Skip to main content
Log in

Inter-facet composition modulation of III-nitride nanowires over pyramid textured Si substrates by stationary molecular beam epitaxy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

InGaN nanowires (NWs) are grown on pyramid textured Si substrates by stationary plasma-assisted molecular beam epitaxy (PA-MBE). The incidence angles of the highly directional source beams vary for different pyramid facets, inducing a distinct inter-facet modulation of the In content of the InGaN NWs, which is verified by spatial element distribution analysis. The resulting multi-wavelength emission is confirmed by photoluminescence (PL) and cathodoluminescence (CL). Pure GaN phase formation dominates on certain facets, which is attributed to extreme local growth conditions, such as low active N flux. On the same facets, InGaN NWs exhibit a morphology change close to the pyramid ridge, indicating inter-facet atom migration. This cross-talk effect due to inter-facet atom migration is verified by a decrease of the inter-facet In content modulation amplitude with shrinking pyramid size. A detailed analysis of the In content variation across individual pyramid facets and element distribution line profiles reveals that the cross-talk effect originates mainly from the inter-facet atom migration over the convex pyramid ridge facet boundaries rather than the concave base line facet boundaries. This is understood by first-principles calculations showing that the pyramid baseline facet boundary acts as an energy barrier for atom migration, which is much higher than that of the ridge facet boundary. The influence of the growth temperature on the inter-facet In content modulation is also presented. This work gives deep insight into the composition modulation for the realization of multi-color light-emitting devices based on the monolithic growth of InGaN NWs on pyramid textured Si substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taki, T.; Strassburg, M. Review—visible LEDs: More than efficient light. ECS J. Solid State Sci. Technol. 2019, 9, 015017.

    Article  Google Scholar 

  2. Hai, X.; Rashid, R. T.; Sadaf, S. M.; Mi, Z.; Zhao, S. Effect of low hole mobility on the efficiency droop of AlGaN nanowire deep ultraviolet light emitting diodes. Appl. Phys. Lett. 2019, 114, 101104.

    Article  Google Scholar 

  3. Nami, M.; Rashidi, A.; Monavarian, M.; Mishkat-Ul-Masabih, S.; Rishinaramangalam, A. K.; Brueck, S. R. J.; Feezell, D. Electrically injected GHz-class GaN/InGaN core-shell nanowire-based μLEDs: Carrier dynamics and nanoscale homogeneity. ACS Photonics 2019, 6, 1618–1625.

    Article  CAS  Google Scholar 

  4. Kuykendall, T.; Ulrich, R.; Aloni, S.; Yang, P. D. Complete composition tunability of InGaN nanowires using a combinatorial approach. Nat. Mater. 2007, 6, 951–956.

    Article  CAS  Google Scholar 

  5. Li, G. Q.; Wang, W. L.; Yang, W. J.; Lin, Y. H.; Wang, H. Y.; Lin, Z. T.; Zhou, S. Z. GaN-based light-emitting diodes on various substrates: A critical review. Rep. Prog. Phys. 2016, 79, 056501.

    Article  Google Scholar 

  6. Qi, M.; Li, G. W.; Ganguly, S.; Zhao, P.; Yan, X. D.; Verma, J.; Song, B.; Zhu, M. D.; Nomoto, K.; Xing, H. L. et al. Strained GaN quantum-well FETs on single crystal bulk AlN substrates. Appl. Phys. Lett. 2017, 110, 063501.

    Article  Google Scholar 

  7. Kaplar, R. J.; Allerman, A. A.; Armstrong, A. M.; Crawford, M. H.; Dickerson, J. R.; Fischer, A. J.; Baca, A. G.; Douglas, E. A. Review—ultra-wide-bandgap AlGaN power electronic devices. ECS J. Solid State Sci. Technol. 2017, 6, Q3061–Q3066.

    Article  CAS  Google Scholar 

  8. Kibria, G.; Qiao, R. M.; Yang, W. L.; Boukahil, I.; Kong, X. H.; Chowdhury, F. A.; Trudeau, M. L.; Ji, W.; Guo, H.; Himpsel, F. J. et al. Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting. Adv. Mater. 2016, 28, 8388–8397.

    Article  CAS  Google Scholar 

  9. Varadhan, P.; Fu, H. C.; Priante, D.; Retamal, J. R. D.; Zhao, C.; Ebaid, M.; Ng, T. K.; Ajia, I.; Mitra, S.; Roqan, I. S. et al. Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting. Nano Lett. 2017, 17, 1520–1528.

    Article  CAS  Google Scholar 

  10. Alvi, N. U. H.; Soto Rodriguez, P. E. D.; Aseev, P.; Gómez, V. J.; Alvi, A. U. H.; Hassan, W. U.; Willander, M.; Nötzel, R. InN/InGaN quantum dot photoelectrode: Efficient hydrogen generation by water splitting at zero voltage. Nano Energy 2015, 13, 291–297.

