Skip to main content

Advertisement

Log in

Challenges with Cell-based Therapies for Type 1 Diabetes Mellitus

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Type 1 diabetes (T1D) is a chronic, lifelong metabolic disease. It is characterised by the autoimmune-mediated loss of insulin-producing pancreatic β cells in the islets of Langerhans (β-islets), resulting in disrupted glucose homeostasis. Administration of exogenous insulin is the most common management method for T1D, but this requires lifelong reliance on insulin injections and invasive blood glucose monitoring. Replacement therapies with beta cells are being developed as an advanced curative treatment for T1D. Unfortunately, this approach is limited by the lack of donated pancreatic tissue, the difficulties in beta cell isolation and viability maintenance, the longevity of the transplanted cells in vivo, and consequently high costs. Emerging approaches to address these limitations are under intensive investigations, including the production of insulin-producing beta cells from various stem cells, and the development of bioengineered devices including nanotechnologies for improving islet transplantation efficacy without the need for recipients taking toxic anti-rejection drugs. These emerging approaches present promising prospects, while the challenges with the new techniques need to be tackled for ultimately clinical treatment of T1D. This review discussed the benefits and limitations of the cell-based therapies for beta cell replacement as potential curative treatment for T1D, and the applications of bioengineered devices including nanotechnology to overcome the challenges associated with beta cell transplantation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K., Shaw, J. E., Bright, D., & Williams, R. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition, Diabetes Research and Clinical Practice, 157.

  2. Avilés-Santa, M. L., Monroig-Rivera, A., Soto-Soto, A., & Lindberg, N. M. (2020). Current state of diabetes Mellitus Prevalence, awareness, treatment, and control in Latin America: Challenges and innovative solutions to Improve Health Outcomes across the continent. Current Diabetes Reports, 20(11), 62.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Control, C. D. (2020). Prevention, National diabetes statistics report, 2020, Centers for Disease Control and Prevention (pp. 12–15). US Department of Health and Human Services, Atlanta, GA.

  4. Health, A. I. (2020). Welfare, Diabetes, AIHW, Canberra,

  5. Uloko, A. E., Musa, B. M., Ramalan, M. A., Gezawa, I. D., Puepet, F. H., Uloko, A. T., Borodo, M. M., & Sada, K. B. (2018). Prevalence and risk factors for diabetes Mellitus in Nigeria: a systematic review and Meta-analysis. Diabetes Therapy, 9(3), 1307–1316.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Association, A. D. (2020). 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2021, Diabetes Care, 44(Supplement_1), S15-S33.

  7. Burrack, A. L., Martinov, T., Fife, B. T., & Cell-Mediated, T. (2017). Beta Cell Destruction: autoimmunity and alloimmunity in the context of type 1 diabetes. Front Endocrinol (Lausanne), 8, 343.

    Article  PubMed  Google Scholar 

  8. Bettini, M., & Bettini, M. L. (2021). Function, failure, and the future potential of Tregs in Type 1 diabetes. Diabetes, 70(6), 1211–1219.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Khan, F. U., Khongorzul, P., Raki, A. A., Rajasekaran, A., Gris, D., & Amrani, A. (2022). Dendritic Cells and Their Immunotherapeutic Potential for Treating Type 1 Diabetes, Int J Mol Sci, 23(9)

  10. Ever-Increasing Insulin-Requiring Patients Globally. Diabetes Technology & Therapeutics, 20(S2) (2018). S2-1-S2-4.

  11. Rewers, M., & Ludvigsson, J. (2016). Environmental risk factors for type 1 diabetes. Lancet, 387(10035), 2340–2348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ramachandran, A. (2014). Know the signs and symptoms of diabetes. Indian Journal Of Medical Research, 140(5), 579–581.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chawla, A., Chawla, R., & Jaggi, S. (2016). Microvasular and macrovascular complications in diabetes mellitus: distinct or continuum? Indian Journal of Endocrinology and Metabolism, 20(4), 546–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schofield, J., Ho, J., & Soran, H. (2019). Cardiovascular Risk in Type 1 diabetes Mellitus. Diabetes Ther, 10(3), 773–789.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Déruaz-Luyet, A., Raabe, C., Garry, E. M., Brodovicz, K. G., & Lavery, L. A. (2020). Incidence of lower extremity amputations among patients with type 1 and type 2 diabetes in the United States from 2010 to 2014. Diabetes Obesity and Metabolism, 22(7), 1132–1140.

    Article  Google Scholar 

  16. Australia, D. (2021). Managing type 1 diabetes,

  17. Zhou, Q., & Melton, D. A. (2018). Pancreas regeneration. Nature, 557(7705), 351–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, H. S., Shyu, J. F., Shen, W. S., Hsu, H. C., Chi, T. C., Chen, C. P., Huang, S. W., Shyr, Y. M., Tang, K. T., & Chen, T. H. (2011). Transplantation of insulin-producing cells derived from umbilical cord stromal mesenchymal stem cells to treat NOD mice. Cell Transplantation, 20(3), 455–466.

    Article  CAS  PubMed  Google Scholar 

  19. Chen, S., Du, K., & Zou, C. (2020). Current progress in stem cell therapy for type 1 diabetes mellitus. Stem Cell Research & Therapy, 11(1), 275.

    Article  Google Scholar 

  20. Muir, K. R., Lima, M. J., Docherty, H. M., & Docherty, K. (2014). Cell therapy for type 1 diabetes. QJM: An International Journal of Medicine, 107(4), 253–259.

    Article  CAS  PubMed  Google Scholar 

  21. Pathak, V., Pathak, N. M., O’Neill, C. L., Guduric-Fuchs, J., & Medina, R. J. (2019). Therapies for Type 1 Diabetes: Current Scenario and Future Perspectives, Clinical Medicine Insights: Endocrinology and Diabetes 12 1179551419844521.

  22. Sneddon, J. B., Tang, Q., Stock, P., Bluestone, J. A., Roy, S., Desai, T., & Hebrok, M. (2018). Stem cell therapies for treating diabetes: progress and remaining Challenges. Cell Stem Cell, 22(6), 810–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. El-Gohary, Y., & Gittes, G. K. (2018). Structure of Islets and Vascular Relationship to the Exocrine Pancreas,

  24. Gamble, A., Pepper, A. R., Bruni, A., & Shapiro, A. M. J. (2018). The journey of islet cell transplantation and future development. Islets, 10(2), 80–94.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Forlenza, G. P., Nathan, B. M., Moran, A. M., Dunn, T. B., Beilman, G. J., Pruett, T. L., & Bellin, M. D. (2016). Successful application of Closed-Loop Artificial Pancreas Therapy after Islet Autotransplantation. American Journal Of Transplantation, 16(2), 527–534.

    Article  CAS  PubMed  Google Scholar 

  26. Rickels, M. R., & Robertson, R. P. (2018). Pancreatic islet transplantation in humans: recent progress and future directions. Endocrine Reviews, 40(2), 631–668.

    Article  PubMed Central  Google Scholar 

  27. Li, N., Sun, G., Wang, S., Wang, Y., Xiu, Z., Sun, D., Guo, X., Zhang, Y., & Ma, X. (2017). Engineering islet for improved performance by optimized reaggregation in alginate gel beads. Biotechnology and Applied Biochemistry, 64(3), 400–405.

    Article  CAS  PubMed  Google Scholar 

  28. Dayem, A. A., Lee, S. B., Kim, K., Lim, K. M., Jeon, T. I., & Cho, S. G. (2019). Recent advances in organoid culture for insulin production and diabetes therapy: methods and challenges. Bmb Reports, 52(5), 295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gruessner, A. C., & Gruessner, R. W. G. (2016). Long-term outcome after pancreas transplantation: a registry analysis. Current Opinion in Organ Transplantation, 21(4), 377–385.

    Article  PubMed  Google Scholar 

  30. Addison, P., Fatakhova, K., Rodriguez, H. L., & Rilo (2020). Considerations for an alternative site of Islet Cell transplantation. Journal Of Diabetes Science And Technology, 14(2), 338–344.

    Article  PubMed  Google Scholar 

  31. Han, E. X., Wang, J., Kural, M., Jiang, B., Leiby, K. L., Chowdhury, N., Tellides, G., Kibbey, R. G., Lawson, J. H., & Niklason, L. E. (2021). Development of a Bioartificial Vascular Pancreas. J Tissue Eng, 12, 20417314211027714.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Han, E. X., Wang, J., Kural, M., Jiang, B., Leiby, K. L., Chowdhury, N., Tellides, G., Kibbey, R. G., Lawson, J. H., & Niklason, L. E. (2021). Development of a Bioartificial Vascular Pancreas. Journal of tissue engineering, 12, 20417314211027714–20417314211027714.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bruni, A., Gala-Lopez, B., Pepper, A. R., Abualhassan, N. S., & Shapiro, A. J. (2014). Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges. Diabetes Metab Syndr Obes, 7, 211–223.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. O. Naujok, C. Burns, P.M. Jones, S. Lenzen. (2011). Insulin-producing Surrogate β-cells From Embryonic Stem Cells: Are We There Yet?, Molecular Therapy, 19(10), 1759–1768.

