Skip to main content

Advertisement

Log in

Paleoenvironment shifts during MIS 3: Loess and loess paleosols of Kashmir Valley, India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Kashmir valley receives the rainfall owing to the dominant westerly winds and experiences less impact of the southwest monsoonal rains (SWM). In this valley, loess and loess paleosols occur as a thin veneer covering the landscape. The loess paleosols form an important proxy for paleoclimate reconstruction and understanding the late Quaternary paleoenvironmental shifts. For this purpose, the loess, paleosols within the loess lithosections were lithologged and the sediment samples were subjected to various grain-size textural and geochemical analysis. The U-ratio of the sediments supported by parameters such as TOC, CaCO3 content, ratios of Zr/Rb, Rb/Sr, Ba/Sr, K/Ba, K/Rb, chemical index of alteration (CIA) and clay mineralogy indicate that the loess paleosols have undergone weak to moderate degree of pedogenesis. The U-ratio and Zr/Sr ratio also reflect variations in the wind velocity ranging from weak to moderate conditions for the loess deposition. The Ba/Sr and Rb/Sr ratios signify varied precipitation conditions, particularly with higher precipitation during the paleosol formation. The A–CN–K plot exhibits weaker to intermediate type of weathering of the loess horizons. TiO2% vs. Al2O3% binary plot illustarates mostly basaltic to rhyolite/granite type of rock source and the Panjal Traps is one of the major sources of the loess deposition. The lower end of the exposed Choori and Burzahama lithosections were dated by OSL method to 54 ± 2 ka at 9.5 m depth and 52 ± 2 ka at 8 m of depth, respectively. Geochemical analysis and OSL dating of the Choori and Burzahama lithosections reveal that climate during the marine isotope stage 3 (MIS 3) was dominantly warm and dry (stadial conditions) in Kashmir valley when the loess layers covered the valley and since then the loess horizons have undergone weak to intermediate, moderate type of weathering in cool and dry conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Achyuthan H, Quade J, Roe L and Placzek C 2007 Stable isotopic composition of pedogenic carbonates from the eastern margin of the Thar Desert, Rajasthan, India; Quat. Int. 162 50–60.

    Google Scholar 

  • Agrawal D P, Dodia R, Kotlia B S, Razdan H and Sahn A 1989 The Plio-Pleistocene geologic and climatic record of the Kashmir Valley: A review and new data; Palaeogeogr. Palaeoclimatol. Palaeoecol. 73 267–286.

    Google Scholar 

  • Agrawal D P, Juyal N and Sharma P 1988 Palaeogeography of the loess deposits of Kashmir; Indian Mountain Sci. Acad. 3 383–389.

    Google Scholar 

  • Agrawal D P, Krishnamurthy R V, Kusumgar S, Nautiyal V, Authavale R N and Radhakrishnanmurthy C 1979 Chronostratigraphy of loessic and lacustrine sediments in the Kashmir Valley, India; Acta Geol. Acad. Sci. Hungaricae 22 185–196.

    Google Scholar 

  • Ahmad I and Chandra R 2013 Geochemistry of loess-paleosolsediments of Kashmir Valley, India: Provenance and weathering; J. Asian Earth Sci. 66 73–89.

    Google Scholar 

  • Ali A, Achyuthan H and Azhardin M 2019 Clay minerals and micromorphology of loess paleosols, Kashmir valley: India; J. Geol. Soc. India 94 275–280.

    Google Scholar 

  • Amajor L C 1987 Major and trace elements geochemistry of Albin and Touronian shales from the Southern Benue trough, Nigeria; J. Afr. Earth Sci. 6 633–641.

    Google Scholar 

  • An Z S 2000 The history and variability of the East Asian paleomonsoon climate; Quat. Sci. Rev. 19(1–5) 171–187.

    Google Scholar 

  • Antonio G 1996 Explaining the Upper Palaeolithic Revolution (Chap. 8); In: Contemporary Archaeology in Theory: A Reader; Cambridge, MA: Blackwell, pp. 220–239.

  • Babeesh C, Achyuthan H, Jaiswal M K and Lone A 2017 Late Quaternary loess-like paleosols and pedocomplexes, geochemistry, provenance and source area weathering, Manasbal, Kashmir Valley, India; Geomorphology 284 191–205.

    Google Scholar 

  • Bond G, Broecker W, Johnsen S, McManus J, Labeyrie L, Jouzel J and Bonani G 1993 Correlations between climate records from North Atlantic sediments and Greenland ice; Nature 365 143–147, https://doi.org/10.1038/365143a0.