    Article  CAS  Google Scholar 

  11. Wong, M. S.; Nakamura, S.; DenBaars, S. P. Review—progress in high performance III-nitride micro-light-emitting diodes. ECS J. Solid State Sci. Technol. 2020, 9, 015012.

    Article  CAS  Google Scholar 

  12. Um, J. G.; Jeong, D. Y.; Jung, Y.; Moon, J. K.; Jung, Y. H.; Kim, S.; Kim, S. H.; Lee, J. S.; Jang, J. Active-matrix GaN μ-LED display using oxide thin-film transistor backplane and flip chip LED bonding. Adv. Electron. Mater. 2019, 5, 1800617.

    Article  Google Scholar 

  13. Gou, F. W.; Hsiang, E. L.; Tan, G. J.; Lan, Y. F.; Tsai, C. Y.; Wu, S. T. High performance color-converted micro-LED displays. J. Soc. Inf. Disp. 2019, 27, 199–206.

    Article  Google Scholar 

  14. Geum, D. M.; Kim, S. K.; Kang, C. M.; Moon, S. H.; Kyhm, J.; Han, J.; Lee, D. S.; Kim, S. H. Strategy toward the fabrication of ultrahigh-resolution micro-LED displays by bonding-interface-engineered vertical stacking and surface passivation. Nanoscale 2019, 11, 23139–23148.

    Article  CAS  Google Scholar 

  15. Ding, K.; Avrutin, V.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H. Micro-LEDs, a manufacturability perspective. Appl. Sci. 2019, 9, 1206.

    Article  CAS  Google Scholar 

  16. Ra, Y. H.; Wang, R. J.; Woo, S. Y.; Djavid, M.; Sadaf, S.; Lee, J.; Botton, G. A.; Mi, Z. T. Full-color single nanowire pixels for projection displays. Nano Lett. 2016, 16, 4608–4615.

    Article  CAS  Google Scholar 

  17. Chun, S. Y.; Yoo, G. Y.; Jeong, S.; Park, S. M.; Eo, Y. J.; Kim, W.; Do, Y. R.; Song, J. K. Dual wavelength lasing of InGaN/GaN axial-heterostructure nanorod lasers. Nanoscale 2019, 11, 14186–14193.

    Article  CAS  Google Scholar 

  18. Sadaf, S. M.; Ra, Y. H.; Nguyen, H. P. T.; Djavid, M.; Mi, Z. Alternating-current InGaN/GaN tunnel junction nanowire white-light emitting diodes. Nano Lett. 2015, 15, 6696–6701.

    Article  CAS  Google Scholar 

  19. Kang, M. S.; Lee, C. H.; Park, J. B.; Yoo, H.; Yi, G. C. Gallium nitride nanostructures for light-emitting diode applications. Nano Energy 2012, 1, 391–400.

    Article  CAS  Google Scholar 

  20. Lee, M. L.; Yeh, Y. H.; Tu, S. J.; Chen, P. C.; Lai, W. C.; Sheu, J. K. White emission from non-planar InGaN/GaN MQW LEDs grown on GaN template with truncated hexagonal pyramids. Opt. Express 2015, 23, A401–412.

    Article  CAS  Google Scholar 

  21. Sergent, S.; Damilano, B.; Vézian, S.; Chenot, S.; Takiguchi, M.; Tsuchizawa, T.; Taniyama, H.; Notomi, M. Subliming GaN into ordered nanowire arrays for ultraviolet and visible nanophotonics. ACS Photonics 2019, 6, 3321–3330.

    Article  CAS  Google Scholar 

  22. Bai, J.; Cai, Y. F.; Feng, P.; Fletcher, P.; Zhao, X. M.; Zhu, C. Q.; Wang, T. A direct epitaxial approach to achieving ultrasmall and ultrabright InGaN micro light-emitting diodes (μLEDs). ACS Photonics 2020, 7, 411–415.

    Article  Google Scholar 

  23. Kishino, K.; Sakakibara, N.; Narita, K.; Oto, T. Two-dimensional multicolor (RGBY) integrated nanocolumn micro-LEDs as a fundamental technology of micro-LED display. Appl. Phys. Express 2020, 13, 014003.

    Article  CAS  Google Scholar 

  24. Wang, P.; Chen, H. D.; Wang, H.; Wang, X. Y.; Yin, H. J.; Rao, L. J.; Zhou, G. F.; Nötzel, R. Multi-wavelength light emission from InGaN nanowires on pyramid-textured Si(100) substrate grown by stationary plasma-assisted molecular beam epitaxy. Nanoscale 2020, 12, 8836–8846.

    Article  CAS  Google Scholar 

  25. Aseev, P.; Rodriguez, P. E. D. S.; Gómez, V. J.; Alvi, N. U. H.; Mánuel, J. M.; Morales, F. M.; Jiménez, J. J.; García, R.; Senichev, A.; Lienau, C. et al. Near-infrared emitting In-rich InGaN layers grown directly on Si: Towards the whole composition range. Appl. Phys. Lett. 2015, 106, 072102.