  35. Volarevic, V., Markovic, B. S., Gazdic, M., Volarevic, A., Jovicic, N., Arsenijevic, N., Armstrong, L., Djonov, V., Lako, M., & Stojkovic, M. (2018). Ethical and Safety Issues of Stem Cell-Based therapy. International Journal Of Medical Sciences, 15(1), 36–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, J., Song, W., Pan, G., & Zhou, J. (2014). Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells. Journal of Hematology & Oncology, 7(1), 50.

    Article  Google Scholar 

  37. de Boni, L., Gasparoni, G., Haubenreich, C., Tierling, S., Schmitt, I., Peitz, M., Koch, P., Walter, J., Wüllner, U., & Brüstle, O. (2018). DNA methylation alterations in iPSC- and hESC-derived neurons: potential implications for neurological disease modeling. Clinical Epigenetics, 10(1), 13.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ohnuki, M., & Takahashi, K. (2015). Present and future challenges of induced pluripotent stem cells. Philosophical Transactions Of The Royal Society Of London. Series B, Biological Sciences, 370(1680), 20140367–20140367.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Romito, A., & Cobellis, G. (2016). Pluripotent stem cells: current understanding and future directions. Stem Cells Int, 2016, 9451492–9451492.

    Article  PubMed  Google Scholar 

  40. Lilly, M. A., Davis, M. F., Fabie, J. E., Terhune, E. B., & Gallicano, G. I. (2016). Current stem cell based therapies in diabetes. Am J Stem Cells, 5(3), 87–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Somers, A., Jean, J. C., Sommer, C. A., Omari, A., Ford, C. C., Mills, J. A., Ying, L., Sommer, A. G., Jean, J. M., Smith, B. W., Lafyatis, R., Demierre, M. F., Weiss, D. J., French, D. L., Gadue, P., Murphy, G. J., Mostoslavsky, G., & Kotton, D. N. (2010). Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells, 28(10), 1728–1740.

    Article  CAS  PubMed  Google Scholar 

  42. Stadtfeld, M., & Hochedlinger, K. (2010). Induced pluripotency: history, mechanisms, and applications. Genes & Development, 24(20), 2239–2263.

    Article  CAS  Google Scholar 

  43. Araki, R., Hoki, Y., Suga, T., Obara, C., Sunayama, M., Imadome, K., Fujita, M., Kamimura, S., Nakamura, M., Wakayama, S., Nagy, A., Wakayama, T., & Abe, M. (2020). Genetic aberrations in iPSCs are introduced by a transient G1/S cell cycle checkpoint deficiency. Nature Communications, 11(1), 197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wassmer, C. H., Lebreton, F., Bellofatto, K., Bosco, D., Berney, T., & Berishvili, E. (2020). Generation of insulin-secreting organoids: a step toward engineering and transplanting the bioartificial pancreas. Transplant International, 33(12), 1577–1588.

    Article  CAS  Google Scholar 

  45. Zhao, Y. (2015). Chap. 12 - cord blood stem cells for clinical use: diabetes and cord blood. In C. Stavropoulos-Giokas, D. Charron, & C. Navarrete (Eds.), Cord blood stem cells and Regenerative Medicine (pp. 153–164). Boston: Academic Press.

    Chapter  Google Scholar 

  46. Zhao, Y., Jiang, Z., Zhao, T., Ye, M., Hu, C., Yin, Z., Li, H., Zhang, Y., Diao, Y., Li, Y., Chen, Y., Sun, X., Fisk, M. B., Skidgel, R., Holterman, M., Prabhakar, B., & Mazzone, T. (2012). Reversal of type 1 diabetes via islet beta cell regeneration following immune modulation by cord blood-derived multipotent stem cells. Bmc Medicine, 10, 3.

    Article  CAS  PubMed Central  Google Scholar 

  47. Vaithilingam, V., Bal, S., & Tuch, B. E. (2017). Encapsulated islet transplantation: where do we stand? The Review Of Diabetic Studies : Rds, 14(1), 51–78.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jang, S., Jeong, J. G., Oh, T. I., & Lee, E. (2021). Biomaterials for Cell-Surface Engineering and their efficacy. Journal of Functional Biomaterials, 12(3), 41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zeng, J., & Matsusaki, M. (2019). Layer-by-layer assembly of nanofilms to control cell functions. Polymer Chemistry, 10(23), 2960–2974.

    Article  CAS  Google Scholar 

  50. O’Sullivan, E. S., Vegas, A., Anderson, D. G., & Weir, G. C. (2011). Islets transplanted in immunoisolation devices: a review of the progress and the challenges that remain. Endocrine reviews, 32(6), 827–844.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hebrok, M. (2012). Generating β cells from stem cells-the story so far. Cold Spring Harb Perspect Med, 2(6), a007674–a007674.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhang, X., Ma, Z., Song, E., & Xu, T. (2021). Islet organoid as a promising model for diabetes, Protein Cell

  53. Abdelalim, E. M., Bonnefond, A., Bennaceur-Griscelli, A., & Froguel, P. (2014). Pluripotent stem cells as a potential Tool for Disease Modelling and Cell Therapy in Diabetes. Stem Cell Reviews and Reports, 10(3), 327–337.

    Article  CAS  PubMed  Google Scholar 

  54. Delgado, E., Perez-Basterrechea, M., Suarez-Alvarez, B., Zhou, H., Revuelta, E. M., Garcia-Gala, J. M., Perez, S., Alvarez-Viejo, M., Menendez, E., Lopez-Larrea, C., Tang, R., Zhu, Z., Hu, W., Moss, T., Guindi, E., Otero, J., & Zhao, Y. (2015). Modulation of Autoimmune T-Cell Memory by Stem Cell Educator Therapy: Phase 1/2 Clinical Trial. EBioMedicine, 2(12), 2024–2036.

  55. Li, F., Ge, Y., Liu, D., & Songyang, Z. (2020). The role of telomere-binding modulators in pluripotent stem cells. Protein & Cell, 11(1), 60–70.

    Article  CAS  Google Scholar 

  56. Han, N. R., Baek, S., Kim, H. Y., Lee, K. Y., Yun, J. I., Choi, J. H., Lee, E., Park, C. K., & Lee, S. T. (2020). Generation of embryonic stem cells derived from the inner cell mass of blastocysts of outbred ICR mice. Animal Cells and Systems, 24(2), 91–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chhabra, P., & Brayman, K. L. (2013). Stem cell therapy to cure type 1 diabetes: from hype to hope. Stem Cells Transl Med, 2(5), 328–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shahjalal, H. M., Abdal Dayem, A., Lim, K. M., Jeon, T., & Cho, S. G. (2018). Generation of pancreatic β cells for treatment of diabetes: advances and challenges. Stem Cell Research & Therapy, 9(1), 355.

    Article  CAS  Google Scholar 

  59. Zalzman, M., Gupta, S., Giri, R. K., Berkovich, I., Sappal, B. S., Karnieli, O., Zern, M. A., Fleischer, N., & Efrat, S. (2003). Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells. Proceedings of the National Academy of Sciences, 100(12), 7253–7258.

  60. Rattananinsruang, P., Dechsukhum, C., & Leeanansaksiri, W. (2018). Establishment of Insulin-Producing Cells From Human Embryonic Stem Cells Underhypoxic Condition for Cell Based Therapy. Frontiers in Cell and Developmental Biology, 6.

  61. Tahbaz, M., & Yoshihara, E. (2021). Immune Protection of Stem Cell-Derived Islet Cell Therapy for Treating Diabetes. Front Endocrinol (Lausanne), 12, 716625.

    Article  PubMed  Google Scholar 

  62. Bulic-Jakus, F., Katusic Bojanac, A., Juric-Lekic, G., Vlahovic, M., & Sincic, N. (2016). Teratoma: from spontaneous tumors to the pluripotency/malignancy assay. WIREs Developmental Biology, 5(2), 186–209.

    Article  PubMed  Google Scholar 

  63. Rebuzzini, P., Zuccotti, M., Redi, C. A., & Garagna, S. (2015). Chromosomal abnormalities in embryonic and somatic stem cells. Cytogenetic and Genome Research, 147(1), 1–9.