    Article  Google Scholar 

  • Bronger A and Pant R K 1985 Micromorphology and genesis of paleosols of some selected loess profiles in the Kashmir Valley and their relevance to stratigraphy and paleoclimate; In: Climate and Geology of Kashmir and Central Asia for the last 4 million years (eds) Agrawal D P, Kusumgar S and Krishnamurthy R V, Today and Tomorrow’s Printers and Publishers, New Delhi, pp. 131–140.

    Google Scholar 

  • Burbank D W and Johnson G D 1983 The late Cainozoic chronologic and stratigraphic development of the Kashmir intermontane basin, north-western Himalaya; Palaeogeogr. Palaeoclimatol. Palaeoecol. 43 205–235.

    Google Scholar 

  • Carver R 1971 Procedures in sedimentary petrology; Wiley Interscience, New York, United States Department of Agriculture (USDA) 1999 Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys, Agriculture Handbook Natural Resources Conservation Service Number 436, U.S. Government Printing Office, Washington DC 20402.

  • Chamley H 1989 Clay Sedimentology; Berlin, Springer, 623p.

    Google Scholar 

  • Chandra R, Ahmad I and Qurashi A 2016 Pedological and geochemical characterization of loess paleosol sediments of Karewa Basin: Implications for paleoclimatic reconstruction of Kashmir Valley; J. Geol. Soc. India 4 38–54.

    Google Scholar 

  • Chandra R, Ramshoo S A, Lone M A and Ahmed S M 2014 Isotopic and micromorphological studies of Late Quaternary loesse paleosol sequences of the Karewa Group: Inferences from palaeoclimate of Kashmir Valley; Quat. Int., https://doi.org/10.1016/j.quaint.2014.10.060.

    Article  Google Scholar 

  • Clarkson C, Jacobs Z, Marwick B, Fullagar R, Wallis L, Smith M, Roberts R G, Hayes E, Lowe K, Carah X, Florin, S A, McNeil J, Cox D, Arnold Le J, Hua Q, Huntley J, Brand H E A, Manne T, Fairbairn A, Shulmeister, J, Lyle L, Salinas M, Page M, Connell, K, Park G, Norman K, Murphy T and Pardoe C 2017 Human occupation of northern Australia by 65,000 years ago; Nature 47(7663) 306–310, https://doi.org/10.1038/nature22968.

    Article  Google Scholar 

  • Dansgaard W, Johnsen S J, Clausen H B, Dahl-Jensen D, Gundestrup N S, Hammer C U, Hvidberg C S, Steffensen J P, Sveinbjornsdottir A E, Jouzel J and Bond G 1993 Evidence for general instability of past climate from a 250-kyr ice-core record; Nature 364 218–220.

    Google Scholar 

  • Dar R A, Chandra R, Romshoo S A and Ahmad S M 2015 Isotopic and micromorphological studies of Late Quaternary loess-paleosol sequences of the Karewa Group: Inferences for paleoclimate of Kashmir Valley; Quat. Int. 371 122–134.

    Google Scholar 

  • Dar R A, Romshoo S A, Chandra R and Ahmad I 2014 Tectono-geomorphic study of the Karewa Basin of Kashmir Valley; J. Asian Earth Sci. 92 143–156.

    Google Scholar 

  • Durcan J A, King G E and Duller G A T 2015 DRAC: Dose rate and age calculator for trapped charge dating; Quat. Geochronol. 28 54–61.

    Google Scholar 

  • Edwards M A, Kidd W S F, Li J, Yue Y and Clark M 1996 Multi-stage development of the southern Tibet detachment system near Khula Kangri, new data from Gonto La; Tectonophys. 260 1–20.

    Google Scholar 

  • Frogley M, Tzedakis P and Heaton T 1999 Climate variability in northwest Greece during the last interglacial; Science 285 1886–1889.

    Google Scholar 

  • Gallet S, Jahn B M and Torii M 1996 Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications; Chem. Geol. 133 67–88.

    Google Scholar 

  • Gardner R 1989 Late Quaternary loess and Paleosols, Kashmir Valley, India; Zeitschriftfur Geomorphologie. N.F. Suppliment Buddapes 6 225–245.

    Google Scholar 

  • Geiss C E, Egli R and Zanner C W 2008 Direct estimates of pedogenic magnetite as a tool to reconstruct past climates from buried soils; J. Geophys. Res. 113 B11102, https://doi.org/10.1029/2008jb005669.

    Article  Google Scholar 

  • Guo Z T, Ruddiman W F, Hao Q Z, Wu H B, Qiao Y S, Zhu R X, Peng S Z, Wei J J, Yuan B Y and Liu T S 2002 Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China; Nature 416 159–163.

