Skip to main content
Log in

Euterpe oleracea (Martius) Oil Reverses Testicular Alterations Caused after Cadmium Administration

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is an environmental pollutant that induces reproductive toxicity by generating reactive oxygen species, which leads to oxidative stress. Euterpe oleracea fruits are known for being rich in oils containing triacylglycerol and phenolic compounds. They are considered as potent antioxidants to be used to counteract Cd effects within the testis. In the present study, adult males Swiss mice were treated with CdCl2 aqueous solution (4.28 mg/kg) by gavage for 7 days. The experimental groups were treated with Euterpe oleracea oil at the doses of 50, 100, and 150 mg/kg, for 42 days. The results showed that Cd intoxication led to increased tubular pathologies, such as reduction in epithelium height and area thus increasing both luminal diameter and tubule-epithelium ratio. Besides, Leydig cell’s morphometry indicated reduction in nucleus and cytoplasm volumes of this cell type, which were recovered after E. oleracea oil intake. In addition, serum testosterone levels, testicular Mn and Zn concentrations, SOD and CAT activity, and germ cell viability increased after oil intake. Therefore, E. oleracea oil showed a regenerative effect in the testicular parenchyma negatively affected by Cd, mainly in the animals that received the highest oil concentration (150 mg/kg).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Singh VP (2005) Metal toxicity and tolerance in plants and animals. Sarup & Sons, New Delhi, p 328

    Google Scholar 

  2. WHO World Health Organization (2010) Exposure to cadmium: A major public health concern. http://www.who.int/ipcs/features/cadmium.pdf?ua=1

  3. Satarug S, Garret SH, Sens MA, Sens DA (2010) Cadmium, environmental exposure, and health outcomes. Environ Health Perspect 118:182–190

    CAS  PubMed  Google Scholar 

  4. Gao P, Liu S, Ye W, Lin N, Meng P, Feng Y, Zhang Z, Cui F, Lu B, Xing B (2014) Assessment on the occupational exposure of urban public bus drivers to bioaccessible trace metals through resuspended fraction of settled bus dust. Sci Total Environ 508C:37–45

    Google Scholar 

  5. Yang H, Shu Y (2015) Cadmium transporters in the kidney and cd-induced nephrotoxicity. Int J Mol Sci 16(1):1484–1494

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Predes FS, Diamante MAS, Dolder H (2010) Testis response to low doses of cadmium in Wistar rats. Int J Exp Pathol 91(2):125–131

    CAS  Google Scholar 

  7. Cupertino MC, Novaes RD, Santos EC et al (2017) Cadmium-induced testicular damage is associated with mineral imbalance, increased antioxidant enzymes activity and protein oxidation in rats. Life Sci 15:23–30

    Google Scholar 

  8. Abarikwu SO, Oruitemeka S, Uwadileke IA, Omeodu SI, Okoye NF, Mgbudom-Okah CJ, Ohanador R (2018) Oral administration of cadmium depletes intratesticular and epididymal iron levels and inhibits lipid peroxidation in the testis and epididymis of adult rats. J Trace Elem Med Biol 48:213–223

    CAS  PubMed  Google Scholar 

  9. Mouro VGS, Siman VA, Silva J, Dias FCR, Damasceno EM, Cupertino MC, Melo FCSA, Matta SLP (2019) Cadmium induced testicular toxicity in mice: subacute and subchronic route-dependent effects. Biol Trace Elem Res:1–17. https://doi.org/10.1007/s12011-019-01731-5

  10. Abarikwu SO, Wokoma AFS, Mgbudom-Okah CJ, Omeodu SI, Ohanador R (2019) Effect of Fe and cd co-exposure on testicular steroid metabolism, Morphometry, and spermatogenesis in mice. Biol Trace Elem Res 190(1):109–123

    CAS  PubMed  Google Scholar 

  11. Minutoli L, Micali A, Pisani A, Puzzolo D, Bitto A, Rinaldi M, Pizzino G, Irrera N, Galfo F, Arena S, Pallio G, Mecchio A, Germanà A, Bruschetta D, Laurà R, Magno C, Marini H, Squadrito F, Altavilla D (2015) Research article Flavocoxid protects against cadmium-induced disruption of the blood-testis barrier and improves testicular damage and germ cell impairment in mice. Toxicol Sci 148(1):311–329