    Article  PubMed  Google Scholar 

  64. Ren, M., Shang, C., Zhong, X., Guo, R., Lao, G., Wang, X., Cheng, H., Min, J., Yan, L., & Shen, J. (2014). Insulin-producing cells from embryonic stem cells rescues hyperglycemia via intra-spleen migration. Scientific Reports, 4(1), 7586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. ViaCyte’s Stem Cell-Derived Treatment for Type 1 Diabetes Shows Promising Results in Two Published Studies (2021). https://viacyte.com/press-releases/viacytes-stem-cell-derived-treatment-for-type-1-diabetes-shows-promising-results-in-two-published-studies/#:~:text=Results%20indicate%20positive%20 C%2Dpeptide,%2Dproducing%2 C%20pancreatic%20islet%20cells

  66. Ramzy, A., Thompson, D. M., Ward-Hartstonge, K. A., Ivison, S., Cook, L., Garcia, R. V., Loyal, J., Kim, P. T. W., Warnock, G. L., Levings, M. K., & Kieffer, T. J. (2021). Implanted pluripotent stem-cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes. Cell Stem Cell, 28(12), 2047–2061.e5.

  67. Vertex announces Positive Day 90 Data for the First Patient in the Phase 1/2 Clinical Trial Dosed With VX-880, a Novel Investigational Stem Cell-Derived Therapy for the Treatment of Type 1 Diabetes, 2021. https://investors.vrtx.com/news-releases/news-release-details/vertex-announces-positive-day-90-data-first-patient-phase-12.

  68. Wei, R., Yang, J., Hou, W., Liu, G., Gao, M., Zhang, L., Wang, H., Mao, G., Gao, H., Chen, G., & Hong, T. (2013). Insulin-producing cells derived from human embryonic stem cells: comparison of definitive endoderm- and nestin-positive progenitor-based differentiation strategies. PLOS ONE, 8(8), e72513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kawser Hossain, M., Abdal Dayem, A., Han, J., Kumar Saha, S., Yang, G. M., Choi, H. Y., & Cho, S. G. (2016). Recent advances in Disease modeling and Drug Discovery for Diabetes Mellitus using Induced Pluripotent Stem cells. International Journal of Molecular Sciences, 17(2), 256.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Elina, L., Luca, I., & Camillo, R. (2013). Cell Replacement Therapy in Type 1 Diabetes, Type 1 Diabetes, IntechOpen

  71. Gorecka, J., Kostiuk, V., Fereydooni, A., Gonzalez, L., Luo, J., Dash, B., Isaji, T., Ono, S., Liu, S., Lee, S. R., Xu, J., Liu, J., Taniguchi, R., Yastula, B., Hsia, H. C., Qyang, Y., & Dardik, A. (2019). The potential and limitations of induced pluripotent stem cells to achieve wound healing. Stem Cell Research & Therapy, 10(1), 87.

    Article  CAS  Google Scholar 

  72. Singh, V. K., Kalsan, M., Kumar, N., Saini, A., & Chandra, R. (2015). Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Frontiers in Cell and Developmental Biology, 3(2).

  73. Omole, A. E., & Fakoya, A. O. J. (2018). Ten years of progress and promise of induced pluripotent stem cells: historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ, 6, e4370.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    Article  CAS  PubMed  Google Scholar 

  75. Fiorina, P., Voltarelli, J., & Zavazava, N. (2011). Immunological applications of stem cells in type 1 diabetes. Endocrine Reviews, 32(6), 725–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Soejitno, A., & Prayudi, P. K. (2011). The prospect of induced pluripotent stem cells for diabetes mellitus treatment. Ther Adv Endocrinol Metab, 2(5), 197–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pellegrini, S., Chimienti, R., Scotti, G. M., Giannese, F., Lazarevic, D., Manenti, F., Poggi, G., Lombardo, M. T., Cospito, A., Nano, R., Piemonti, L., & Sordi, V., Transcriptional dynamics of induced pluripotent stem cell differentiation into β cells reveals full endodermal commitment and homology with human islets, (1477–2566 (Electronic)).

  78. Kondo, Y., Toyoda, T., Inagaki, N., & Osafune, K. (2018). iPSC technology-based regenerative therapy for diabetes. J Diabetes Investig, 9(2), 234–243.

    Article  PubMed  Google Scholar 

  79. Liu, J., Joglekar, M. V., Sumer, H., Hardikar, A. A., Teede, H., & Verma, P. J. (2014). Integration-Free Human Induced Pluripotent stem cells from type 1 diabetes patient skin fibroblasts show increased abundance of pancreas-specific microRNAs. Cell Med, 7(1), 15–24.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Maehr, R., Chen, S., Snitow, M., Ludwig, T., Yagasaki, L., Goland, R., Leibel, R. L., & Melton, D. A. (2009). Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci U S A, 106(37), 15768–15773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. G.S. Manzar, E.-M. Kim, N. Zavazava. (2017) Demethylation of induced pluripotent stem cells from type 1 diabetic patients enhances differentiation into functional pancreatic β cells. Journal of Biological Chemistry, 292(34) 14066–14079.

  82. Liu, G., David, B. T., Trawczynski, M., & Fessler, R. G. (2020). Advances in pluripotent stem cells: history, Mechanisms, Technologies, and applications. Stem Cell Reviews and Reports, 16(1), 3–32.

    Article  PubMed  Google Scholar 

  83. Otsuka, R., Wada, H., & Murata, T. (2020). Seino, Immune reaction and regulation in transplantation based on pluripotent stem cell technology. Inflammation and Regeneration, 40(1), 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sui, L., Danzl, N., Campbell, S. R., Viola, R., Williams, D., Xing, Y., Wang, Y., Phillips, N., Poffenberger, G., Johannesson, B., Oberholzer, J., Powers, A. C., Leibel, R. L., Chen, X., & Sykes, M. (2018). Egli, β-Cell replacement in mice using human type 1 Diabetes Nuclear transfer embryonic stem cells. Diabetes, 67(1), 26–35.

    Article  CAS  PubMed  Google Scholar 

  85. Raab, S., Klingenstein, M., Liebau, S., & Linta, L. (2014). A comparative view on human somatic cell sources for iPSC Generation. Stem Cells Int, 2014, 768391.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gao, X., Yourick, J. J., & Sprando, R. L. (2018). Generation of nine induced pluripotent stem cell lines as an ethnic diversity panel. Stem Cell Research, 31, 193–196.

    Article  PubMed  Google Scholar 

  87. Moradi, S., Mahdizadeh, H., Šarić, T., Kim, J., Harati, J., Shahsavarani, H., Greber, B., & Moore, J. B. (2019). Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem Cell Research & Therapy, 10(1), 341.

    Article  Google Scholar 

  88. Yoshihara, M., Oguchi, A., & Murakawa, Y. (2019). Genomic Instability of iPSCs and Challenges in Their Clinical Applications, pp. 23–47.

  89. Huang, Y., Liang, P., Liu, D., Huang, J., & Songyang, Z. (2014). Telomere regulation in pluripotent stem cells. Protein & Cell, 5(3), 194–202.

    Article  CAS  Google Scholar 

  90. Al Abbar, A., Ngai, S. C., Nograles, N., Alhaji, S. Y., & Abdullah, S. (2020). Induced Pluripotent Stem cells: reprogramming platforms and applications in cell replacement therapy. Biores Open Access, 9(1), 121–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hu, K. (2014). All roads lead to induced pluripotent stem cells: the technologies of iPSC generation. Stem Cells Dev, 23(12), 1285–300.

  92. Baranek, M., Belter, A., Naskręt-Barciszewska, M. Z., Stobiecki, M., Markiewicz, W. T., & Barciszewski, J. (2017). Effect of small molecules on cell reprogramming. Molecular BioSystems, 13(2), 277–313.

    Article  CAS  PubMed  Google Scholar 

  93. Teshigawara, R., Cho, J., Kameda, M., & Tada, T. (2017). Mechanism of human somatic reprogramming to iPS cell. Laboratory Investigation, 97(10), 1152–1157.

    Article  CAS  PubMed  Google Scholar 

  94. Maekawa, M., Yamaguchi, K., Nakamura, T., Shibukawa, R., Kodanaka, I., Ichisaka, T., Kawamura, Y., Mochizuki, H., Goshima, N., & Yamanaka, S. (2011). Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature, 474(7350), 225–229.

    Article  CAS  PubMed  Google Scholar 

  95. Nakagawa, M., Takizawa, N., Narita, M., Ichisaka, T., & Yamanaka, S. (2010). Promotion of direct reprogramming by transformation-deficient Myc. Proceedings of the National Academy of Sciences, 107(32) 14152–14157.

