Skip to main content

Advertisement

Log in

Management of Post-Transplant Diabetes

  • Hospital Management of Diabetes (G Umpierrez, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

New onset diabetes mellitus after transplant (NODAT) refers to the development of diabetes post-transplant in previously non-diabetic patients and is associated with increased rates of acute transplant rejection, infection, late cardiovascular events, and decreased survival. NODAT is primarily due to the immunosuppressive drug regimen but the standard predisposing risk factors for diabetes also pertain. NODAT is diagnosed by the standard ADA criteria, once prednisone doses are less than 10 mg per day and in the absence of acute illness. Sulfonylureas, metformin, DPP-4 inhibitors, GLP-1 agonists, and insulin can be used in treatment, but when there is impaired kidney or hepatic function, special precautions are necessary. In addition, those drugs interacting with P450 enzymes require additional consideration because of possible interaction with immunosuppressive drug metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Montori VM, Basu A, Erwin PJ, et al. Posttransplantation diabetes: a systematic review of the literature. Diabetes Care. 2002;25:583–92.

    Article  PubMed  Google Scholar 

  2. Davidson J, Wilkinson A, Dantal J, et al. New-onset diabetes after transplantation: 2003 International consensus guidelines. Proceedings of an international expert panel meeting. Barcelona, Spain, 19 February 2003. Transplantation. 2003;75(10 Suppl):SS3–24. This article presents the most recent guidlines regarding the diagnosis and treatment of new onset diabetes after solid organ transplant.

    Article  PubMed  Google Scholar 

  3. Collins AJ, Foley RN, Chavers B, et al. United States Renal Data System 2011 Annual Data Report: Atlas of chronic kidney disease & end-stage renal disease in the United States. Am J Kidney Dis. 2012;59(1 Suppl 1):A7, e1–420.

  4. Ganji MR, Charkhchian M, Hakemi M, et al. Association of hyperglycemia on allograft function in the early period after renal transplantation. Transplant Proc. 2007;39:852–4.

    Article  PubMed  CAS  Google Scholar 

  5. Hosseini MS, Nemati E, Pourfarziani V, et al. Early hyperglycemia after allogenic kidney transplantation: does it induce infections. Ann Transplant. 2007;12:23–6.

    PubMed  Google Scholar 

  6. Cosio FG, Pesavento TE, Kim S, et al. Patient survival after renal transplantation: IV. Impact of post-transplant diabetes. Kidney Int. 2002;62:1440–6.

    Article  PubMed  Google Scholar 

  7. Woodward RS, Schnitzler MA, Baty J, et al. Incidence and cost of new onset diabetes mellitus among U.S. wait-listed and transplanted renal allograft recipients. Am J Transplant. 2003;3:590–8.

    Article  PubMed  Google Scholar 

  8. American Diabetes A. Standards of Medical Care in Diabetes–2012. Diabetes Care. 2012;35 Suppl 1:S11–63. This article covers the most recent guidelines for the diagnosis and management of type 2 diabetes.

    Google Scholar 

  9. van Raalte DH, Ouwens DM, Diamant M. Novel insights into glucocorticoid-mediated diabetogenic effects: towards expansion of therapeutic options? Eur J Clin Invest. 2009;39:81–93.

    Article  PubMed  Google Scholar 

  10. Moghissi ES, Korytkowski MT, DiNardo M, et al. American Association of Clinical Endocrinologists and American Diabetes Association Consensus statement on inpatient glycemic control. Diabetes Care. 2009;32:1119–31.

    Article  PubMed  Google Scholar 

  11. Umpierrez GE, Hellman R, Korytkowski MT, et al. Management of hyperglycemia in hospitalized patients in non-critical care setting: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2012;97:16–38. This article provides recommendations for the inpatient management of hyperglycemia in non-ICU patients.

    Article  PubMed  CAS  Google Scholar 

  12. Cosio FG, Kudva Y, van der Velde M, et al. New onset hyperglycemia and diabetes are associated with increased cardiovascular risk after kidney transplantation. Kidney Int. 2005;67:2415–21.