    Google Scholar 

  • Gupta S K, Sharma P, Juyal N and Agrawal D P 1991 Loess–Palaeosol sequence in Kashmir: Mineral magnetic stratigraphy with marine palaeoclimatic record; J. Quat. Sci. 6 3–12.

    Google Scholar 

  • Hardy R and Tucker M 1998 X-ray powder diffraction of sediments; In: Techniques in Sedimentology (ed.) Tucker M, Blackwell Science, Oxford, pp. 191–228.

    Google Scholar 

  • Heller F and Liu T S 1986 Paleoclimatic and sedimentary history from magnetic susceptibility of loess in China; Geophys. Res. Lett. 3 1169–1172.

    Google Scholar 

  • Higham T, Douka K, Wood R, Ramsey C B, Brock F, Basell L, Camps M, Arrizabalaga A, Baena J, Barroso-Ruíz C, Bergman C, Boitard C, Boscato P, Caparrós M, Conard N J, Draily C, Froment A, Galván B, Gambassini P, Garcia-Moreno A, Grimaldi S, Haesaerts P, Holt B, Iriarte-hiapusso M J, Jelinek A, Jordá Pardo J F, Maíllo- Fernández J M, Marom A, Maroto J, Menéndez M, Metz L, Morin E, Moroni A, Negrino F, Panagopoulou E, Peresani M, Pirson S, de la Rasilla M, Riel-Salvatore J, Ronchitelli A, Santamaria D, Semal P, Slimak S, Soler J, Soler N, Villaluenga A, Pinhasi R and Jacobi R 2014 The timing and spatiotemporal patterning of Neanderthal disappearance; Nature 512(7514) 306–309.

    Google Scholar 

  • Huang L P, Wu N Q, Gu Z Y and Chen X Y 2012 Variability of snail growing season at the Chinese Loess Plateau during the last 75 ka; Chin. Sci. Bull. 57(9) 1036–1045.

    Google Scholar 

  • Jeelani G, Shah R A and Deshpande R D 2017 Influence of southwest monsoons in the Kashmir Valley, western Himalayas; Isotop. Environ. Health Stud., https://doi.org/10.1080/10256016.2016.1273224.

    Book  Google Scholar 

  • Krishnamurthy R V, Bhattacharya S K and Kusumgar S 1986 Palaeoclimatic changes deduced from 13C/12C and C/N ratios of Karewa lake sediments, India; Nature 323 150–152.

    Google Scholar 

  • Krishnamurthy R V, DeNiro M J and Pant R K 1982 Isotopic evidence for Pleistocene climatic changes in Kashmir, India; Nature 298 640–641.

    Google Scholar 

  • Kusumgar S, Agrawal D P and Krishnamurthy R V 1980 Studies on the loess deposits of the Kashmir Valley and Dating; Radiocarbon 22 757–762.

    Google Scholar 

  • Kusumgar S, Kotlia B S, Agrawal D P and Sahani A 1986 Biochronologie des fossil de vertebres des formation des Karewa du Cachemire, Inde; L’Anthropologie, Paris 90 151–164.

    Google Scholar 

  • Lodha G S, Sawhnet K J S, Razdan H, Agrawal D P and Juyal N 1987 Geochemical studies on Kashmir loess profiles; Proc. Indian Acad. Sci. (Earth Planet. Sci.) 96(2) 135–145.

    Google Scholar 

  • McLennan S M 1993 Weathering and global denudation; J. Geol. 101 295–303.

    Google Scholar 

  • McManus J F, Oppo D W and Cullen J L 1999 A 0.5-million-year record of millennial-scale climate variability in the North Atlantic; Science 283 971–975, https://doi.org/10.1126/science.283.5404.971.

    Article  Google Scholar 

  • Meenakshi, Kumar P, Shrivastava J P, Chandra R, Chopra S, Roonwal G S and Sharma R 2018 High resolution 14C AMS ages (~50 ka) of organic matter associated with the loess-palaeosol Holocene–Late Pleistocene (8–130 ka) sediments of Dilpur Formation, Karewa Group, Kashmir, India; Quat. Geochronol. 47 170–179.

    Google Scholar 

  • Meenakshi, Shrivastava J P and Chandra R 2019 Pedogenically degenerated illite and chlorite lattices aid to palaeoclimatic reconstruction for chronologically constrained (8–130 ka) loess-paleosols, Dilpur Formation, Kashmir, India; Geosci. Frontier, https://doi.org/10.1016/j.gsf.2019.11.007.