  96. Judson, R. L., Babiarz, J. E., Venere, M., & Blelloch, R. (2009). Embryonic stem cell-specific microRNAs promote induced pluripotency. Nature Biotechnology, 27(5), 459–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li, L., Chen, K., Wu, Y., Long, Q., Zhao, D., Ma, B., Pei, D., & Liu, X. (2017). Gadd45a opens up the promoter regions of miR-295 facilitating pluripotency induction. Cell Death & Disease, 8(10), e3107–e3107.

    Article  CAS  Google Scholar 

  98. Sherstyuk, V. V., Medvedev, S. P., Elisaphenko, E. A., Vaskova, E. A., Ri, M. T., Vyatkin, Y. V., Saik, O. V., Shtokalo, D. N., Pokushalov, E. A., & Zakian, S. M. (2017). Genome-wide profiling and differential expression of microRNA in rat pluripotent stem cells. Scientific Reports, 7(1), 2787.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Audrey, G. F., Parent, V., Chavez, J., Saxton, M., Berrios, D. I., & Kerper, N. R. (2021). Qizhi Tang, Matthias Hebrok, selective deletion of human leukocyte antigens protects stem cell-derived islets from immune rejection. CELL REPORTS, 36, 109538.

    Article  Google Scholar 

  100. Yoshihara, E., O’Connor, C., Gasser, E., Wei, Z., Oh, T. G., Tseng, T. W., Wang, D., Cayabyab, F., Dai, Y., Yu, R. T., Liddle, C., Atkins, A. R., Downes, M., & Evans, R. M. (2020). Immune-evasive human islet-like organoids ameliorate diabetes. Nature, 586(7830), 606–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cito, M., Pellegrini, S., Piemonti, L., & Sordi, V. (2018). The potential and challenges of alternative sources of β cells for the cure of type 1 diabetes. Endocrine Connections, 7(3), R114–R125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Collombat, P., Xu, X., Ravassard, P., Sosa-Pineda, B., Dussaud, S., Billestrup, N., Madsen, O. D., Serup, P., Heimberg, H., & Mansouri, A. (2009). The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell, 138(3), 449–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xiao, X., Guo, P., Shiota, C., Zhang, T., Coudriet, G. M., Fischbach, S., Prasadan, K., Fusco, J., Ramachandran, S., Witkowski, P., Piganelli, J. D., & Gittes, G. K. (2018). Endogenous reprogramming of alpha cells into Beta cells, Induced by viral gene therapy, reverses autoimmune diabetes. Cell Stem Cell, 22(1), 78–90e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Courtney, M., Gjernes, N., Fau -, E., Druelle, C., Druelle, N., Fau - Ravaud, A., Ravaud, C., Fau - Vieira, N., Vieira, A., Fau - Ben-Othman, A., Ben-Othman, N. F., Pfeifer, F., Pfeifer, A. F., Avolio, G., Avolio, F., Fau - Leuckx, G. Fau - Lacas-Gervais, F. Lacas-Gervais S Fau - Burel-Vandenbos, Burel-Vandenbos, D., Fau -, F., Ambrosetti, J., Ambrosetti, D. F., Hecksher-Sorensen, P., & Hecksher-Sorensen, J. Fau - Ravassard, H. Ravassard P Fau - Heimberg, A. Heimberg H Fau - Mansouri, P. Mansouri A Fau - Collombat, P. Collombat, The inactivation of Arx in pancreatic α-cells triggers their neogenesis and conversion into functional β-like cells, (1553–7404 (Electronic)).

  105. Zhou, Q., Brown, A., Fau -, J., Kanarek, J., Kanarek, A., Fau - Rajagopal, D. A., Rajagopal, J. F., Melton, D. A., & Melton, in vivo reprogramming of adult pancreatic exocrine cells to beta-cells, (1476–4687 (Electronic)).

  106. Li, W., Cavelti-Weder, C., Zhang, Y., Clement, K., Donovan, S., Gonzalez, G., Zhu, J., Stemann, M., Xu, K., Hashimoto, T., Yamada, T., Nakanishi, M., Zhang, Y., Zeng, S., Gifford, D., Meissner, A., Weir, G., & Zhou, Q. (2014). Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells. Nature Biotechnology, 32(12), 1223–1230.

    Article  CAS  PubMed  Google Scholar 

  107. Cerdá-Esteban, N., Naumann, H., Ruzittu, S., Mah, N., Pongrac, I. M., Cozzitorto, C., Hommel, A., Andrade-Navarro, M. A., Bonifacio, E., & Spagnoli, F. M. (2017). Stepwise reprogramming of liver cells to a pancreas progenitor state by the transcriptional regulator Tgif2. Nature Communications, 8(1), 14127.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Chen, Y. J., Finkbeiner, S. R., Weinblatt, D., Emmett, M. J., Tameire, F., Yousefi, M., Yang, C., Maehr, R., Zhou, Q., Shemer, R., Dor, Y., Li, C., Spence, J. R., & Stanger, B. Z., De novo formation of insulin-producing “neo-β cell islets” from intestinal crypts, (2211 – 1247 (Electronic)).

  109. Pagliuca, F. W., Millman, J. R., Gürtler, M., Segel, M., Van Dervort, A., Ryu, J. H., Peterson, Q. P., Greiner, D., & Melton, D. A. (2014). Generation of functional human pancreatic β cells in vitro. Cell, 159(2), 428–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dutta, D., Heo, I., & Clevers, H. (2017). Disease modeling in stem cell-derived 3D Organoid Systems. Trends In Molecular Medicine, 23(5), 393–410.

    Article  CAS  PubMed  Google Scholar 

  111. Hofer, M., & Lutolf, M. P. (2021). Engineering organoids. Nature Reviews Materials, 6(5), 402–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Driehuis, E., & Clevers, H. (2017). CRISPR/Cas 9 genome editing and its applications in organoids. American Journal Of Physiology. Gastrointestinal And Liver Physiology, 312(3), G257–g265.

    Article  PubMed  Google Scholar 

  113. Cobianchi, L., Moeckli, B., & Croce, S. (2020). Commentary: insulin-producing Organoids Engineered from Islet and amniotic epithelial cells to treat diabetes. Front Endocrinol (Lausanne), 11, 546114.

    Article  PubMed  Google Scholar 

  114. Lebreton, F., Lavallard, V., Bellofatto, K., Bonnet, R., Wassmer, C. H., Perez, L., Kalandadze, V., Follenzi, A., Boulvain, M., Kerr-Conte, J., Goodman, D. J., Bosco, D., Berney, T., & Berishvili, E. (2019). Insulin-producing organoids engineered from islet and amniotic epithelial cells to treat diabetes. Nature Communications, 10(1), 4491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhu, P., & Fan, Z. (2018). Cancer stem cells and tumorigenesis. Biophys Rep, 4(4), 178–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Roscioni, S. S., Migliorini, A., Gegg, M., & Lickert, H. (2016). Impact of islet architecture on β-cell heterogeneity, plasticity and function. Nature Reviews. Endocrinology, 12(12), 695–709.

    Article  CAS  PubMed  Google Scholar 

  117. Penko, D., Mohanasundaram, D., Sen, S., Drogemuller, C., Mee, C., Bonder, C. S., Coates, P. T., & Jessup, C. F. (2011). Incorporation of endothelial progenitor cells into mosaic pseudoislets. Islets, 3(3), 73–79.

    Article  PubMed  Google Scholar 

  118. Urbanczyk, M., Zbinden, A., Layland, S. L., Duffy, G., & Schenke-Layland, K. (2020). Controlled heterotypic Pseudo-Islet Assembly of Human β-Cells and human umbilical vein endothelial cells using magnetic levitation. Tissue Engineering Part A, 26(7–8), 387–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bartosh, T. J., Ylöstalo, J. H., Mohammadipoor, A., Bazhanov, N., Coble, K., Claypool, K., Lee, R. H., Choi, H., & Prockop, D. J. (2010). Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci U S A, 107(31), 13724–13729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ylöstalo, J. H., Bartosh, T. J., Coble, K., & Prockop, D. J. (2012). Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype. Stem Cells, 30(10), 2283–2296.

    Article  PubMed  Google Scholar 

  121. Pagliuca, F. W., Millman, J. R., Gürtler, M., Segel, M., Van Dervort, A., Ryu, J. H., Peterson, Q. P., Greiner, D., & Melton, D. A. (2014). Generation of functional human pancreatic β cells in vitro. Cell, 159(2), 428–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Youngblood, R. L., Sampson, J. P., Lebioda, K. R., & Shea, L. D. (2019). Microporous scaffolds support assembly and differentiation of pancreatic progenitors into β-cell clusters. Acta Biomaterialia, 96, 111–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Citro, A., Moser, P. T., Dugnani, E., Rajab, T. K., Ren, X., Evangelista-Leite, D., Charest, J. M., Peloso, A., Podesser, B. K., Manenti, F., Pellegrini, S., Piemonti, L., & Ott, H. C. (2019). Biofabrication of a vascularized islet organ for type 1 diabetes. Biomaterials, 199, 40–51.