    Article  PubMed  Google Scholar 

  13. Cosio FG, Pesavento TE, Osei K, et al. Post-transplant diabetes mellitus: increasing incidence in renal allograft recipients transplanted in recent years. Kidney Int. 2001;59:732–7.

    Article  PubMed  CAS  Google Scholar 

  14. Salvadori M, Bertoni E, Rosati A, Zanazzi M. Post-transplant diabetes mellitus. J Nephrol. 2003;16:626–34.

    PubMed  Google Scholar 

  15. Sumrani NB, Delaney V, Ding ZK, et al. Diabetes mellitus after renal transplantation in the cyclosporine era–an analysis of risk factors. Transplantation. 1991;51:343–7.

    Article  PubMed  CAS  Google Scholar 

  16. Depczynski B, Daly B, Campbell LV, et al. Predicting the occurrence of diabetes mellitus in recipients of heart transplants. Diabet Med. 2000;17:15–9.

    Article  PubMed  CAS  Google Scholar 

  17. Baid S, Cosimi AB, Farrell ML, et al. Post-transplant diabetes mellitus in liver transplant recipients: risk factors, temporal relationship with hepatitis C virus allograft hepatitis, and impact on mortality. Transplantation. 2001;72:1066–72.

    Article  PubMed  CAS  Google Scholar 

  18. Bloom RD, Rao V, Weng F, et al. Association of hepatitis C with posttransplant diabetes in renal transplant patients on tacrolimus. J Am Soc Nephrol. 2002;13:1374–80.

    Article  PubMed  Google Scholar 

  19. Markell M. New-onset diabetes mellitus in transplant patients: pathogenesis, complications, and management. Am J Kidney Dis. 2004;43:953–65.

    Article  PubMed  Google Scholar 

  20. Luan FL, Steffick DE, Ojo AO. New-onset diabetes mellitus in kidney transplant recipients discharged on steroid-free immunosuppression. Transplantation. 2011;91:334–41.

    Article  PubMed  CAS  Google Scholar 

  21. Hjelmesaeth J, Hartmann A, Kofstad J, et al. Glucose intolerance after renal transplantation depends upon prednisolone dose and recipient age. Transplantation. 1997;64:979–83.

    Article  PubMed  CAS  Google Scholar 

  22. Hollander AA, Hene RJ, Hermans J, et al. Late prednisone withdrawal in cyclosporine-treated kidney transplant patients: a randomized study. J Am Soc Nephrol. 1997;8:294–301.

    PubMed  CAS  Google Scholar 

  23. Vincenti F, Jensik SC, Filo RS, et al. A long-term comparison of tacrolimus (FK506) and cyclosporine in kidney transplantation: evidence for improved allograft survival at five years. Transplantation. 2002;73:775–82.

    Article  PubMed  CAS  Google Scholar 

  24. Rostambeigi N, Lanza IR, Dzeja PP, et al. Unique cellular and mitochondrial defects mediate FK506-induced islet beta-cell dysfunction. Transplantation. 2011;91:615–23.

    Article  PubMed  CAS  Google Scholar 

  25. Heisel O, Heisel R, Balshaw R, Keown P. New onset diabetes mellitus in patients receiving calcineurin inhibitors: a systematic review and meta-analysis. Am J Transplant. 2004;4:583–95.

    Article  PubMed  Google Scholar 

  26. Xu X, Ling Q, He ZL, et al. Post-transplant diabetes mellitus in liver transplantation: Hangzhou experience. Hepatobiliary Pancreat Dis Int. 2008;7:465–70.

    PubMed  Google Scholar 

  27. Drachenberg CB, Klassen DK, Weir MR, et al. Islet cell damage associated with tacrolimus and cyclosporine: morphological features in pancreas allograft biopsies and clinical correlation. Transplantation. 1999;68:396–402.

    Article  PubMed  CAS  Google Scholar 

  28. Penninga L, Møller CH, Gustafsson F, et al. Tacrolimus vs cyclosporine as primary immunosuppression after heart transplantation: systematic review with meta-analyses and trial sequential analyses of randomised trials. Eur J Clin Pharmacol. 2010;66:1177–87.

