Skip to main content
Log in

Overexpression of Lias Gene Alleviates Cadmium-Induced Kidney Injury in Mice Involving Multiple Effects: Metabolism, Oxidative Stress, and Inflammation

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Oxidative stress is an important mechanism underlying toxicity induced by cadmium (Cd) exposure. However, there are significant differences of the antioxidant baseline in different populations. This means that different human has different intensity of oxidative stress in vivo after exposure to toxicants. LiasH/H mouse is a specific model which is created by genetically modifying the Lias 3′-untranslated region (3′-UTR). LiasH/H mice express high levels of LA and have high endogenous antioxidant capacity which is approximately 150% higher than wild-type C57BL/6 J mice (WT, Lias+/+). But more importantly, they have dual roles of metal chelator and antioxidant. Here, we applied this mouse model to evaluate the effect of endogenous antioxidant levels in the body on alleviating Cd-induced renal injury including Cd metabolism, oxidative stress, and inflammation. In the experiment, mice drank water containing Cd (50 mg/L), for 12 weeks. Many biomarkers of Cd metabolism, oxidative stress, inflammation, and major pathological changes in the kidney were examined. The results showed overexpression of the Lias gene decreased Cd burden in the body of mice, mitigated oxidative stress, attenuated the inflammatory response, and subsequent alleviated cadmium-induced kidney injury in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data from the present study may be obtained from the corresponding author if the requirements are reasonable.

References

  1. Turner A (2019) Cadmium pigments in consumer products and their health risks. Sci Total Environ 657:1409–1418. https://doi.org/10.1016/j.scitotenv.2018.12.096

    Article  CAS  PubMed  Google Scholar 

  2. Huang Y, Liu J, Yang L, Li X, Hu G, Wang G, Sun G, Li Z (2021) Fate of lead and cadmium in precalciner cement plants and their atmospheric releases. ACS Omega 6(33):21265–21275. https://doi.org/10.1021/acsomega.1c01329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182. https://doi.org/10.1093/bmb/ldg032

    Article  PubMed  Google Scholar 

  4. Peana M, Pelucelli A, Chasapis CT, Perlepes SP, Bekiari V, Medici S, Zoroddu MA (2022) Biological effects of human exposure to environmental cadmium. Biomolecules 13(1). https://doi.org/10.3390/biom13010036

  5. Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A (2020) The effects of cadmium toxicity. Int J Environ Res Public Health 17(11). https://doi.org/10.3390/ijerph17113782

  6. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Exp Suppl 101:133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  PubMed  Google Scholar 

  7. Taha MM, Mahdy-Abdallah H, Shahy EM, Ibrahim KS, Elserougy S (2018) Impact of occupational cadmium exposure on bone in sewage workers. Int J Occup Environ Health 24(3–4):101–108. https://doi.org/10.1080/10773525.2018.1518745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liang Y, Zeng T, Tian J, Yan J, Lan Z, Chen J, Xin X, Lei B, Cai Z (2021) Long-term environmental cadmium exposure induced serum metabolic changes related to renal and liver dysfunctions in a female cohort from Southwest China. Sci Total Environ 798:149379. https://doi.org/10.1016/j.scitotenv.2021.149379

    Article  CAS  PubMed  Google Scholar 

  9. Nawrot TS, Van Hecke E, Thijs L, Richart T, Kuznetsova T, Jin Y, Vangronsveld J, Roels HA, Staessen JA (2008) Cadmium-related mortality and long-term secular trends in the cadmium body burden of an environmentally exposed population. Environ Health Perspect 116(12):1620–1628. https://doi.org/10.1289/ehp.11667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kumar S, Sharma A (2019) Cadmium toxicity: effects on human reproduction and fertility. Rev Environ Health 34(4):327–338. https://doi.org/10.1515/reveh-2019-0016

    Article  CAS  PubMed  Google Scholar 

  11. Jain RB (2020) Cadmium and kidney function: concentrations, variabilities, and associations across various stages of glomerular function. Environ Pollut 256:113361. https://doi.org/10.1016/j.envpol.2019.113361