    Article  CAS  PubMed  Google Scholar 

  124. Bartlett, S. T., Markmann, J. F., Johnson, P., Korsgren, O., Hering, B. J., Scharp, D., Kay, T. W. H., Bromberg, J., Odorico, J. S., Weir, G. C., Bridges, N., Kandaswamy, R., Stock, P., Friend, P., Gotoh, M., Cooper, D. K. C., Park, C. G., OʼConnell, P., Stabler, C., Matsumoto, S., Ludwig, B., Choudhary, P., Kovatchev, B., Rickels, M. R., Sykes, M., Wood, K., Kraemer, K., Hwa, A., Stanley, E., Ricordi, C., Zimmerman, M., Greenstein, J., Montanya, E., & Otonkoski, T. (2016). Report from IPITA-TTS Opinion Leaders Meeting on the Future of β-Cell Replacement. Transplantation, 100(Suppl 2), S1-S44.

  125. Zhao, Y. (2012). Stem cell educator therapy and induction of immune balance. Current Diabetes Reports, 12(5), 517–523.

    Article  PubMed  Google Scholar 

  126. Razavi, M., Ren, T., Zheng, F., Telichko, A., Wang, J., Dahl, J. J., Demirci, U., & Thakor, A. S. (2020). Facilitating islet transplantation using a three-step approach with mesenchymal stem cells, encapsulation, and pulsed focused ultrasound. Stem Cell Research & Therapy, 11(1), 405.

    Article  CAS  Google Scholar 

  127. Hrvatin, S., O’Donnell, C. W., Deng, F., Millman, J. R., Pagliuca, F. W., DiIorio, P., Rezania, A., Gifford, D. K., & Melton, D. A. (2014). Differentiated human stem cells resemble fetal, not adult, β cells. Proceedings of the National Academy of Sciences of the United States of America, 111(8), 3038–3043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pastore, I., Assi, E., Ben Nasr, M., Bolla, A. M., Maestroni, A., Usuelli, V., Loretelli, C., Seelam, A. J., Abdelsalam, A., Zuccotti, G. V., D’Addio, F., & Fiorina, P. (2021). Hematopoietic Stem Cells in Type 1 Diabetes. Frontiers in Immunology, 12.

  129. Ben Nasr, M., Tezza, S., D’Addio, F., Mameli, C., Usuelli, V., Maestroni, A., Corradi, D., Belletti, S., Albarello, L., Becchi, G., Fadini, G. P., Schuetz, C., Markmann, J., Wasserfall, C., Zon, L., Zuccotti, G. V., & Fiorina, P. (2017). PD-L1 genetic overexpression or pharmacological restoration in hematopoietic stem and progenitor cells reverses autoimmune diabetes. Science Translational Medicine, 9(416), eaam7543.

    Article  PubMed  Google Scholar 

  130. U.S. National Library of Medicine. (2019). Clinical application of Stem Cell Educator Therapy in Type 1 diabetes (04011020 vol.). Identifier: NCT. July 8).

    Google Scholar 

  131. Tang, Q., Henriksen, K. J., Bi, M., Finger, E. B., Szot, G., Ye, J., Masteller, E. L., McDevitt, H., & Bonyhadi, M. (2004). Bluestone in Vitro–expanded Antigen-specific Regulatory T cells suppress autoimmune diabetes. Journal of Experimental Medicine, 199(11), 1455–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bluestone, J. A., Buckner, J. H., Fitch, M., Gitelman, S. E., Gupta, S., Hellerstein, M. K., Herold, K. C., Lares, A., Lee, M. R., Li, K., Liu, W., Long, S. A., Masiello, L. M., Nguyen, V., Putnam, A. L., Rieck, M., Sayre, P. H., & Tang, Q. (2015). Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Science Translational Medicine, 7(315), 315ra189.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Marek-Trzonkowska, N., Myśliwiec, M., Dobyszuk, A., Grabowska, M., Techmańska, I., Juścińska, J., Wujtewicz, M. A., Witkowski, P., Młynarski, W., Balcerska, A., Myśliwska, J., & Trzonkowski, P. (2012). Administration of CD4 + CD25highCD127 – Regulatory T cells preserves β-Cell function in type 1 diabetes in children. Diabetes Care, 35(9), 1817–1820.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Marek-Trzonkowska, N., Myśliwiec, M., Dobyszuk, A., Grabowska, M., Derkowska, I., Juścińska, J., Owczuk, R., Szadkowska, A., Witkowski, P., Młynarski, W., Jarosz-Chobot, P., Bossowski, A., Siebert, J., & Trzonkowski, P. (2014). Therapy of type 1 diabetes with CD4 + CD25highCD127-regulatory T cells prolongs survival of pancreatic islets — results of one year follow-up. Clinical Immunology, 153(1), 23–30.

    Article  CAS  PubMed  Google Scholar 

  135. Eggenhuizen, P. J., Ng, B. H., & Ooi, J. D. (2020). Treg Enhancing Therapies to Treat Autoimmune Diseases. Int J Mol Sci, 21(19).

  136. Marek-Trzonkowska, N., Myśliwiec, M., Iwaszkiewicz-Grześ, D., Gliwiński, M., Derkowska, I., Żalińska, M., Zieliński, M., Grabowska, M., Zielińska, H., Piekarska, K., Jaźwińska-Curyłło, A., Owczuk, R., Szadkowska, A., Wyka, K., Witkowski, P., Młynarski, W., Jarosz-Chobot, P., Bossowski, A., Siebert, J., & Trzonkowski, P. (2016). Factors affecting long-term efficacy of T regulatory cell-based therapy in type 1 diabetes. J Transl Med, 14(1), 332.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Tarbell, K. V., Yamazaki, S., Olson, K., & Toy, P. (2004). Steinman CD25 + CD4 + T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. Journal of Experimental Medicine, 199(11), 1467–1477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yamazaki, S., Inaba, K., Tarbell, K. V., & Steinman, R. M. (2006). Dendritic cells expand antigen-specific Foxp3 + CD25 + CD4 + regulatory T cells including suppressors of alloreactivity. Immunological Reviews, 212(1), 314–329.

    Article  CAS  PubMed  Google Scholar 

  139. Giannoukakis, N., Phillips, B., Finegold, D., Harnaha, J., & Trucco, M. (2011). Phase I (safety) study of autologous tolerogenic dendritic cells in type 1 diabetic patients. Diabetes Care, 34(9), 2026–2032.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Raffin, C., Vo, L. T., & Bluestone, J. A. (2020). Treg cell-based therapies: challenges and perspectives. Nature Reviews Immunology, 20(3), 158–172.

    Article  CAS  PubMed  Google Scholar 

  141. Maldini, C. R., Ellis, G. I., & Riley, J. L. (2018). CAR T cells for infection, autoimmunity and allotransplantation. Nature Reviews Immunology, 18(10), 605–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhou, X., Bailey-Bucktrout, S. L., Jeker, L. T., Penaranda, C., Martínez-Llordella, M., Ashby, M., Nakayama, M., Rosenthal, W., & Bluestone, J. A. (2009). Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nature Immunology, 10(9), 1000–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Opara, E. C., McQuilling, J. P., & Farney, A. C. (2013). Microencapsulation of Pancreatic Islets for Use in a Bioartificial Pancreas. In J. Basu, & J. W. Ludlow (Eds.), Organ regeneration: methods and protocols (pp. 261–266). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  144. Farris, A., Rindone, A., & Grayson, W. (2016). Oxygen Delivering Biomaterials for Tissue Engineering. J. Mater. Chem. B4.

  145. Espona-Noguera, A., Ciriza, J., Cañibano-Hernández, A., Orive, G., Hernández, R. M., Saenz, L., del Burgo, J. L., & Pedraz (2019). Review of Advanced Hydrogel-Based Cell Encapsulation Systems for Insulin Delivery in Type 1 Diabetes Mellitus. Pharmaceutics, 11(11), 597.

  146. Qi, M. (2014). Transplantation of encapsulated pancreatic Islets as a treatment for patients with type 1 diabetes Mellitus. Advances in Medicine, 2014, 429710.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Krishnan, R., Alexander, M., Robles, L., Foster, C. E. 3rd, & Lakey, J. R. T. (2014). Islet and stem cell encapsulation for clinical transplantation. The review of diabetic studies: RDS, 11(1), 84–101.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Qi, M. (2014). Transplantation of Encapsulated Pancreatic Islets as a Treatment for Patients with Type 1 Diabetes Mellitus. Advances in medicine, 2014429710–429710.