    Article  PubMed  CAS  Google Scholar 

  29. Ghisdal L, Bouchta NB, Broeders N, et al. Conversion from tacrolimus to cyclosporine A for new-onset diabetes after transplantation: a single-centre experience in renal transplanted patients and review of the literature. Transpl Int. 2008;21:146–51.

    PubMed  CAS  Google Scholar 

  30. Gyurus E, Kaposztas Z, Kahan BD. Sirolimus therapy predisposes to new-onset diabetes mellitus after renal transplantation: a long-term analysis of various treatment regimens. Transplant Proc. 2011;43:1583–92.

    Article  PubMed  CAS  Google Scholar 

  31. Sehgal SN. Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc. 2003;35(3 Suppl):7S–14.

    Article  PubMed  CAS  Google Scholar 

  32. Araki M, Flechner SM, Ismail HR, et al. Posttransplant diabetes mellitus in kidney transplant recipients receiving calcineurin or mTOR inhibitor drugs. Transplantation. 2006;81:335–41. This trial demonstrated that older age, obesity, steroid pulse therapy, and tacrolimus use all increased the risk of developing NODAT.

    Article  PubMed  CAS  Google Scholar 

  33. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2012;35:1364–79.

    Article  PubMed  CAS  Google Scholar 

  34. Rassias AJ, Marrin CA, Arruda J, et al. Insulin infusion improves neutrophil function in diabetic cardiac surgery patients. Anesth Analg. 1999;88:1011–6.

    PubMed  CAS  Google Scholar 

  35. Geerlings SE, Hoepelman AI. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol. 1999;26(3–4):259–65.

    Article  PubMed  CAS  Google Scholar 

  36. van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in the critically ill patients. N Engl J Med. 2001;345:1359–67.

    Article  PubMed  Google Scholar 

  37. Finfer S, Chittock DR, Su SY, et al. Intensive vs conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283–97.

    Article  PubMed  Google Scholar 

  38. Ammori JB, Sigakis M, Englesbe MJ, et al. Effect of intraoperative hyperglycemia during liver transplantation. J Surg Res. 2007;140:227–33.

    Article  PubMed  CAS  Google Scholar 

  39. Thomas MC, Mathew TH, Russ GR, et al. Early peri-operative glycaemic control and allograft rejection in patients with diabetes mellitus: a pilot study. Transplantation. 2001;72:1321–4.

    Article  PubMed  CAS  Google Scholar 

  40. Thomas MC, Moran J, Mathew TH, et al. Early peri-operative hyperglycaemia and renal allograft rejection in patients without diabetes. BMC Nephrol. 2000;1:1.

    Article  PubMed  CAS  Google Scholar 

  41. Wallia A, Parikh ND, Molitch ME, et al. Posttransplant hyperglycemia is associated with increased risk of liver allograft rejection. Transplantation. 2010;89:222–6.

    Article  PubMed  Google Scholar 

  42. Wallia A, Parikh ND, O'Shea-Mahler E, et al. Glycemic control by a Glucose Management Service and infection rates following liver transplantation. Endocr Pract. 2011;17:546–51.

    Article  PubMed  Google Scholar 

  43. Finfer S, Liu B, Chittock DR, et al. Hypoglycemia and risk of death in critically ill patients. N Engl J Med. 2012;367:1108–18.

    Article  PubMed  Google Scholar 

  44. Lipska KJ, Bailey CJ, Inzucchi SE. Use of metformin in the setting of mild-to-moderate renal insufficiency. Diabetes Care. 2011;34:1431–7.

    Article  PubMed  CAS  Google Scholar 

  45. Sambol NC, Chiang J, Lin ET, et al. Kidney function and age are both predictors of pharmacokinetics of metformin. J Clin Pharmacol. 1995;35:1094–102.

    PubMed  CAS  Google Scholar 

  46. Frid A, Sterner GN, Londahl M, et al. Novel assay of metformin levels in patients with type 2 diabetes and varying levels of renal function: clinical recommendations. Diabetes Care. 2010;33:1291–3.