    Article  CAS  PubMed  Google Scholar 

  12. Wilk A, Romanowski M, Wiszniewska B (2021) Analysis of cadmium, mercury, and lead concentrations in erythrocytes of renal transplant recipients from Northwestern Poland. Biol (Basel) 10(1). https://doi.org/10.3390/biology10010062

  13. Rani A, Kumar A, Lal A, Pant M (2014) Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res 24(4):378–399. https://doi.org/10.1080/09603123.2013.835032

    Article  CAS  PubMed  Google Scholar 

  14. Rinaldi M, Micali A, Marini H, Adamo EB, Puzzolo D, Pisani A, Trichilo V, Altavilla D, Squadrito F, Minutoli L (2017) Cadmium, organ toxicity and therapeutic approaches: a review on brain, kidney and testis damage. Curr Med Chem 24(35):3879–3893. https://doi.org/10.2174/0929867324666170801101448

    Article  CAS  PubMed  Google Scholar 

  15. Yang H, Shu Y (2015) Cadmium transporters in the kidney and cadmium-induced nephrotoxicity. Int J Mol Sci 16(1):1484–1494. https://doi.org/10.3390/ijms16011484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nordberg M, Nordberg GF (2022) Metallothionein and cadmium toxicology-historical review and commentary. Biomolecules 12(3). https://doi.org/10.3390/biom12030360

  17. Rana MN, Tangpong J, Rahman MM (2018) Toxicodynamics of lead, cadmium, mercury and arsenic- induced kidney toxicity and treatment strategy: a mini review. Toxicol Rep 5:704–713. https://doi.org/10.1016/j.toxrep.2018.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Friberg L (1984) Cadmium and the kidney. Environ Health Perspect 54:1–11. https://doi.org/10.1289/ehp.84541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Klaassen CD, Liu J, Choudhuri S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39:267–294. https://doi.org/10.1146/annurev.pharmtox.39.1.267

    Article  CAS  PubMed  Google Scholar 

  20. Park JH, Lee BM, Kim HS (2021) Potential protective roles of curcumin against cadmium-induced toxicity and oxidative stress. J Toxicol Environ Health B Crit Rev 24(3):95–118. https://doi.org/10.1080/10937404.2020.1860842

    Article  CAS  PubMed  Google Scholar 

  21. Hernandez-Cruz EY, Amador-Martinez I, Aranda-Rivera AK, Cruz-Gregorio A, Pedraza Chaverri J (2022) Renal damage induced by cadmium and its possible therapy by mitochondrial transplantation. Chem Biol Interact 361:109961. https://doi.org/10.1016/j.cbi.2022.109961

    Article  CAS  PubMed  Google Scholar 

  22. Han YL, Sheng Z, Liu GD, Long LL, Wang YF, Yang WX, Zhu JQ (2015) Cloning, characterization and cadmium inducibility of metallothionein in the testes of the mudskipper Boleophthalmus pectinirostris. Ecotoxicol Environ Saf 119:1–8. https://doi.org/10.1016/j.ecoenv.2015.04.055

    Article  CAS  PubMed  Google Scholar 

  23. Hassanein EHM, Mohamed WR, Ahmed OS, Abdel-Daim MM, Sayed AM (2022) The role of inflammation in cadmium nephrotoxicity: NF-kappaB comes into view. Life Sci 308:120971. https://doi.org/10.1016/j.lfs.2022.120971

    Article  CAS  PubMed  Google Scholar 

  24. Zhao Y, Yan T, Xiong C, Chang M, Gao Q, Yao S, Wu W, Yi X, Xu G (2021) Overexpression of lipoic acid synthase gene alleviates diabetic nephropathy of Lepr(db/db) mice. BMJ Open Diabetes Res Care 9(1). https://doi.org/10.1136/bmjdrc-2021-002260

