Skip to main content
Log in

Influence of Calcium Sources on Microbially Induced Calcium Carbonate Precipitation by Bacillus sp. CR2

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Stimulation of microbially induced calcium carbonate precipitation (MICCP) is likely to be influenced by calcium sources. In order to study such influences, we performed MICCP using Bacillus sp. CR2 in nutrient broth containing urea, supplemented with different calcium sources (calcium chloride, calcium oxide, calcium acetate and calcium nitrate). The experiment lasted 7 days, during which bacterial growth, urease activity, calcite production and pH were measured. Our results showed that calcium chloride is the better calcium source for MICCP process, since it provides higher urease activity and more calcite production. The influences of calcium sources on MICCP were further studied using Fourier transform-infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. These analyses confirmed that the precipitate formed was CaCO3 and composed of predominantly calcite crystals with a little amount of aragonite and vaterite crystals. The maximum yield of calcite precipitation was achievable with calcium chloride followed by calcium nitrate as a calcium source. The results of present study may be applicable to media preparation during efficient MICCP process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kang, C.H., Han, S-H., Shin, Y.J., Oh, S.J., & So, J.S. (2013). Applied Biochemistry and Biotechnology. doi: 10.1007/s12010-013-0626-z.

  2. Achal, V., Mukherjee, A., & Reddy, M. S. (2011). Journal of Materials in Civil Engineering, 23, 730–734.

    Article  CAS  Google Scholar 

  3. Ferris, F. G., Phoenix, V., Fujita, Y., & Smith, R. W. (2003). Geochimica et Cosmochimica Acta, 68, 1701–1710.

    Article  Google Scholar 

  4. Fujita, Y., Redden, G. D., Ingram, J. C., Cortez, M. M., Ferris, G. F., & Smith, R. W. (2004). Geochimica et Cosmochimica Acta, 68, 3261–3270.

    Article  CAS  Google Scholar 

  5. Hammes, F., Seka, A., Van Hege, K., Van De Wiele, T., Vanderdeelen, J., Siciliano, S. D., & Verstraete, W. (2003). Journal of Chemical Technology & Biotechnology, 78, 670–677.

    Article  CAS  Google Scholar 

  6. Whiffin, V. A., Van Paassen, L. A., & Harkes, M. P. (2007). Geomicrobiology Journal, 24, 417–423.

    Article  CAS  Google Scholar 

  7. De Muynck, W., Belie, N., & Verstraete, W. (2010). Ecological Engineering, 36, 118–136.

    Article  Google Scholar 

  8. Ghosh, S., Biswas, M., Chattopadhyay, B. D., & Mandal, S. (2009). Cement and Concrete Research, 31, 93–98.

    Article  CAS  Google Scholar 

  9. Sarayu, K., Iyer, N.R., & Ramachandra Murthy, A. (2014). Applied Biochemistry and Biotechnology. doi: 10.1007/s12010-013-0686-0.

  10. Dhami, N.K., Reddy, M.S., & Mukherjee, A. (2014). Applied Biochemistry and Biotechnology. doi: 10.1007/s12010-013-0694-0.

  11. Achal, V., & Pan, X. (2011). Current Microbiology, 62, 894–902.

    Article  CAS  Google Scholar 

  12. Little, B., Wagner, P. A., & Lewandowski, Z. (1997). Review in Mineralogy, 35, 123–159.

    CAS  Google Scholar 

  13. Rodriguez-Navarro, C., Rodriguez-Gallego, M., Chekroun, K. B., & Gonzalez-Muñoz, M. T. (2003). Applied and Environmental Microbiology, 69, 2182–2193.

    Article  CAS  Google Scholar 

  14. Stocks-Fischer, S., Galinat, J. K., & Bang, S. S. (1999). Soil Biology and Biochemistry, 31, 1563–1571.

    Article  CAS  Google Scholar 

  15. Achal, V., Mukherjee, A., & Reddy, M. S. (2010). Industrial Biotechnology, 6, 170–174.

    Article  Google Scholar 

  16. Achal, V., Pan, X., & Zhang, D. (2011). Ecological Engineering, 37, 1601–1605.

    Article  Google Scholar 

  17. Shirakawa, M. A., Cincotto, M. A., Atencio, D., Gaylarde, C. C., & John, V. M. (2011). Brazilian Journal of Microbiology, 42, 499–507.

