Skip to main content

Advertisement

Log in

German Energiewende—different visions for a (nearly) climate neutral building sector in 2050

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

In order to contribute to the German Energiewende (energy transition) adequately, the building sector has to be almost completely decarbonised in the long term. Our analysis investigates how the German building stock can be transformed into a nearly climate-neutral state by 2050. Using a stock modelling approach based on a typology of the German residential and non-residential building sector, we develop different visions (target states) of what a nearly climate-neutral building stock could look like. All developed target states achieve the overall goal of reducing the non-renewable primary energy demand in 2050 by at least 80%. In order to span a broad target corridor, the target states differ in the two central target dimensions: efficiency (reduction in final energy demand) and energy/technology supply mix (especially the herein contained share of renewable energies). Additionally, using the energy system model REMod-D, the interactions of the building stock with the energy system as a whole are investigated. We explore the differences between a target state focussing on efficiency measures and a target state where efficiency is partly compensated for by an increased use of renewable energies. We learn that from a private cost perspective no clear recommendation can be derived as to which target state should be given priority. This means that other criteria become more relevant, such as social acceptance regarding the different measures, or the challenges that arise from rolling out additional renewable energy capacity on top of what is necessary to achieve the climate goals in other sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. DIN V 18599:2011, Energetische Bewertung von Gebäuden - Berechnung des Nutz-, End- und Primärenergiebedarfs für Heizung, Kühlung, Lüftung, Trinkwarmwasser und Beleuchtung (Energy efficiency of buildings – Calculation of the net, final and primary energy demand for heating, cooling, ventilation, domestic hot water and lighting); DIN 4108-6:2003-06, Wärmeschutz und Energie-Einsparung in Gebäuden - Teil 6: Berechnung des Jahresheizwärme- und des Jahresheizenergiebedarfs (Thermal protection and energy economy in buildings – Part 6: Calculation of annual heat and annual energy use); DIN EN ISO 832:2003-06: Wärmetechnisches Verhalten von Gebäuden - Berechnung des Heizenergiebedarfs – Wohngebäude (Thermal performance of buildings – Calculation of energy use – Residential buildings); DIN V 4701-10:2003-08, Energetische Bewertung heiz- und raumlufttechnischer Anlagen - Teil 10: Heizung, Trinkwassererwärmung, Lüftung (Energy efficiency of heating and ventilation systems in buildings – Part 10: Heating, domestic hot water, ventilation).

  2. If the final energy demand is calculated according to EnEV, ambient forms of energy (essentially solar thermal heat and ambient heat) which are produced in close proximity to a building are set to zero.

  3. For the analysis of the impact on the energy system, on-site PV generation is considered to contribute to the RES share of the overall electricity mix.

  4. For a detailed systematisation as well as impact analysis of such restrictions, see Jochum et al. (2012).

  5. For comparison: in Germany in 2015, electricity produced from renewable energy sources amounted to 196 TWh (BMWI 2016).

  6. An end energy reduction of 20% is relatively low compared to other studies analysing the effects of the German Energy Savings Ordinance (EnEV). In the presented study, the final energy demand in buildings is balanced following the approach of the German energy balance, in which environmental energies used in the building (directly used PV, ambient heat, solar thermal etc.) are not accounted with zero but with their actual energetic value. In contrast to that the EnEV is accounting these energies with zero and thereby the use of ambient heat, solar thermal etc. reduces the final energy demand. The ambient heat used by heat pumps in the free optimisation scenario accounts for approx. 55% of the heat delivered to the buildings. Following the EnEV approach would result in a final energy reduction of approx. 70% in this scenario.

References

  • AGEB (Arbeitsgemeinschaft Energiebilanzen) (2013): Anwendungsbilanzen für die Endenergiesektoren in Deutschland in den Jahren 2010 und 2011.

  • BMVBS (Bundesministerium für Verkehr, Bau und Stadtentwicklung) (2011). Typologie und Bestand beheizter Nichtwohngebäude in Deutschland. BMVBS-Online-Publikation, Nr. 16/2011.