    CAS  PubMed  Google Scholar 

  12. Wu X, Guo X, Wang H, Zhou S, Li L, Chen X, Wang G, Liu J, Ge HS, Ge RS (2017) A brief exposure to cadmium impairs Leydig cell regeneration in the adult rat testis. Sci Rep 7(1):6337

    PubMed  PubMed Central  Google Scholar 

  13. Djuric A, Begic A, Gobeljic B et al (2015) Oxidative stress, bioelements and androgen status in testes of rats subacutely exposed to cadmium. Food Chem Toxicol 86:25–33

    CAS  PubMed  Google Scholar 

  14. Turner TT, Lysiak JJ (2008) Oxidative stress: a common factor in testicular dysfunction. J Androl 29(5):488–498

    CAS  PubMed  Google Scholar 

  15. Arafa MH, Mohammad NS, Atteia HH (2014) Fenugreek seed powder mitigates cadmium-induced testicular damage and hepatotoxicity in male rats. Exp Toxicol Pathol 66:293–300

    CAS  PubMed  Google Scholar 

  16. Predes FS, Monteiro JC, Matta SLP, Garcia MC, Dolder H (2011) Testicular Histomorphometry and ultrastructure of rats treated with cadmium and Ginkgo biloba. Biol Trace Elem Res 140:330–341

    CAS  Google Scholar 

  17. Leite RP, Wada RS, Monteiro JC, Predes FS, Dolder H (2011) Protective effect of guaraná (Paullinia cupana var. sorbilis) pre-treatment on cadmium-induced damages in adult Wistar testis. Biol Trace Elem Res 141(1–3):262–274

    CAS  PubMed  Google Scholar 

  18. Leite RP, Predes FS, Monteiro JC, Freitas KM, Wada RS, Dolder H (2013) Advantage of guaraná (Paullinia cupana Mart.) supplementation on cadmium-induced damages in testis of adult Wistar rats. Toxicol Pathol 41(1):73–79

    CAS  PubMed  Google Scholar 

  19. Adaramoye OA, Akanni OO (2016) Protective effects of Artocarpus altilis (Moraceae) on cadmium-induced changes in sperm characteristics and testicular oxidative damage in rats. Androl 48(2):152–163

    CAS  Google Scholar 

  20. Predes FS, Diamante MAS, Foglio MA, Dolder H (2016) Effects of Arctium lappa on cadmium-induced damage to the testis and epididymis of adult Wistar rats. Biol Trace Elem Res 173(2):362–371

    CAS  Google Scholar 

  21. Sonmez MF, Tascioglu S (2016) Protective effects of grape seed extract on cadmium-induced testicular damage, apoptosis, and endothelial nitric oxide synthases expression in rats. Toxicol Ind Health 32(8):1486–1494

    CAS  PubMed  Google Scholar 

  22. Menezes SEM, Torres AT, Srur AUS (2008) Valor nutricional da polpa de açaí (Euterpe oleracea, Mart.) liofilizada. Acta Amazon 38:311–316

    CAS  Google Scholar 

  23. Souza BFF, Carvalho HO, Ferreira IM, Cunha EL, Barros AS, Taglialegna T, Carvalho JCT (2017) Effect of the treatment with Euterpe oleracea Mart. Oil in rats with triton-induced dyslipidemia. Biomed Pharmacother 90:542–547

    Google Scholar 

  24. Nelson DL, Cox MM (2014) Princípios de Bioquímica de Lehninger. 6, st. edn. Arthmed, Porto Alegre, 1220 pp

  25. Manna PR, Dyson MT, Stocco DM (2009) Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol Hum Reprod 15:321–333

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Freitas RB, Novaes RD, Gonçalves RV, Mendonça BG, Santos EC, Ribeiro AQ, Lima LM, Fietto LG, Peluzio MCG, Leite JPV (2016) Euterpe edulis extract but not oil enhances antioxidant defenses and protects against nonalcoholic fatty liver disease induced by a high-fat diet in rats. Oxid med cell Longev 1-9. Doi: https://doi.org/10.1155/2016/8173876