    Article  Google Scholar 

  18. Beveridge, T. J., & Fyfe, W. S. (1985). Canadian Journal of Earth Science, 22, 1893–1898.

    Article  CAS  Google Scholar 

  19. Achal, V., Mukherjee, A., Basu, P. C., & Reddy, M. S. (2009). Journal of Industrial Microbiology and Biotechnology, 36, 981–988.

    Article  CAS  Google Scholar 

  20. Dittrich, M., Müller, B., Mavrocordatos, D., & Wehrli, B. (2003). Acta Hydrochimica Hydrobiology, 31, 162–169.

    Article  CAS  Google Scholar 

  21. De Muynck, W., Verbeken, K., Belie, N., & Verstraete, W. (2010). Ecological Engineering, 36, 99–111.

    Article  Google Scholar 

  22. Achal, V., Mukherjee, A., Basu, P. C., & Reddy, M. S. (2009). Journal of Industrial Microbiology and Biotechnology, 36, 433–438.

    Article  CAS  Google Scholar 

  23. Lee, Y. N. (2003). The Journal of Microbiology, 41, 345–348.

    CAS  Google Scholar 

  24. Fujita, Y., Taylor, J. L., Gresham, T. L., Delwiche, M. E., Colwell, F. S., Mcling, T. L., Petzke, L. M., & Smith, R. W. (2008). Environmental Science & Technology, 42, 3025–3032.

    Article  CAS  Google Scholar 

  25. Stumm, W., & Morgan, J. J. (1981). Aquatic chemistry. New York: Wiley-Interscience.

    Google Scholar 

  26. McConnaughey, T. A., & Whelan, F. F. (1997). Earth Science Review, 42, 95–117.

    Article  CAS  Google Scholar 

  27. El Kahoui, R., Adolphe, J., & Daudon, M. (2000). Microbes and Environment, 15, 161–171.

    Article  Google Scholar 

  28. Gayathri, S., Lakshminarayanan, R., Weaver, J. C., Morse, D. E., Kini, R. M., & Valiyaveettil, S. (2007). Chemistry - A European Journal, 13, 3262–3268.

    Article  CAS  Google Scholar 

  29. Oh, S. E., Hassan, S. H. A., & Joo, J. H. (2009). World Journal of Microbiology and Biotechnology, 25, 1771–1778.

    Article  CAS  Google Scholar 

  30. Nassrallah-Aboukaïs, N., Jacquemin, J., Decarne, C., Abi-Aad, E., Lamonier, J. F., & Aboukaïs, A. (2003). Journal of Thermal Analysis and Calorimetry, 74, 21–27.

    Article  Google Scholar 

  31. Kemperl, J., & Maček, J. (2009). International Journal of Mineral Processing, 93, 84–88.

    Article  CAS  Google Scholar 

  32. House, W. A. (1987). Journal of Colloid and Interface Science, 119, 507–511.

    Article  Google Scholar 

  33. Chafetz, H. S., Patrick, F. R., & Utech, N. M. (1991). Sedimentology, 38, 107–126.

    Article  CAS  Google Scholar 

  34. Boquet, E., Boronat, A., & Ramos-Cormenzana, A. (1973). Nature, 246, 527–528.

    Article  Google Scholar 

  35. Urzi, C., Garcia-Valles, M. T., Vendrell, M., & Pernice, A. (1999). Geomicrobiology Journal, 16, 39–54.

    Article  CAS  Google Scholar 

  36. Lippmann, F. (1973). Sedimentary carbonate minerals. NewYork: Springer-Verlag.

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (U1120302, 41072195 and 41350110533). We are thankful to the editor and reviewers for their constructive comments for the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangliang Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achal, V., Pan, X. Influence of Calcium Sources on Microbially Induced Calcium Carbonate Precipitation by Bacillus sp. CR2. Appl Biochem Biotechnol 173, 307–317 (2014). https://doi.org/10.1007/s12010-014-0842-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0842-1

Keywords

Navigation