X.; Harrington, K. J.; Nutting, C. M. Contrast enhancement of carotid adventitial vasa vasorum as a biomarker of radiation-induced atherosclerosis. Radiother. Oncol. 2016, 120, 63–68.

    Google Scholar 

  52. Wang, J. L.; Wang, Y.; Wang, J. J.; Guo, X. S.; Chan, E. C.; Fan, J. Adventitial activation in the pathogenesis of injury-induced arterial remodeling: Potential implications in transplant vasculopathy. Am. J. Pathol. 2018, 188, 838–845.

    CAS  Google Scholar 

  53. Barker, S. G. E.; Tilling, L. C.; Miller, G. C.; Beesley, J. E.; Fleetwood, G.; Stavri, G. T.; Baskerville, P. A.; Martin, J. F. The adventitia and atherogenesis: Removal initiates intimal proliferation in the rabbit which regresses on generation of a “neoadventitia”. Atherosclerosis 1994, 105, 131–144.

    CAS  Google Scholar 

  54. Wörsdörfer, P.; Mekala, S. R.; Bauer, J.; Edenhofer, F.; Kuerten, S.; Ergün, S. The vascular adventitia: An endogenous, omnipresent source of stem cells in the body. Pharmacol. Ther. 2017, 171, 13–29.

    Google Scholar 

  55. Tanaka, K.; Nagata, D.; Hirata, Y.; Tabata, Y.; Nagai, R.; Sata, M. Augmented angiogenesis in adventitia promotes growth of atherosclerotic plaque in apolipoprotein e-deficient mice. Atherosclerosis 2011, 215, 366–373.

    CAS  Google Scholar 

  56. Klotz, L.; Norman, S.; Vieira, J. M.; Masters, M.; Rohling, M.; Dube, K. N.; Bollini, S.; Matsuzaki, F.; Carr, C. A.; Riley, P. R. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature 2015, 522, 62–67.

    CAS  Google Scholar 

  57. Tinajero, M. G.; Gotlieb, A. I. Recent developments in vascular adventitial pathobiology: The dynamic adventitia as a complex regulator of vascular disease. Am. J. Pathol. 2020, 190, 520–534.

    CAS  Google Scholar 

  58. Okamoto, E. I.; Couse, T.; de Leon, H.; Vinten-Johansen, J.; Goodman, R. B.; Scott, N. A.; Wilcox, J. N. Perivascular inflammation after balloon angioplasty of porcine coronary arteries. Circulation 2001, 104, 2228–2235.

    CAS  Google Scholar 

  59. Xu, F.; Ji, J.; Li, L.; Chen, R.; Hu, W. C. Adventitial fibroblasts are activated in the early stages of atherosclerosis in the apolipoprotein E knockout mouse. Biochem. Biophys. Res. Commun. 2007, 352, 681–688.

    CAS  Google Scholar 

  60. Stenmark, K. R.; Yeager, M. E.; El Kasmi, K. C.; Nozik-Grayck, E.; Gerasimovskaya, E. V.; Li, M.; Riddle, S. R.; Frid, M. G. The adventitia: Essential regulator of vascular wall structure and function. Annu. Rev. Physiol. 2013, 75, 23–47.

    CAS  Google Scholar 

  61. Sakamoto, S.; Tsuruda, T.; Hatakeyama, K.; Imamura, T.; Asada, Y.; Kitamura, K. Impact of age-dependent adventitia inflammation on structural alteration of abdominal aorta in hyperlipidemic mice. PLoS One 2014, 9, e105739.

    Google Scholar 

  62. Wilcox, J. N.; Scott, N. A. Potential role of the adventitia in arteritis and atherosclerosis. Int. J. Cardiol. 1996, 54, S21–S35.

    Google Scholar 

  63. Xu, X. S.; Lu, H. X.; Lin, H. L.; Ni, M.; Sun, H. W.; Li, C. J.; Jiang, H.; Li, F. H.; Zhao, Y. X.; Zhang, M. et al. Lymphangiogenesis promotes inflammation and neointimal hyperplasia after adventitia removal in the rat carotid artery. Int. J. Cardiol. 2009, 134, 426–427.

    Google Scholar 

  64. Tuttolomondo, A.; Di Raimondo, D.; Pecoraro, R.; Serio, A.; D’Aguanno, G.; Pinto, A.; Licata, G. Immune-inflammatory markers and arterial stiffness indexes in subjects with acute ischemic stroke. Atherosclerosis 2010, 213, 311–318.