  27. Mouro VGS, Martins ALP, Silva J, Menezes TP, Gomes MLM, Oliveira JA, Melo FCSA, Matta SLP (2019) Subacute testicular toxicity to cadmium exposure Intraperitoneally and orally. Oxid Med Cel Longev 2019:1–14

    Google Scholar 

  28. Marques ES, Froder JG, Carvalho JCT, Rosa PCP, Perazzo FF, Maistro EL (2016) Evaluation of the genotoxicity of Euterpe oleracea Mart. (Arecaceae) fruit oil (acai), in mammalian cells in vivo. Food Chem Toxicol 93:13–19

    CAS  PubMed  Google Scholar 

  29. Russell LD, Ettlin RA, Sinhafukjm AP, Clegg ED (1990) The classification and timing of spermatogenesis. In: Russell LD, Ettlin RA, Sinha HAP, Clegg ED (eds) Histological and histopathological evaluation of the testis. Cache River Press, Clearwater, pp 1–40

    Google Scholar 

  30. Karnovsky MJ (1965) A formaldehyde–glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137A

    Google Scholar 

  31. Amann RP (1970) Sperm production rates. In: Johnson AD, Gomes WR, Vandemark NL (eds) the testis. Academic Press, New York, pp 433–482

    Google Scholar 

  32. Johnsen SG (1970) Testicular biopsy score count-a method for registration of spermatogenesis in human testes: normal values and results in 352 hypogonadal males. Hormones 1:1–24

    Google Scholar 

  33. Giri BR, Roy B (2016) Cysticercus fasciolaris infection induced oxidative stress and apoptosis in rat liver: a strategy for host-parasite cross talk. Parasitol Res 115(7):2617–2624

    PubMed  Google Scholar 

  34. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  35. Lima GDA, Sertorio MN, Souza ACF, Menezes TP, Mouro VGS, Gonçalves NM, Oliveira GM, Henry M, Machado-Neves M (2018) Fertility in male rats: disentangling adverse effects of arsenic compounds. Reprod Toxicol 78:130–140

    CAS  PubMed  Google Scholar 

  36. Mouro VGS, Menezes TP, Lima GDA et al (2018) How bad is aluminum exposure to reproductive parameters in rats? Biol Trace Elem Res 183(2):314–324

    CAS  PubMed  Google Scholar 

  37. Melo FC, Matta SLP, Paula TA, Gomes ML, Oliveira LC (2010) The effects of Tynnanthus fasciculatus (Bignoniaceae) infusion on testicular parenchyma of adult Wistar rats. Biol Res 43(4):445–450

    PubMed  Google Scholar 

  38. Johnson L, Petty CS, Neaves WB (1981) A new approach to quantification of spermatogenesis and its application to germinal cell attrition during human spermiogenesis. Biol Reprod 25(1):217–226

    CAS  PubMed  Google Scholar 

  39. Attal J, Courot M (1963) Développement testiculaire et établissement de la spermatogénèse chez le taureau. Ann Biol Anim Bioch Biophys 3:219–241

    Google Scholar 

  40. Sarban S, Kocyigit A, Yazar M, Isikan UE (2005) Plasma total antioxidant capacity, lipid peroxidation, and erythrocyte antioxidant enzyme activities in patients with rheumatoid arthritis and osteoarthritis. Clin Biochem 38:981–986

    CAS  PubMed  Google Scholar 

  41. Dieterich S, Bieligk U, Beulich K, Hasenfuss G, Prestle J (2000) Gene expression of antioxidative enzymes in the human heart: increased expression of catalase in the end-stage failing heart. Circulation 101(1):33–39

    CAS  PubMed  Google Scholar 

  42. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-Transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  43. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Meth in Enzymol 52:302–310