  25. Mason SA, Trewin AJ, Parker L, Wadley GD (2020) Antioxidant supplements and endurance exercise: current evidence and mechanistic insights. Redox Biol 35:101471. https://doi.org/10.1016/j.redox.2020.101471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tsou PS, Balogh B, Pinney AJ, Zakhem G, Lozier A, Amin MA, Stinson WA, Schiopu E, Khanna D, Fox DA, Koch AE (2014) Lipoic acid plays a role in scleroderma: insights obtained from scleroderma dermal fibroblasts. Arthritis Res Ther 16(5):411. https://doi.org/10.1186/s13075-014-0411-6

    Article  CAS  PubMed  Google Scholar 

  27. Li X, Zou Y, Fu YY, Xing J, Wang KY, Wan PZ, Zhai XY (2021) A-lipoic acid alleviates folic acid-induced renal damage through inhibition of ferroptosis. Front Physiol 12:680544. https://doi.org/10.3389/fphys.2021.680544

    Article  PubMed  PubMed Central  Google Scholar 

  28. Veljkovic AR, Nikolic RS, Kocic GM, Pavlovic DD, Cvetkovic TP, Sokolovic DT, Jevtovic TM, Basic JT, Laketic DM, Marinkovic MR, Stojanovic SR, Djordjevic BS, Krsmanovic MM (2012) Protective effects of glutathione and lipoic acid against cadmium-induced oxidative stress in rat’s kidney. Ren Fail 34(10):1281–1287. https://doi.org/10.3109/0886022X.2012.723661

    Article  CAS  PubMed  Google Scholar 

  29. Lee DC, Choi H, Oh JM, Lee DH, Kim SW, Kim SW, Kim BG, Cho JH, Lee J (2019) Protective effects of alpha-lipoic acid on cultured human nasal fibroblasts exposed to urban particulate matter. Int Forum Allergy Rhinol 9(6):638–647. https://doi.org/10.1002/alr.22296

    Article  PubMed  Google Scholar 

  30. Tudose M, Culita DC, Musuc AM, Somacescu S, Ghica C, Chifiriuc MC, Bleotu C (2017) Lipoic acid functionalized SiO(2)@Ag nanoparticles. Synthesis, characterization and evaluation of biological activity. Mater Sci Eng C Mater Biol Appl 79:499–506. https://doi.org/10.1016/j.msec.2017.05.083

    Article  CAS  PubMed  Google Scholar 

  31. Mayr JA, Zimmermann FA, Fauth C, Bergheim C, Meierhofer D, Radmayr D, Zschocke J, Koch J, Sperl W (2011) Lipoic acid synthetase deficiency causes neonatal-onset epilepsy, defective mitochondrial energy metabolism, and glycine elevation. Am J Hum Genet 89(6):792–797. https://doi.org/10.1016/j.ajhg.2011.11.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zou H, Chen Y, Qu H, Sun J, Wang T, Ma Y, Yuan Y, Bian J, Liu Z (2022) Microplastics exacerbate cadmium-induced kidney injury by enhancing oxidative stress, autophagy, apoptosis, and fibrosis. Int J Mol Sci 23(22). https://doi.org/10.3390/ijms232214411

  33. Fujishiro H, Sumino M, Sumi D, Umemoto H, Tsuneyama K, Matsukawa T, Yokoyama K, Himeno S (2022) Spatial localization of cadmium and metallothionein in the kidneys of mice at the early phase of cadmium accumulation. J Toxicol Sci 47(12):507–517. https://doi.org/10.2131/jts.47.507

    Article  CAS  PubMed  Google Scholar 

  34. Luo T, Liu G, Long M, Yang J, Song R, Wang Y, Yuan Y, Bian J, Liu X, Gu J, Zou H, Liu Z (2017) Treatment of cadmium-induced renal oxidative damage in rats by administration of alpha-lipoic acid. Environ Sci Pollut Res Int 24(2):1832–1844. https://doi.org/10.1007/s11356-016-7953-x