    Book  Google Scholar 

  • Miller B A and Schaetzl R J 2011 Precision of soil particle size analysis using laser diffractometry; Pedology 76 1719–1727.

    Google Scholar 

  • Muhs D R 2013 Loess and its geomorphic, stratigraphic, and paleoclimatic significance in the quaternary; Treatise on Geomorphology, Aeolian Geomorphology, San Diego 11 149–183.

    Google Scholar 

  • Muhs D R and Bettis E A 2003 Quaternary loess-paleosol sequences as examples of climate driven sedimentary extremes; Geol. Soc. Am. 370 53–74.

    Google Scholar 

  • Nesbitt H W and Young G M 1982 Early Proterozoic climates and plate motion inferred from major element chemistry of lutites; Nature 299 715–717.

    Google Scholar 

  • Nesbitt H W and Young G M 1984 Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations; Geochim. Cosmochim. Acta 48 1523–1534.

    Google Scholar 

  • Pant R K and Dilli K 1986 Loess deposits of Kashmir, north-west Himalaya, and India; J. Geol. Soc. India 28 289–292.

    Google Scholar 

  • Pant R K, Krishnamurthy R V, Tandon S K and Bisht K 1985 Loess lithostratigraphy of Kashmir basin, India; In: Climate and Geology of Kashmir and Central Asia for the last 4 million years (eds) Agrawal D P, Kusumgar S and Krishnamurthy R V, Today and Tomorrow’s Printers and Publishers, New Delhi, pp. 123–129.

    Google Scholar 

  • Pant R K, Basavaiah N, Juyal N, Saini N K, Yadava M G, Appel E and Singhvi A K 2005 A 20-ka climate record from Central Himalayan loess deposits; J. Quat. Sci. 20 485–492.

    Google Scholar 

  • Petraglia M, Korisettar R, Kasturibai M, Boivin N, Janardhana B, Clarkson C, Cunningham K, Ditchfield P, Fuller D, Hampson J, Haslam M, Jones S, Koshy J, Miracle P, Oppenheimer C, Roberts R and White K 2013 Human occupation, adaptation and behavioural change in the Pleistocene and Holocene of south India: Recent investigations in the Kurnool district, Andhra Pradesh; Eurasian Prehistory 6(1–2) 119–166.

    Google Scholar 

  • Qiang X K, An Z, Song Y G, Chang H, Sun Y B, Liu W G, Ao H, Dong J, Fu CF, Wu F, Lu F Y, Cai Y J, Zhou W J, Cao J J, Xu X W and Ai L 2011 New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago; Sci. China Earth Sci. 54(1) 136–144.

    Google Scholar 

  • Singhvi A K, Bronger A, Pant R K and Sauer W 1987 Thermoluminescence dating and its implications for the chronostratigraphy of loess-paleosol sequences in the Kashmir Valley (India); Chem. Geol. 65 45–56.

    Google Scholar 

  • Singhvi A K, Williams M A J, Rajaguru S N, Misra V N, Chawla S, Stokes S, Chauhan N, Francis T, Ganjoo R K and Humphreys G S 2010 A 200 ka record of climate change and dune activity in Thar desert, India; Quat. Sci. Rev. 29 3095–3105.

    Google Scholar 

  • Thouveny N, de Beaulieu J L, Bonifay E, Creer K M, Guiot J, Icole M, Johnsen S, Jouzel J, Maurice Reille M, Williams T and Williamson D 1994 Climate variations in Europe over the past 140 kyr deduced from rock magnetism; Nature 371 503–506.

    Google Scholar 

  • Vandenberghe J, Mücher H J, Roebroeks W and Gemke D 1985 Lithostratigraphy and palaeoenvironment of the Pleistocene deposits at Maastricht-Belvédere, southern Limburg, The Netherlands; Mededelingen Rijks Geologische Dienst 39 7–29.

    Google Scholar 

  • Walkley A and Black I A 1934 An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method; Soil Sci. 37 29–37.

    Google Scholar 

Download references

Acknowledgements

Mr Asif Ali is thankful of Anna University, Chennai for providing the Anna Centenary Research Fellowship (ACRF). The authors are grateful to the reviewers for suggestions and comments that helped in revising the text and presentation of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hema Achyuthan.

Additional information

Communicated by Navin Juyal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Achyuthan, H. Paleoenvironment shifts during MIS 3: Loess and loess paleosols of Kashmir Valley, India. J Earth Syst Sci 129, 177 (2020). https://doi.org/10.1007/s12040-020-01440-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-020-01440-x

Keywords

Navigation