    CAS  Google Scholar 

  44. Ricart-Jané D, Llobera M, López-Tejero MD (2002) Anticoagulants and other preanalytical factors interfere in plasma nitrate/nitrite quantification by the Griess method. Nitric Oxide 6:178–185

    PubMed  Google Scholar 

  45. Matta SLP, Vilela DAR, Godinho HP, França LR (2002) The Goitrogen 6-n-Propyl-2-Thiouracil (PTU) Given during testis development increases Sertoli and germ cell numbers per cyst in fish: the Tilapia (Oreochromis niloticus) model. Endocrinol 143(3):970–978

    CAS  Google Scholar 

  46. Schauss AG, Wu X, Prior RL, Ou B, Patel D, Huang D, Kababick JP (2006) Phytochemical and nutrient composition of the freeze-dried Amazonian palm berry, Euterpe oleraceae Mart. (acai). J Agr Food Chem 54:8598–8603

    CAS  Google Scholar 

  47. Kim SJ, Zhang Z, Saha A, Sarkar C, Zhao Z, Xu Y, Mukherjee AB (2010) Omega-3 and Omega-6 fatty acids suppress ER- and oxidative-stress in cultured neurons and neuronal progenitor cells from mice lacking PPT1. Neurosci Lett 47:9292–9296

    Google Scholar 

  48. Souza MO, Silva LS, Magalhães CLB, Figueiredo BB, Costa DC, Silva ME, Pedrosa ML (2012) The hypocholesterolemic activity of açai (Euterpe oleracea Mart.) is mediated by the enhanced ex pression of the ATP binding cassette, subfamily G transporters 5 and 8 and low-density lipoprotein receptor genes in the rat. Nutr Res 32(12):976–984

    PubMed  Google Scholar 

  49. Ognjanović BI, Marković SD, Ethordević NZ, Trbojević IS, Stajn AS, Saicić ZS (2010) Cadmium-induced lipid peroxidation and changes in antioxidant defense system in the rat testes: protective role of coenzyme Q10 and vitamin E. Reprod Toxicol 29(2):191–197

    PubMed  Google Scholar 

  50. Li R, Luo X, Li L (2016) The protective effects of melatonin against oxidative stress and inflammation induced by acute cadmium exposure in mice testis. Biol Trace Elem Res 170(1):152–164

    CAS  PubMed  Google Scholar 

  51. Abarikwu SO, Olufemi PD, Lawrence CJ, Wekere FC, Ochulor AC, Barikuma AM (2017) Rutin, an antioxidant flavonoid, induces glutathione and glutathione peroxidase activities to protect against ethanol effects in cadmium-induced oxidative stress in the testis of adult rats. Androl 49(7):1–12

    Google Scholar 

  52. Ahmed MM, El-Shazly SA, Alkafafy ME, Mohamed AA, Mousa AA (2018) Protective potential of royal jelly against cadmium-induced infertility in male rats. Androl 50(5):e12996. https://doi.org/10.1111/and.12996

    Article  CAS  Google Scholar 

  53. Wang C, Wang X (2001) A novel phospholipase D of Arabidopsis that is activated by oleic acid and associated with the plasma membrane. Plant Physiol 127:1102–1112

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Corrotte M, Chasserot-Golaz S, Huang P, Du G, Ktistakis NT, Frohman MA, Vitale N, Bader MF, Grant NJ (2006) Dynamics and function of phospholipase D and phosphatidic acid during phagocytosis. Traffic 7(3):365–377

    CAS  PubMed  Google Scholar 

  55. Wang J, Zhang Y, Fang Z, Sun L, Wang Y, Liu Y, Xu D, Nie F, Gooneratne R (2019) Oleic acid alleviates cadmium-induced oxidative damage in rat by its radicals scavenging activity. Biol Trace Elem Res 190(1):95–100

    CAS  PubMed  Google Scholar 

  56. Fang Z, Chen Z, Wang S, Shi P, Shen Y, Zhang Y, Xiao J, Huang Z (2017) Overexpression of OLE1 enhances cytoplasmic membrane stability and confers resistance to cadmium in Saccharomyces cerevisiae. Appl Environ Microbiol 83(1):e02319–e02316