  149. Lopez-Mendez, T. B., Santos-Vizcaino, E., Pedraz, J. L., Orive, G., & Hernandez, R. M. (2021). Cell microencapsulation technologies for sustained drug delivery: latest advances in efficacy and biosafety. Journal of Controlled Release, 335, 619–636.

    Article  CAS  PubMed  Google Scholar 

  150. Mohammadi, M. R., Rodriguez, S. M., Luong, J. C., Li, S., Cao, R., Alshetaiwi, H., Lau, H., Davtyan, H., Jones, M. B., Jafari, M., Kessenbrock, K., Villalta, S. A., de Vos, P., Zhao, W., & Lakey, J. R. T. (2021). Exosome loaded immunomodulatory biomaterials alleviate local immune response in immunocompetent diabetic mice post islet xenotransplantation. Commun Biol, 4(1), 685–685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Espona-Noguera, A., Ciriza, J., Cañibano-Hernández, A., Orive, G., Hernández, R. M. M., Saenz, L., Del Burgo, J. L., & Pedraz (2019). Review of Advanced Hydrogel-Based Cell Encapsulation Systems for Insulin Delivery in Type 1 Diabetes Mellitus. Pharmaceutics, 11(11). 597.

  152. Zhu, H., Li, W., Liu, Z., Li, W., Chen, N., Lu, L., Zhang, W., Wang, Z., Wang, B., Pan, K., Zhang, X., & Chen, G. (2018). Selection of Implantation Sites for transplantation of encapsulated pancreatic islets. Tissue Eng Part B Rev, 24(3), 191–214.

    Article  PubMed  Google Scholar 

  153. Tuch, B. E., Keogh, G. W., Williams, L. J., Wu, W., Foster, J. L., Vaithilingam, V., & Philips, R. (2009). Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes Care, 32(10), 1887–1889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wilson, J. L., & McDevitt, T. C. (2013). Stem cell microencapsulation for phenotypic control, bioprocessing, and transplantation. Biotechnology And Bioengineering, 110(3), 667–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. McQuilling, J. P., Sittadjody, S., Pareta, R., Pendergraft, S., Clark, C. J., Farney, A. C., & Opara, E. C. (2017). Retrieval of Microencapsulated Islet Grafts for post-transplant evaluation. Methods In Molecular Biology, 1479, 157–171.

    Article  CAS  PubMed  Google Scholar 

  156. Calafiore, R., Basta, G., Luca, G., Lemmi, A., Montanucci, M. P., Calabrese, G., Racanicchi, L., Mancuso, F., & Brunetti, P. (2006). Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes: first two cases. Diabetes Care, 29(1), 137–138.

    Article  PubMed  Google Scholar 

  157. Elliott, R. B., Escobar, L., Tan, P. L., Muzina, M., Zwain, S., & Buchanan, C. (2007). Live encapsulated porcine islets from a type 1 diabetic patient 9.5 year after xenotransplantation. Xenotransplantation, 14(2), 157–161.

    Article  PubMed  Google Scholar 

  158. Schweicher, J., Nyitray, C., & Desai, T. A. (2014). Membranes to achieve immunoprotection of transplanted islets. Front Biosci (Landmark Ed), 19, 49–76.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Mridha, A. R., Dargaville, T. R., & Tuch, B. E. (2017). 6.24 Bioengineering Approaches to islet transplantation for management of diabetes. In P. Ducheyne (Ed.), Comprehensive Biomaterials II (pp. 424–434). Oxford: Elsevier.

    Chapter  Google Scholar 

  160. Ernst, A. U., Bowers, D. T., Wang, L. H., Shariati, K., Plesser, M. D., Brown, N. K., Mehrabyan, T., & Ma, M. (2019). Nanotechnology in cell replacement therapies for type 1 diabetes. Advanced Drug Delivery Reviews, 139, 116–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Dang, T. T., Thai, A. V., Cohen, J., Slosberg, J. E., Siniakowicz, K., Doloff, J. C., Ma, M., Hollister-Lock, J., Tang, K. M., Gu, Z., Cheng, H., Weir, G. C., Langer, R., & Anderson, D. G. (2013). Enhanced function of immuno-isolated islets in diabetes therapy by co-encapsulation with an anti-inflammatory drug. Biomaterials, 34(23), 5792 – 801.

  162. Vaithilingam, V., Evans, M. D. M., Lewy, D. M., Bean, P. A., Bal, S., & Tuch, B. E. (2017). Co-encapsulation and co-transplantation of mesenchymal stem cells reduces pericapsular fibrosis and improves encapsulated islet survival and function when allografted. Scientific Reports, 7(1), 10059.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Ghasemi, A., Akbari, E., & Imani, R. (2021). An overview of Engineered Hydrogel-Based biomaterials for improved β-Cell survival and insulin secretion. Frontiers In Bioengineering And Biotechnology, 9, 662084–662084.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Mooranian, A., Negrulj, R., Chen-Tan, N., Fakhoury, M., Arfuso, F., Jones, F., & Al-Salami, H. (2016). Advanced bile acid-based multi-compartmental microencapsulated pancreatic β-cells integrating a polyelectrolyte-bile acid formulation, for diabetes treatment. Artif Cells Nanomed Biotechnol, 44(2), 588–595.

    Article  CAS  PubMed  Google Scholar 

  165. Mooranian, A., Negrulj, R., Arfuso, F., & Al-Salami, H. (2016). Characterization of a novel bile acid-based delivery platform for microencapsulated pancreatic β-cells. Artif Cells Nanomed Biotechnol, 44(1), 194–200.

    Article  CAS  PubMed  Google Scholar 

  166. Bai, X., Pei, Q., Pu, C., Chen, Y., He, S., & Wang, B. (2020). Multifunctional islet transplantation hydrogel encapsulating A20 high-expressing islets. Drug Design, Development And Therapy, 14, 4021–4027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Choe, G., Park, J., Park, H., & Lee, J. Y. (2018).Hydrogel Biomaterials for Stem Cell Microencapsulation. Polymers (Basel), 10(9), 997.

    PubMed  Google Scholar 

  168. Lee, K. Y., & Mooney, D. J. (2012). Alginate: properties and biomedical applications. Progress In Polymer Science, 37(1), 106–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Priyadarshini, M., Mohanty, S., Mahapatra, T., Mohapatra, P., & Dash, R., Chap. 20 - Three-dimensional tumor model and their implication in drug screening for tackling chemoresistance, in: S.C. Kundu, R.L. Reis (Eds.), Biomaterials for 3D Tumor Modeling, Elsevier 2020, pp. 481–503.

  170. Zhang, H., Cheng, J., & Ao, Q. (2021). Preparation of Alginate-Based biomaterials and their applications in Biomedicine. Marine Drugs, 19(5), 264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ramos, P., Silva, P., Alario, M., Pastrana, L., Teixeira, J., Cerqueira, M., & Vicente, A. (2017). Effect of alginate molecular weight and M/G ratio in beads properties foreseeing the protection of probiotics. Food Hydrocolloids, 77.

  172. Somo, S. I., Brown, J. M., & Brey, E. M. (2020). Dual Crosslinking of Alginate Outer Layer Increases Stability of Encapsulation System. Frontiers in Chemistry, 8(1091).

  173. Chan, K. H., Krishnan, R., Alexander, M., & Lakey, J. R. T. (2017). Developing a Rapid Algorithm to Enable Rapid characterization of Alginate Microcapsules. Cell Transplantation, 26(5), 765–772.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Quintana, J., Stinchcomb, A., Kostyo, J., Robichaud, B., Plunk, M., & Kane, R. (2018). Chemical strategies for improving islet transplant outcomes. OBM Transplantation, 2(4), 1–1.

    Article  Google Scholar 

  175. Hu, S., & de Vos, P. (2019). Polymeric approaches to reduce tissue responses against Devices Applied for Islet-Cell Encapsulation. Frontiers In Bioengineering And Biotechnology, 7, 134–134.

    Article  PubMed  PubMed Central  Google Scholar 

  176. de Vos, P., Bucko, M., Gemeiner, P., Navrátil, M., Svitel, J., Faas, M., Strand, B. L., Skjak-Braek, G., Morch, Y. A., Vikartovská, A., Lacík, I., Kolláriková, G., Orive, G., Poncelet, D., & Pedraz, J. L. (2009). Ansorge-Schumacher, Multiscale requirements for bioencapsulation in medicine and biotechnology. Biomaterials, 30(13), 2559–2570.

    Article  PubMed  Google Scholar 

  177. Mørch, Y. A., Donati, I., Strand, B. L., & Skjåk-Braek, G. (2006). Effect of Ca2+, Ba2+, and Sr2 + on alginate microbeads. Biomacromolecules, 7(5), 1471–1480.