    Article  CAS  PubMed  Google Scholar 

  35. Lin Q, Li S, Jiang N, Shao X, Zhang M, Jin H, Zhang Z, Shen J, Zhou Y, Zhou W, Gu L, Lu R, Ni Z (2019) PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biol 26:101254. https://doi.org/10.1016/j.redox.2019.101254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen C, Han X, Wang G, Liu D, Bao L, Jiao C, Luan J, Hou Y, Xu Y, Wang H, Zhang Q, Zhou H, Fu J, Pi J (2021) Nrf2 deficiency aggravates the kidney injury induced by subacute cadmium exposure in mice. Arch Toxicol 95(3):883–893. https://doi.org/10.1007/s00204-020-02964-3

    Article  CAS  PubMed  Google Scholar 

  37. RafatiRahimzadeh M, RafatiRahimzadeh M, Kazemi S, Moghadamnia AA (2017) Cadmium toxicity and treatment: an update. Caspian J Intern Med 8(3):135–145. https://doi.org/10.22088/cjim.8.3.135

    Article  Google Scholar 

  38. Gu X, Xu L, Wang Z, Ming X, Dang P, Ouyang W, Lin C, Liu X, He M, Wang B (2021) Assessment of cadmium pollution and subsequent ecological and health risks in Jiaozhou Bay of the Yellow Sea. Sci Total Environ 774:145016. https://doi.org/10.1016/j.scitotenv.2021.145016

    Article  CAS  PubMed  Google Scholar 

  39. Fang J, Xie S, Chen Z, Wang F, Chen K, Zuo Z, Cui H, Guo H, Ouyang P, Chen Z, Huang C, Liu W, Geng Y (2021) Protective effect of vitamin E on cadmium-induced renal oxidative damage and apoptosis in rats. Biol Trace Elem Res 199(12):4675–4687. https://doi.org/10.1007/s12011-021-02606-4

    Article  CAS  PubMed  Google Scholar 

  40. Sanjeev S, Bidanchi RM, Murthy MK, Gurusubramanian G, Roy VK (2019) Influence of ferulic acid consumption in ameliorating the cadmium-induced liver and renal oxidative damage in rats. Environ Sci Pollut Res Int 26(20):20631–20653. https://doi.org/10.1007/s11356-019-05420-7

    Article  CAS  PubMed  Google Scholar 

  41. Li Z, Chi H, Zhu W, Yang G, Song J, Mo L, Zhang Y, Deng Y, Xu F, Yang J, He Z, Yang X (2021) Cadmium induces renal inflammation by activating the NLRP3 inflammasome through ROS/MAPK/NF-kappaB pathway in vitro and in vivo. Arch Toxicol 95(11):3497–3513. https://doi.org/10.1007/s00204-021-03157-2

    Article  CAS  PubMed  Google Scholar 

  42. Zhang H, Reynolds M (2019) Cadmium exposure in living organisms: a short review. Sci Total Environ 678:761–767. https://doi.org/10.1016/j.scitotenv.2019.04.395

    Article  CAS  PubMed  Google Scholar 

  43. Ge J, Zhang C, Sun YC, Zhang Q, Lv MW, Guo K, Li JL (2019) Cadmium exposure triggers mitochondrial dysfunction and oxidative stress in chicken (Gallus gallus) kidney via mitochondrial UPR inhibition and Nrf2-mediated antioxidant defense activation. Sci Total Environ 689:1160–1171. https://doi.org/10.1016/j.scitotenv.2019.06.405

    Article  CAS  PubMed  Google Scholar 

  44. Ma Y, Su Q, Yue C, Zou H, Zhu J, Zhao H, Song R, Liu Z (2022) The effect of oxidative stress-induced autophagy by cadmium exposure in kidney, liver, and bone damage, and neurotoxicity. Int J Mol Sci 23(21). https://doi.org/10.3390/ijms232113491