    CAS  Google Scholar 

  65. Ang, H. Y.; Xiong, G. M.; Chaw, S. Y.; Phua, J. L.; Ng, J. C. K.; Wong, P. E. H.; Venkatraman, S.; Chong, T. T.; Huang, Y. Y. Adventitial injection delivery of nano-encapsulated sirolimus (Nanolimus) to injury-induced porcine femoral vessels to reduce luminal restenosis. J. Control. Release 2020, 319, 15–24.

    CAS  Google Scholar 

  66. Shirasu, T.; Yodsanit, N.; Xie, X. J.; Wang, B. W.; Gong, S. Q.; Guo, L. W.; Kent, K. C. Tissue adhesive unimolecular micelles directly painted onto the adventitia for decreasing intimal hyperplasia. J. Vasc. Surg. 2022, 75, 13S.

    Google Scholar 

  67. Zhu, W.; Lv, Q.; Chen, H. W.; Wang, Z. H.; Zhong, Q. Protective effect and mechanism of sodium tanshinone II A sulfonate on microcirculatory disturbance of small intestine in rats with sepsis. J. Huazhong Univ. Sci. Technol. Med. Sci. 2011, 31, 441.

    CAS  Google Scholar 

  68. Liu, J.; Dong, S. X.; Ru, Y. X. A review: Pathological and molecular biological study on atherosclerosis. Clin. Chim. Acta 2022, 531, 217–222.

    Google Scholar 

  69. Tran-Lundmark, K.; Tran, P. K.; Paulsson-Berne, G.; Fridén, V.; Soininen, R.; Tryggvason, K.; Wight, T. N.; Kinsella, M. G.; Borén, J.; Hedin, U. Heparan sulfate in perlecan promotes mouse atherosclerosis: Roles in lipid permeability, lipid retention, and smooth muscle cell proliferation. Circ. Res. 2008, 103, 43–52.

    CAS  Google Scholar 

  70. Pukaluk, A.; Wittgenstein, A. S.; Leitinger, G.; Kolb, D.; Pernitsch, D.; Schneider, S. A.; Knöbelreiter, P.; Horak, V.; Bredies, K.; Holzapfel, G. A. et al. An ultrastructural 3D reconstruction method for observing the arrangement of collagen fibrils and proteoglycans in the human aortic wall under mechanical load. Acta Biomater. 2022, 141, 300–314.

    CAS  Google Scholar 

  71. Katsuda, S.; Kaji, T. Atherosclerosis and extracellular matrix. J. Atheroscler. Thromb. 2003, 10, 267–274.

    CAS  Google Scholar 

  72. Bobryshev, Y. V. Calcification of elastic fibers in human atherosclerotic plaque. Atherosclerosis 2005, 180, 293–303.

    CAS  Google Scholar 

  73. Heinz, A. Elastic fibers during aging and disease. Ageing Res. Rev. 2021, 66, 101255.

    CAS  Google Scholar 

  74. Chen, T. T.; Li, M. L.; Fan, X. H.; Cheng, J.; Wang, L. Q. Sodium tanshinone IIA sulfonate prevents angiotensin II-induced differentiation of human atrial fibroblasts into myofibroblasts. Oxid. Med. Cell Longev. 2018, 2018, 6712585.

    Google Scholar 

  75. Zhu, J.; Xu, Y. L.; Ren, G. Y.; Hu, X.; Wang, C.; Yang, Z.; Li, Z. Y.; Mao, W.; Lu, D. Z. Tanshinone IIA sodium sulfonate regulates antioxidant system, inflammation, and endothelial dysfunction in atherosclerosis by downregulation of CLIC1. Eur. J. Pharmacol. 2017, 815, 427–436.

    CAS  Google Scholar 

  76. Cheng, J.; Chen, T. T.; Li, P. Y.; Wen, J.; Pang, N. B.; Zhang, L. P.; Wang, L. Q. Sodium tanshinone IIA sulfonate prevents lipopolysaccharide-induced inflammation via suppressing nuclear factor-κB signaling pathway in human umbilical vein endothelial cells. Can. J. Physiol. Pharmacol. 2018, 96, 26–31.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research Program of Frontier Science of CAS (No. ZDBS-LY-SLH036) and Key deployment projects of CAS (No. QYKJZD-SSW-SLH02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoli Shi or Dong Han.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, T., Sun, H., Shi, Y. et al. Thoracic interstitial injection of drug-liposomes in mice for treating atherosclerosis. Nano Res. 16, 5311–5321 (2023). https://doi.org/10.1007/s12274-022-5208-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5208-3

Keywords

Navigation