    Article  PubMed  Google Scholar 

  178. Safley, S. A., Cui, H., Cauffiel, S., Tucker-Burden, C., & Weber, C. J. (2008). Biocompatibility and immune acceptance of adult porcine islets transplanted intraperitoneally in diabetic NOD mice in calcium alginate poly-L-lysine microcapsules versus barium alginate microcapsules without poly-L-lysine. Journal Of Diabetes Science And Technology, 2(5), 760–767.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Sahoo, D. R., & Biswal, T. (2021). Alginate and its application to tissue engineering. SN Applied Sciences, 3(1), 30.

    Article  CAS  Google Scholar 

  180. Azadi, S. A., Vasheghani-Farahani, E., Hashemi-Najafbabadi, S., & Godini, A. (2016). Co-encapsulation of pancreatic islets and pentoxifylline in alginate-based microcapsules with enhanced immunosuppressive effects. Progress In Biomaterials, 5, 101–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Dufrane, D., Mourad, M., Goffin, E., Aouassar, N., Gianello, P., & Vandeleene, B. (2013). A simple and safe Clinical Procedure for Human. Encapsulated Islet Transplantation in the Subcutaneous Tissue for Diabetes Treatment.

  182. Alagpulinsa, D. A., Cao, J. J. L., Driscoll, R. K., Sîrbulescu, R. F., Penson, M. F. E., Sremac, M., Engquist, E. N., Brauns, T. A., Markmann, J. F., Melton, D. A., & Poznansky, M. C. (2019). Alginate-microencapsulation of human stem cell–derived β cells with CXCL12 prolongs their survival and function in immunocompetent mice without systemic immunosuppression. American Journal of Transplantation, 19(7), 1930–1940.

    Article  CAS  PubMed  Google Scholar 

  183. Matsumoto, S., Abalovich, A., Wechsler, C., Wynyard, S., & Elliott, R. B. (2016). Clinical Benefit of Islet Xenotransplantation for the Treatment of Type 1 Diabetes. EBioMedicine, 12, 255–262.

  184. Dolgin, E. (2022). Diabetes cell therapies take evasive action. Nature Biotechnology, 40(3), 291–295.

    Article  CAS  PubMed  Google Scholar 

  185. Desai, T. A., & Tang, Q. (2018). Islet encapsulation therapy — racing towards the finish line? Nature Reviews Endocrinology, 14(11), 630–632.

    Article  PubMed  Google Scholar 

  186. Barkai, U., Weir, G. C., Colton, C. K., Ludwig, B., Bornstein, S. R., Brendel, M. D., Neufeld, T., Bremer, C., Leon, A., Evron, Y., Yavriyants, K., Azarov, D., Zimermann, B., Maimon, S., Shabtay, N., Balyura, M., Rozenshtein, T., Vardi, P., Bloch, K., de Vos, P., & Rotem, A. (2013). Enhanced oxygen supply improves islet viability in a new bioartificial pancreas. Cell Transplantation, 22(8), 1463–1476.

    Article  PubMed  Google Scholar 

  187. Paredes Juárez, G. A., Spasojevic, M., & de Faas, M. M. (2014). Vos, Immunological and Technical Considerations in Application of Alginate-Based Microencapsulation Systems. Front Bioeng Biotechno, l2(26).

  188. Villa, C., Manzoli, V., Abreu, M. M., Verheyen, C. A., Seskin, M., Najjar, M., Molano, R. D., Torrente, Y., Ricordi, C., & Tomei, A. A. (2017). Effects of Composition of Alginate-Polyethylene Glycol Microcapsules and Transplant Site on Encapsulated Islet Graft Outcomes in mice. Transplantation, 101(5), 1025–1035.

    Article  CAS  PubMed  Google Scholar 

  189. Wu, S., Wang, L., Fang, Y., Huang, H., You, X., & Wu, J., Advances in Encapsulation and Delivery Strategies for Islet Transplantation. Advanced Healthcare Materials, n/a(n/a), 2100965.

  190. Zorzi, D., Phan, T., Sequi, M., Lin, Y., Freeman, D. H., Cicalese, L., & Rastellini, C. (2015). Impact of islet size on pancreatic islet transplantation and potential interventions to improve outcome. Cell Transplantation, 24(1), 11–23.

    Article  PubMed  Google Scholar 

  191. Ernst, A. U., Bowers, D. T., Wang, L. H., Shariati, K., Plesser, M. D., Brown, N. K., Mehrabyan, T., & Ma, M. (2019). Nanotechnology in cell replacement therapies for type 1 diabetes. Advanced Drug Delivery Reviews, 139, 116–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Wiggins, S. C., Abuid, N. J., Gattás-Asfura, K. M., Kar, S., & Stabler, C. L. (2020). Nanotechnology approaches to modulate Immune responses to cell-based therapies for type 1 diabetes. Journal of Diabetes Science and Technology, 14(2), 212–225.

    Article  CAS  PubMed  Google Scholar 

  193. Krol, S., Baronti, W., & Marchetti, P. (2020). Nanoencapsulated human pancreatic islets for β-cell replacement in type 1 diabetes. Nanomedicine: The Official Journal Of The American Academy Of Nanomedicine, 15(18), 1735–1738.

    Article  CAS  Google Scholar 

  194. Tse, H. M., Kozlovskaya, V., Kharlampieva, E., & Hunter, C. S. (2015). Minireview: Directed differentiation and encapsulation of Islet β-Cells-recent advances and future considerations. Molecular Endocrinology, 29(10), 1388–1399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kozlovskaya, V., Zavgorodnya, O., Chen, Y., Ellis, K., Tse, H. M., Cui, W., Thompson, J. A., & Kharlampieva, E. (2012). Ultrathin polymeric Coatings based on Hydrogen-Bonded Polyphenol for Protection of pancreatic islet cells. Advanced Functional Materials, 22(16), 3389–3398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Zhang, S., Xing, M., & Li, B. (2018). Biomimetic Layer-by-layer self-assembly of Nanofilms, Nanocoatings, and 3D scaffolds for tissue Engineering. International journal of molecular sciences, 19(6), 1641.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Syed, F., Bugliani, M., Novelli, M., Olimpico, F., Suleiman, M., Marselli, L., Boggi, U., Filipponi, F., Raffa, V., Krol, S., Campani, D., Masiello, P., De Tata, V., & Marchetti, P. (2018). Conformal coating by multilayer nano-encapsulation for the protection of human pancreatic islets: In-vitro and in-vivo studies. Nanomedicine: Nanotechnology Biology and Medicine, 14(7), 2191–2203.

    Article  CAS  PubMed  Google Scholar 

  198. Haque, M., Kim, J., Park, H., Hansin, L., Lee, K. W., Al-Hilal, T., Jeong, J. H., Ahn, C. H., Lee, D., Kim, S. J., & Byun, Y. (2017). Xenotransplantation of layer-by-layer encapsulated non-human primate islets with a specified immunosuppressive drug protocol. Journal of Controlled Release, 258.

  199. Wilson, J. T., Cui, W., & Chaikof, E. L. (2008). Layer-by-layer assembly of a conformal nanothin PEG coating for intraportal islet transplantation. Nano Letters, 8(7), 1940–1948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Dong, H., Fahmy, T. M., Metcalfe, S. M., Morton, S. L., Dong, X., Inverardi, L., Adams, D. B., Gao, W., & Wang, H. (2012). Immuno-Isolation of pancreatic islet allografts using Pegylated Nanotherapy leads to long-term normoglycemia in full MHC mismatch recipient mice. PLOS ONE, 7(12), e50265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Pham-Hua, D., Padgett, L. E., Xue, B., Anderson, B., Zeiger, M., Barra, J. M., Bethea, M., Hunter, C. S., Kozlovskaya, V., Kharlampieva, E., & Tse, H. M. (2017). Islet encapsulation with polyphenol coatings decreases pro-inflammatory chemokine synthesis and T cell trafficking. Biomaterials, 128, 19–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Wilson, J., Cui, W., & Chaikof, E. (2008). Layer-by-Layer Assembly of a conformal Nanothin PEG Coating for Intraportal Islet Transplantation. Nano Letters, 8, 1940–1948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. DiSanto, R. M., Subramanian, V., & Gu, Z. (2015). Recent advances in nanotechnology for diabetes treatment. Wiley Interdisciplinary Reviews. Nanomedicine And Nanobiotechnology, 7(4), 548–564.

    Article  CAS  PubMed Central  Google Scholar 

  204. Matsusaki, M., & Akashi, M. (2014). Control of extracellular microenvironments using polymer/protein nanofilms for the development of three-dimensional human tissue chips. Polymer Journal, 46(9), 524–536.