  45. Umar Ijaz M, Batool M, Batool A, Al-Ghanimd KA, Zafar S, Ashraf A, Al-Misned F, Ahmed Z, Shahzadi S, Samad A, Atique U, Al-Mulhm N, Mahboob S (2021) Protective effects of vitexin on cadmium-induced renal toxicity in rats. Saudi J Biol Sci 28(10):5860–5864. https://doi.org/10.1016/j.sjbs.2021.06.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Block G, Jensen CD, Morrow JD, Holland N, Norkus EP, Milne GL, Hudes M, Dalvi TB, Crawford PB, Fung EB, Schumacher L, Harmatz P (2008) The effect of vitamins C and E on biomarkers of oxidative stress depends on baseline level. Free Radic Biol Med 45(4):377–384. https://doi.org/10.1016/j.freeradbiomed.2008.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang X, Xiong G, Feng Y, Fan W, Yang S, Duan J, Duan Y, Wang K, Ou Y, Rehman T, Geng Y, Chen D, Yin L (2020) Protective effects of metallothionein and vitamin E in the trunk kidney and blood of cadmium poisoned Ctenopharyngodon idellus. Fish Physiol Biochem 46(3):1053–1061. https://doi.org/10.1007/s10695-020-00771-2

    Article  CAS  PubMed  Google Scholar 

  48. Huang J, Ma XT, Xu DD, Yao BJ, Zhao DQ, Leng XY, Liu J (2021) Xianling Gubao Capsule prevents cadmium-induced kidney injury. Biomed Res Int 2021:3931750. https://doi.org/10.1155/2021/3931750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dastan D, Karimi S, Larki-Harchegani A, Nili-Ahmadabadi A (2019) Protective effects of Allium hirtifolium Boiss extract on cadmium-induced renal failure in rats. Environ Sci Pollut Res Int 26(18):18886–18892. https://doi.org/10.1007/s11356-019-04656-7

    Article  CAS  PubMed  Google Scholar 

  50. Karami E, Goodarzi Z, Ghanbari A, Dehdashti A, Bandegi AR, Yosefi S (2022) Dataset on biochemical markers and histological alterations in rat kidney intoxicated with cadmium chloride and treated with antioxidant. Data Brief 43:108394. https://doi.org/10.1016/j.dib.2022.108394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Handan BA, De Moura CFG, Cardoso CM, Santamarina AB, Pisani LP, Ribeiro DA (2020) Protective effect of grape and apple juices against cadmium intoxication in the kidney of rats. Drug Res (Stuttg) 70(11):503–511. https://doi.org/10.1055/a-1221-4733

    Article  CAS  PubMed  Google Scholar 

  52. Wan X, Xing Z, Ouyang J, Liu H, Cheng C, Luo T, Yu S, Meihua L, Huang S (2022) Histomorphological and ultrastructural cadmium-induced kidney injuries and precancerous lesions in rats and screening for biomarkers. Biosci Rep 42(6). https://doi.org/10.1042/BSR20212516

  53. Cho MR, Kang HG, Jeong SH, Cho MH (2010) Time-dependent changes of cadmium and metallothionein after short-term exposure to cadmium in rats. Toxicol Res 26(2):131–136. https://doi.org/10.5487/TR.2010.26.2.131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen S, Liu G, Long M, Zou H, Cui H (2018) Alpha lipoic acid attenuates cadmium-induced nephrotoxicity via the mitochondrial apoptotic pathways in rat. J Inorg Biochem 184:19–26. https://doi.org/10.1016/j.jinorgbio.2018.04.001

    Article  CAS  PubMed  Google Scholar 

  55. Trinchella F, Esposito MG, Scudiero R (2012) Metallothionein primary structure in amphibians: insights from comparative evolutionary analysis in vertebrates. C R Biol 335(7):480–487. https://doi.org/10.1016/j.crvi.2012.05.003

    Article  CAS  PubMed  Google Scholar 

  56. Atukeren P, Aydin S, Uslu E, Gumustas MK, Cakatay U (2010) Redox homeostasis of albumin in relation to alpha-lipoic acid and dihydrolipoic acid. Oxid Med Cell Longev 3(3):206–213. https://doi.org/10.4161/oxim.3.3.11786

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lobato RO, Nunes SM, Wasielesky W, Fattorini D, Regoli F, Monserrat JM, Ventura-Lima J (2013) The role of lipoic acid in the protection against of metallic pollutant effects in the shrimp Litopenaeus vannamei (Crustacea, Decapoda). Comp Biochem Physiol A Mol Integr Physiol 165(4):491–497. https://doi.org/10.1016/j.cbpa.2013.03.015