  • BMVBS (Bundesministerium für Verkehr, Bau und Stadtentwicklung) (2013): Systematische Datenanalyse im Bereich der Nichtwohngebäude – Erfassung und Quantifizierung von Energieeinspar- und CO2-Minderungspotenzialen. BMVBS-Online-Publikation 27/2013.

  • BMWI (Bundesministerium für Wirtschaft und Technologie) (2010): Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung.

  • BMWI (Bundesministerium für Wirtschaft und Technologie) (2016): Entwicklung der erneuerbaren Energien in Deutschland im Jahr 2015.

  • Bürger, V., Engelmann, P.; Herkel, S.; Hesse, T.; Köhler, B.; Palzer, A. (2016): Klimaneutraler Gebäudebestand 2050; Freiburg.

  • Dena (Deutsche Energie-Agentur) (2015): Der dena-Gebäudereport 2015; Statistiken und Analysen zu Energieeffizienz im Gebäudebestand.

  • Destatis (Statistisches Bundesamt) (2012): Bauen und Wohnen, Mikrozensus-Zusatzerhebung 2010: Bestand und Struktur der Wohneinheiten, Wohnsituation der Haushalte (Fachserie 5 Heft 1).

  • Destatis (Statistisches Bundesamt) (2013): Ergebnisse der Gebäudezählung des Zensus 2011 auf Gemeindeebene.

  • Destatis (Statistisches Bundesamt) (2016): Baugenehmigungen und Baufertigstellungen (Lange Reihe).

  • Diefenbach, N.; Loga, T. (2011): Basisdaten für Hochrechnungen mit der Deutschen Gebäudetypologie des IWU: Neufassung August 2011.

  • Diefenbach, N. et al. (2010): Datenbasis Gebäudebestand Datenerhebung zur energetischen Qualität und zu den Modernisierungstrends im deutschen Wohngebäudebestand.

  • Expertenkommission zum Monitoring-Prozess, Energie der Zukunft (2015): Stellungnahme zum vierten Monitoring-Bericht der Bundesregierung für das Berichtsjahr 2014.

  • Henning, H., & Palzer, A. (2014). A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies – Part I: Methodology. Renewable and Sustainable Energy Reviews, 30, 1003–1018.

    Article  Google Scholar 

  • IWU (2012): „TABULA“– Entwicklung von Gebäudetypologien zur energetischen Bewertung des Wohngebäudebestands in 13 europäischen Ländern.

  • Jochum, P. et al. (2012): Technische Restriktionen bei der energetischen Modernisierung von Bestandsgebäuden.

  • Loga, T. et al. (2011): Deutsche Gebäudetypologie– Beispielhafte Maßnahmen zur Verbesserung der Energieeffizienz von typischen Wohngebäuden.

  • Loga, T. et al. (2012): TABULA-Scientific Report Germany Further Development of the National Residential Building Typology.

  • Palzer (2016): Sektorübergreifende Modellierung und Optimierung eines zukünftigen deutschen Energiesystems unter Berücksichtigung von Energieeffizienzmaßnahmen im Gebäudesektor. Dissertation. Karlsruher Institut für Technologie.

  • Palzer, A.; Henning, H. (2014): A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies – Part II: Results. Renewable and Sustainable Energy Reviews 30.

  • Schlomann, B. et al. (2011): Energieverbrauch des Sektors Gewerbe, Handel, Dienstleistungen (GHD) in Deutschland für die Jahre 2007 bis 2010.

  • UBA (Umweltbundesamt) (2014): Treibhausgasneutrales Deutschland im Jahr 2050.

Download references

Funding

This work was carried out within the project “Klimaneutraler Gebäudebestand 2050“, funded by the Umweltbundesamt of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veit Bürger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bürger, V., Hesse, T., Köhler, B. et al. German Energiewende—different visions for a (nearly) climate neutral building sector in 2050. Energy Efficiency 12, 73–87 (2019). https://doi.org/10.1007/s12053-018-9660-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-018-9660-6

Keywords

Navigation