    Article  CAS  Google Scholar 

  205. Burke, M., Carter, B. M., & Perriman, A. W. (2017). Bioprinting: uncovering the utility layer-by-layer. Journal of 3D Printing in Medicine, 1(3), 165–179.

    Article  CAS  Google Scholar 

  206. Lin, C. C., & Anseth, K. (2009). Peptide-1 functionalized PEG hydrogels promote survival and function of encapsulated pancreatic β-Cells. Biomacromolecules, 10, 2460–2467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Muthyala, S., Safley, S., Gordan, K., Barber, G., Weber, C., & Sambanis, A. (2017). The effect of hypoxia on free and encapsulated adult porcine islets—an in vitro study. Xenotransplantation, 24(1), e12275.

    Article  Google Scholar 

  208. Manzoli, V., Villa, C., Bayer, A. L., Morales, L. C., Molano, R. D., Torrente, Y., Ricordi, C., Hubbell, J. A., & Tomei, A. A. (2018). Immunoisolation of murine islet allografts in vascularized sites through conformal coating with polyethylene glycol. American Journal of Transplantation, 18(3), 590–603.

    Article  CAS  PubMed  Google Scholar 

  209. Tomei, A. A., Manzoli, V., Fraker, C. A., Giraldo, J., Velluto, D., Najjar, M., Pileggi, A., Molano, R. D., Ricordi, C., Stabler, C. L., & Hubbell, J. A. (2014). Device design and materials optimization of conformal coating for islets of Langerhans. Proceedings of the National Academy of Sciences, 111(29), 10514–10519.

  210. Qayyum, A. S., Jain, E., Kolar, G., Kim, Y., Sell, S. A., & Zustiak, S. P. (2017). Design of electrohydrodynamic sprayed polyethylene glycol hydrogel microspheres for cell encapsulation. Biofabrication, 9(2), 025019.

    Article  PubMed  Google Scholar 

  211. Duvillié, B. (2013). Vascularization of the Pancreas: an evolving role from embryogenesis to Adulthood. Diabetes, 62(12), 4004–4005.

    Article  PubMed  PubMed Central  Google Scholar 

  212. A.A. Stock, V. Manzoli, T. De Toni, M.M. Abreu, Y.-C. Poh, L. Ye, A. Roose, F.W. Pagliuca, C. Thanos, C. Ricordi, A.A. Tomei. (2020) Conformal Coating of Stem Cell-Derived Islets for β Cell Replacement in Type 1 Diabetes, Stem Cell Reports, 14(1), 91–104.

  213. Verheyen, C. A., Morales, L., Sussman, J., Paunovska, K., Manzoli, V., & Ziebarth, N. M. (2019). Tomei, characterization of polyethylene Glycol–Reinforced Alginate Microcapsules for mechanically stable cell immunoisolation. Macromolecular Materials and Engineering, 304(4), 1800679.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Scharp, D. W., & Marchetti, P. (2014). Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution. Adv Drug Deliv Rev, 67–6835–73.

  215. Scharp, D., Schwartz, S., Mulgrew, P., Albrecht, G., Oberlholzer, J., Kuhtreiber, W., & Yu, X. (2006). Encapsulated human islet allografts: Phase I/II clinical trial,Am Diabetics Meeting,

  216. Giraldo, J. A., Molano, R. D., Rengifo, H. R., Fotino, C., Gattás-Asfura, K. M., Pileggi, A., & Stabler, C. L. (2017). The impact of cell surface PEGylation and short-course immunotherapy on islet graft survival in an allogeneic murine model. Acta Biomaterialia, 49, 272–283.

    Article  CAS  PubMed  Google Scholar 

  217. Scharp, D. W., & Marchetti, P. (2014). Encapsulated islets for diabetes therapy: History, current progress, and critical issues requiring solution. Advanced Drug Delivery Reviews, 67–6835–73.

  218. Potter, K. J., Westwell-Roper, C. Y., Klimek-Abercrombie, A. M., Warnock, G. L., & Verchere, C. B. (2014). Death and dysfunction of transplanted β-Cells: Lessons learned from type 2 diabetes? Diabetes, 63(1), 12–19.

    Article  CAS  PubMed  Google Scholar 

  219. Naziruddin, B., Iwahashi, S., Kanak, M. A., Takita, M., Itoh, T., & Levy, M. F. (2014). Evidence for instant blood-mediated inflammatory reaction in clinical autologous islet transplantation. American Journal of Transplantation, 14(2), 428–437.

    Article  CAS  PubMed  Google Scholar 

  220. Wang, H., Strange, C., Nietert, P. J., Wang, J., Turnbull, T. L., Cloud, C., Owczarski, S., Shuford, B., Duke, T., Gilkeson, G., Luttrell, L., Hermayer, K., Fernandes, J., Adams, D. B., & Morgan, K. A. (2018). Autologous Mesenchymal Stem Cell and Islet Cotransplantation: Safety and Efficacy. Stem cells translational medicine, 7(1), 11–19.

    CAS  PubMed  Google Scholar 

  221. Ben Nasr, M., Vergani, A., Avruch, J., Liu, L., Kefaloyianni, E., D’Addio, F., Tezza, S., Corradi, D., Bassi, R., Valderrama-Vasquez, A., Usuelli, V., Kim, J., Azzi, J., El Essawy, B., Markmann, J., Abdi, R., & Fiorina, P. (2015). Co-transplantation of autologous MSCs delays islet allograft rejection and generates a local immunoprivileged site. Acta Diabetologica, 52(5), 917–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Banno, K., & Yoder, M. C. (2018). Tissue regeneration using endothelial colony-forming cells: promising cells for vascular repair. Pediatric Research, 83(1), 283–290.

    Article  CAS  PubMed  Google Scholar 

  223. Reid, E., Guduric-Fuchs, J., O’Neill, C. L., Allen, L. D., Chambers, S. E. J., Stitt, A. W., & Medina, R. J. (2018). Preclinical evaluation and optimization of a cell therapy using human cord blood-derived endothelial colony-forming cells for ischemic retinopathies. STEM CELLS Translational Medicine, 7(1), 59–67.

    Article  CAS  PubMed  Google Scholar 

  224. Jung, H. S., Kim, M. J., Hong, S. H., Lee, Y. J., Kang, S., Lee, H., Chung, S. S., Park, J. S., & Park, K. S. (2014). The potential of endothelial colony-forming cells to improve early graft loss after intraportal islet transplantation. Cell Transplantation, 23(3), 273–283.

    Article  PubMed  Google Scholar 

  225. Pan, G., Mu, Y., Hou, L., & Liu, J. (2019). Examining the therapeutic potential of various stem cell sources for differentiation into insulin-producing cells to treat diabetes. Annales d’Endocrinologie, 80(1), 47–53.

    Article  PubMed  Google Scholar 

  226. Kim, J., Shim, I. K., Hwang, D. G., Lee, Y. N., Kim, M., Kim, H., Kim, S. W., Lee, S., Kim, S. C., & Cho, D. W. (2019). Jang, 3D cell printing of islet-laden pancreatic tissue-derived extracellular matrix bioink constructs for enhancing pancreatic functions. J Mater Chem B, 7(10), 1773–1781.

    Article  CAS  PubMed  Google Scholar 

  227. Liu, X., Carter, S. D., Renes, M. J., Kim, J., Rojas-Canales, D. M., Penko, D., Angus, C., Beirne, S., Drogemuller, C. J., Yue, Z., Coates, P. T., & Wallace, G. G. (2019). Development of a coaxial 3D Printing platform for Biofabrication of Implantable islet-containing constructs. Adv Healthc Mater, 8(7), e1801181.

    Article  PubMed  Google Scholar 

  228. Mac, Q. D., Mathews, D. V., Kahla, J. A., Stoffers, C. M., Delmas, O. M., Holt, B. A., Adams, A. B., & Kwong, G. A. (2019). Non-invasive early detection of acute transplant rejection via nanosensors of granzyme B activity. Nat Biomed Eng, 3(4), 281–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by JDRF Innovative Grants (FY20 Beta Cell Replacement, Immunotherapies, and Metabolic Control Innovative Grants (INO) − 2020).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing, reviewing, and editing the article and figures.

Corresponding authors

Correspondence to Lana McClements or Xiaoxue Xu.

Ethics declarations

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethics of approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siwakoti, P., Rennie, C., Huang, Y. et al. Challenges with Cell-based Therapies for Type 1 Diabetes Mellitus. Stem Cell Rev and Rep 19, 601–624 (2023). https://doi.org/10.1007/s12015-022-10482-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10482-1

Keywords

Navigation