    Article  CAS  PubMed  Google Scholar 

  58. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A (2017) Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev 2017:8416763. https://doi.org/10.1155/2017/8416763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Macias-Barragan J, Huerta-Olvera SG, Hernandez-Canaveral I, Pereira-Suarez AL, Montoya-Buelna M (2017) Cadmium and alpha-lipoic acid activate similar de novo synthesis and recycling pathways for glutathione balance. Environ Toxicol Pharmacol 52:38–46. https://doi.org/10.1016/j.etap.2017.03.007

    Article  CAS  PubMed  Google Scholar 

  60. Tsikas D (2017) Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal Biochem 524:13–30. https://doi.org/10.1016/j.ab.2016.10.021

    Article  CAS  PubMed  Google Scholar 

  61. Jacobson KB, Turner JE (1980) The interaction of cadmium and certain other metal ions with proteins and nucleic acids. Toxicology 16(1):1–37. https://doi.org/10.1016/0300-483x(80)90107-9

    Article  CAS  PubMed  Google Scholar 

  62. Xu L, Hiller S, Simington S, Nickeleit V, Maeda N, James LR, Yi X (2016) Influence of different levels of lipoic acid synthase gene expression on diabetic nephropathy. PLoS ONE 11(10):e0163208. https://doi.org/10.1371/journal.pone.0163208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fan SR, Ren TT, Yun MY, Lan R, Qin XY (2021) Edaravone attenuates cadmium-induced toxicity by inhibiting oxidative stress and inflammation in ICR mice. Neurotoxicol 86:1–9. https://doi.org/10.1016/j.neuro.2021.06.003

    Article  CAS  Google Scholar 

  64. Ren TT, Yang JY, Wang J, Fan SR, Lan R, Qin XY (2021) Gisenoside Rg1 attenuates cadmium-induced neurotoxicity in vitro and in vivo by attenuating oxidative stress and inflammation. Inflamm Res 70(10–12):1151–1164. https://doi.org/10.1007/s00011-021-01513-7

    Article  CAS  PubMed  Google Scholar 

  65. Kamt SF, Liu J, Yan LJ (2023) Renal-protective roles of lipoic acid in kidney disease. Nutrients 15(7). https://doi.org/10.3390/nu15071732

Download references

Funding

This work was supported by grants 222300420516, 81703183, 222102320325, S202110472029, and YJSCX202281Y. Guangcui Xu has received research support from the Nature Science Foundation of Henan Provincial and the National Natural Science Foundation of China. Zijiang Yang and Qiyu Gao have received research support from the Scientific and Technological Research Project of Henan Provincial. Weibing Li and Jingming Gao have received research support from the Innovation and Entrepreneurship Training Project for University Students of Henan Province.

Author information

Authors and Affiliations

Authors

Contributions

Guangcui Xu, Yingzheng Zhao and Zijiang Yang designed this project. Guangcui Xu and Weibing Li wrote the draft. Guangcui Xu, Weibing Li, Yingzheng Zhao, Qiyu Gao and Zhen An completed the experimental work. Weibing Li,Ting Fan and Yongbin Wang performed software work and data curation. Mingjing Gao and Fengquan Zhang did animal house work. Zijiang Yang reviewed the manuscript.

Corresponding authors

Correspondence to Guangcui Xu or Zijiang Yang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics Approval

All operating protocols for mice were in following the standards set by the Animal Ethics Committee from Xinxiang Medical University (approval number: No. XYLL-2017086).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Li, W., Zhao, Y. et al. Overexpression of Lias Gene Alleviates Cadmium-Induced Kidney Injury in Mice Involving Multiple Effects: Metabolism, Oxidative Stress, and Inflammation. Biol Trace Elem Res 202, 2797–2811 (2024). https://doi.org/10.1007/s12011-023-03883-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03883-x

Keywords

Navigation