    Article  Google Scholar 

  26. Wang, X. Y.; Wang, P.; Yin, H. J.; Zhou, G. F.; Nötzel, R. An InGaN/SiNx/Si uniband diode. J. Electron. Mater. 2020, 49, 3577–3582.

    Article  CAS  Google Scholar 

  27. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  28. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  29. van Treeck, D.; Fernández-Garrido, S.; Geelhaar, L. Influence of the source arrangement on shell growth around GaN nanowires in molecular beam epitaxy. Phys. Rev. Mater. 2020, 4, 013404.

    Article  CAS  Google Scholar 

  30. Ku, N. J.; Huang, J. H.; Wang, C. H.; Fang, H. C.; Liu, C. P. Crystal face-dependent nanopiezotronics of an obliquely aligned InN nanorod array. Nano Lett. 2012, 12, 562–568.

    Article  CAS  Google Scholar 

  31. Morassi, M.; Largeau, L.; Oehler, F.; Song, H. G.; Travers, L.; Julien, F. H.; Harmand, J. C.; Cho, Y. H.; Glas, F.; Tchernycheva, M. et al. Morphology tailoring and growth mechanism of indium-Rich InGaN/GaN axial nanowire heterostructures by plasma-assisted molecular beam epitaxy. Cryst. Growth Des. 2018, 18, 2545–2554.

    Article  CAS  Google Scholar 

  32. Gómez-Gómez, M.; Garro, N.; Segura-Ruiz, J.; Martinez-Criado, G.; Cantarero, A.; Mengistu, H. T.; García-Cristóbal, A.; Murcia-Mascarós, S.; Denker, C.; Malindretos, J. et al. Spontaneous core-shell elemental distribution in In-rich InxGa1−xN nanowires grown by molecular beam epitaxy. Nanotechnology 2014, 25, 075705.

    Article  Google Scholar 

  33. Goodman, K. D.; Protasenko, V. V.; Verma, J.; Kosel, T. H.; Xing, H. G.; Jena, D. Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy. J. Appl. Phys. 2011, 109, 084336.

    Article  Google Scholar 

  34. Xu, Z. Z.; Yu, Y. F.; Han, J. L.; Wen, L.; Gao, F. L.; Zhang, S. G.; Li, G. Q. The mechanism of indium-assisted growth of (In)GaN nanorods: Eliminating nanorod coalescence by indium-enhanced atomic migration. Nanoscale 2017, 9, 16864–16870.

    Article  CAS  Google Scholar 

  35. Chen, H. D.; Wang, P.; Ye, H. P.; Yin, H. J.; Rao, L. J.; Luo, D. T.; Hou, X. H.; Zhou, G. F.; Nötzel, R. Vertically aligned InGaN nanowire arrays on pyramid textured Si (1 0 0): A 3D arrayed light trapping structure for photoelectrocatalytic water splitting. Chem. Eng. J. 2021, 406, 126757.

    Article  CAS  Google Scholar 

  36. Tsai, S. J.; Lin, C. Y.; Wang, C. L.; Chen, J. W.; Chen, C. H.; Wu, C. L. Efficient coupling of lateral force in GaN nanorod piezoelectric nanogenerators by vertically integrated pyramided Si substrate. Nano Energy 2017, 37, 260–267.

    Article  CAS  Google Scholar 

  37. Wang, Y. J.; Wu, Y. P.; Sun, K.; Mi, Z. T. A quadruple-band metal-nitride nanowire artificial photosynthesis system for high efficiency photocatalytic overall solar water splitting. Mater. Horiz. 2019, 6, 1454–1462.

    Article  CAS  Google Scholar 

  38. Wang, Y. J.; Vanka, S.; Gim, J.; Wu, Y. P.; Fan, R. L.; Zhang, Y. Z.; Shi, J. W.; Shen, M. R.; Hovden, R.; Mi, Z. T. An In0.42Ga0.58N tunnel junction nanowire photocathode monolithically integrated on a nonplanar Si wafer. Nano Energy 2019, 57, 405–413.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program for Chang Jiang Scholars and Innovative Research Teams in Universities (No. IRT_17R40), Science and Technology Program of Guangzhou (No. 2019050001), the Guangdong Provincial Key Laboratory of Optical Information Materials and Technology (No. 2017B030301007), MOE International Laboratory for Optical Information Technologies, the 111 Project, and the National Natural Science Foundation of China (No. 51907171).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Wang, Guofu Zhou or Richard Nötzel.

Electronic Supplementary Material

12274_2020_3209_MOESM1_ESM.pdf

Inter-facet composition modulation of III-nitride nanowires over pyramid textured Si substrates by stationary molecular beam epitaxy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Chen, H., Wang, H. et al. Inter-facet composition modulation of III-nitride nanowires over pyramid textured Si substrates by stationary molecular beam epitaxy. Nano Res. 14, 1502–1511 (2021). https://doi.org/10.1007/s12274-020-3209-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3209-7

Keywords

Navigation