    Article  PubMed  CAS  Google Scholar 

  47. Rachmani R, Slavachevski I, Levi Z, et al. Metformin in patients with type 2 diabetes mellitus: reconsideration of traditional contraindications. Eur J Intern Med. 2002;13:428–33.

    Article  PubMed  CAS  Google Scholar 

  48. Salpeter SR, Greyber E, Pasternak GA, Salpeter EE. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev. 2010;4:CD002967.

    PubMed  Google Scholar 

  49. Nye HJ, Herrington WG. Metformin: the safest hypoglycaemic agent in chronic kidney disease? Nephron Clin Pract. 2011;118:c380–3.

    Article  PubMed  CAS  Google Scholar 

  50. Pilmore HL. Review: metformin: potential benefits and use in chronic kidney disease. Nephrology. 2010;15:412–8.

    Article  PubMed  CAS  Google Scholar 

  51. Jonsson A, Rydberg T, Sterner G, Melander A. Pharmacokinetics of glibenclamide and its metabolites in diabetic patients with impaired renal function. Eur J Clin Pharmacol. 1998;53:429–35.

    Article  PubMed  CAS  Google Scholar 

  52. Rosenkranz B, Profozic V, Metelko Z, et al. Pharmacokinetics and safety of glimepiride at clinically effective doses in diabetic patients with renal impairment. Diabetologia. 1996;39:1617–24.

    Article  PubMed  CAS  Google Scholar 

  53. Asplund K, Wiholm BE, Lundman B. Severe hypoglycaemia during treatment with glipizide. Diabet Med. 1991;8:726–31.

    Article  PubMed  CAS  Google Scholar 

  54. Nagai T, Imamura M, Iizuka K, Mori M. Hypoglycemia due to nateglinide administration in diabetic patient with chronic renal failure. Diabetes Res Clin Pract. 2003;59:191–4.

    Article  PubMed  Google Scholar 

  55. Inoue T, Shibahara N, Miyagawa K, et al. Pharmacokinetics of nateglinide and its metabolites in subjects with type 2 diabetes mellitus and renal failure. Clin Nephrol. 2003;60:90–5.

    PubMed  CAS  Google Scholar 

  56. Schumacher S, Abbasi I, Weise D, et al. Single- and multiple-dose pharmacokinetics of repaglinide in patients with type 2 diabetes and renal impairment. Eur J Clin Pharmacol. 2001;57:147–52.

    Article  PubMed  CAS  Google Scholar 

  57. Hasslacher C. Safety and efficacy of repaglinide in type 2 diabetic patients with and without impaired renal function. Diabetes Care. 2003;26:886–91.

    Article  PubMed  CAS  Google Scholar 

  58. Zhu Z, Shen Z, Lu Y, et al. Increased risk of bladder cancer with pioglitazone therapy in patients with diabetes: A meta-analysis. Diabetes Res Clin Pract. 2012;98:408–14.

    Google Scholar 

  59. Grey A. Skeletal consequences of thiazolidinedione therapy. Osteoporos Int. 2008;19:129–37.

    Article  PubMed  CAS  Google Scholar 

  60. Lovshin JA, Drucker DJ. Incretin-based therapies for type 2 diabetes mellitus. Nat Rev Endocrinol. 2009;5:26298:408-14.9.

    Google Scholar 

  61. Glorie LL, Verhulst A, Matheeussen V, et al. DPP4 inhibition improves functional outcome after renal ischemia-reperfusion injury. Am J Physiol. 2012;303:F681–8.

    Article  CAS  Google Scholar 

  62. Zhai W, Cardell M, De Meester I, et al. Intragraft DPP IV inhibition attenuates post-transplant pulmonary ischemia/reperfusion injury after extended ischemia. J Heart Lung Transplant. 2007;26:174–80.

    Article  PubMed  Google Scholar 

  63. Garg R, Chen W, Pendergrass M. Acute pancreatitis in type 2 diabetes treated with exenatide or sitagliptin: a retrospective observational pharmacy claims analysis. Diabetes Care. 2010;33:2349–54.

    Article  PubMed  CAS  Google Scholar 

  64. Graefe-Mody U, Retlich S, Friedrich C. Clinical pharmacokinetics and pharmacodynamics of linagliptin. Clin Pharmacokinet. 2012;51:411–27.