    CAS  PubMed  Google Scholar 

  57. Almeer RS, Soliman D, Kassab RB, AlBasher GI, Alarifi S, Alkahtani S, Ali D, Metwally D, Abdel Moneim AE (2018) Royal jelly abrogates cadmium-induced oxidative challenge in mouse testes: involvement of the Nrf2 pathway. Int J Mol Sci 19 12(pii):E3979. https://doi.org/10.3390/ijms19123979

    Article  Google Scholar 

  58. Ferain A, Bonnineau C, Neefs I, Saeyer N, Lemaire B, Cornet V, Larondelle Y, Schamphelaere KAC, Debier C, Rees J-F (2018) Exploring the interactions between polyunsaturated fatty acids and cadmium in rainbow trout liver cells: a genetic and proteomic study. Aquat Toxicol 205:100–113

    CAS  PubMed  Google Scholar 

  59. Olszowski T, Gutowska I, Baranowska-Bosiacka I, Łukomska A, Drozd A, Chlubek D (2018) Cadmium alters the concentration of fatty acids in THP-1 macrophages. Biol Trace Elem Res 182:29–36

    CAS  PubMed  Google Scholar 

  60. Larregle EV, Varas SM, Oliveros LB, Martinez LD, Anton R, Marchevsky E, Gimenez MS (2008) Lipid metabolism in liver of rat exposed to cadmium. Food Chem Toxicol 46:1786–1792

    CAS  PubMed  Google Scholar 

  61. El-Neweshy MS, El-Maddawy ZK, El-Sayed YS (2013) Therapeutic effects of date palm (Phoenix dactylifera L.) pollen extract on cadmium-induced testicular toxicity. Androl 45:369–378

    CAS  Google Scholar 

  62. Sakr SA, Nooh HZ (2013) Effect of Ocimum basilicum extract on cadmium-induced testicular histomorphometric and immunohistochemical alterations in albino rats. Anat Cell Biol 46(2):122–130

    PubMed  PubMed Central  Google Scholar 

  63. Casalino E, Calzaretti G, Sablano C, Landriscina C (2002) Molecular inhibitory mechanism of antioxidant enzymes in rat liver and kidney by cadmium. Toxicol 179:37–50

    CAS  Google Scholar 

  64. Aitken RJ, Roman SD (2008) Antioxidant systems and oxidative stress in the testes. Oxidative Med Cell Longev 1:15–24

    Google Scholar 

  65. Spiazzi CC, Manfredini V, Barcellos da Silva FE, Flores EM, Izaguirry AP, Vargas LM, Soares MB, Santos FW (2013) C-Oryzanol protects against acute cadmium-induced oxidative damage in mice testes. Food Chem Toxicol 55:526–532

    CAS  PubMed  Google Scholar 

  66. Jacobson KB, Turner JE (1980) The interaction of cadmium and certain other metal ions with proteins and nucleic acids. Toxicol 16(1):1–37

    CAS  Google Scholar 

  67. Erboga M, Kanter M, Aktas C, Bozdemir Donmez Y, Fidanol Erboga Z, Aktas E, Gurel A (2015) Anti-apoptotic and anti-oxidant effects of caffeic acid phenethyl ester on cadmium-induced testicular toxicity in rats. Biol Trace Elem Res 171(1):176–184

    PubMed  Google Scholar 

  68. Wlostowski T, Krasowska A, Godlewska-Zylkiewicz B (2000) Dietary cadmium decreases lipid peroxidation in the liver and kidneys of the bank vole (Clethrionomys glareolus). J Trace ElemMed Biol 14(2):76–80

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviane Gorete Silveira Mouro.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouro, V.G.S., de Melo, F.C.S.A., Martins, A.L.P. et al. Euterpe oleracea (Martius) Oil Reverses Testicular Alterations Caused after Cadmium Administration. Biol Trace Elem Res 197, 555–570 (2020). https://doi.org/10.1007/s12011-019-02004-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-02004-x

Keywords

Navigation