    Article  PubMed  CAS  Google Scholar 

  65. Linnebjerg H, Kothare PA, Park S, et al. Effect of renal impairment on the pharmacokinetics of exenatide. Br J Clin Pharmacol. 2007;64:317–27.

    Article  PubMed  CAS  Google Scholar 

  66. Johansen OE, Whitfield R. Exenatide may aggravate moderate diabetic renal impairment: a case report. Br J Clin Pharmacol. 2008;66:568–9.

    Article  PubMed  Google Scholar 

  67. Weise WJ, Sivanandy MS, Block CA, Comi RJ. Exenatide-associated ischemic renal failure. Diabetes Care. 2009;32:e22–3.

    Article  PubMed  Google Scholar 

  68. Pendergrass M, Fenton C, Haffner SM, Chen W. Exenatide and sitagliptin are not associated with increased risk of acute renal failure: a retrospective claims analysis. Diabetes Obes Metabol. 2012;14:596–600.

    Article  CAS  Google Scholar 

  69. Jacobsen LV, Hindsberger C, Robson R, Zdravkovic M. Effect of renal impairment on the pharmacokinetics of the GLP-1 analogue liraglutide. Br J Clin Pharmacol. 2009;68:898–905.

    Article  PubMed  CAS  Google Scholar 

  70. Ghofaili KA, Fung M, Ao Z, et al. Effect of exenatide on beta cell function after islet transplantation in type 1 diabetes. Transplantation. 2007;83:24–8.

    Article  PubMed  Google Scholar 

  71. Froud T, Faradji RN, Pileggi A, et al. The use of exenatide in islet transplant recipients with chronic allograft dysfunction: safety, efficacy, and metabolic effects. Transplantation. 2008;86:36–45.

    Article  PubMed  Google Scholar 

  72. Rickels MR, Mueller R, Markmann JF, Naji A. Effect of glucagon-like peptide-1 on beta- and alpha-cell function in isolated islet and whole pancreas transplant recipients. J Clin Endocrinol Metab. 2009;94:181–9.

    Article  PubMed  CAS  Google Scholar 

  73. Wilkinson A, Davidson J, Dotta F, et al. Guidelines for the treatment and management of new-onset diabetes after transplantation. Clin Transplant. 2005;19:291–8.

    Article  PubMed  Google Scholar 

  74. Muhlhauser I, Toth G, Sawicki PT, Berger M. Severe hypoglycemia in type I diabetic patients with impaired kidney function. Diabetes Care. 1991;14:344–6.

    Article  PubMed  CAS  Google Scholar 

  75. Hasslacher C, Wittmann W. Severe hypoglycemia in diabetics with impaired renal function. Dtsch Med Wochenschr. 2003;128:253–6.

    Article  PubMed  CAS  Google Scholar 

  76. Baldwin D, Zander J, Munoz C, et al. A randomized trial of two weight-based doses of insulin glargine and glulisine in hospitalized subjects with type 2 diabetes and renal insufficiency. Diabetes Care. 2012;35:1970–4.

    Article  PubMed  CAS  Google Scholar 

  77. Watt KD, Charlton MR. Metabolic syndrome and liver transplantation: a review and guide to management. J Hepatol. 2010;53:199–206.

    Article  PubMed  Google Scholar 

Download references

Disclosure

Conflicts of interest: A. Therasse: none; A. Wallia: none; M.E. Molitch: has been a consultant, and member DSMB of Abbott Laboratories, and has been a consultant for Novartis, Corcept; has given expert testimony for Janssen on Risperdal; has received grant support from Sanofi-Aventis for an investigator-initiated study, from ENDO for studies of acromegaly, from Ipsen for studies of acromegaly, from Corcept for studies of Cushing’s syndrome, and from Novartis for studies of Cushing’s syndrome;

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amisha Wallia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Therasse, A., Wallia, A. & Molitch, M.E. Management of Post-Transplant Diabetes. Curr Diab Rep 13, 121–129 (2013). https://doi.org/10.1007/s11892-012-0346-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-012-0346-8

Keywords

Navigation