Skip to main content
Log in

Multivariate analysis for the quantitative characterization of bioactive compounds in “Taioba” (Xanthosoma sagittifolium) from Brazil

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Conventional and unconventional food plants, in addition to macronutrients, are also rich in bioactive compounds, which have the antioxidant capacity and, therefore, are associated with the prevention of various diseases. There are several factors that can interfere with the concentration of these substances, such as: parts of the plant, extraction solvents, temperature, etc. The study was undertaken to extract and to characterize quantitatively the content of total phenolic compounds (TPC) in “Taioba” or Cocoyam (Xanthosoma sagittifolium) from Brazil, before and after heat treatments in different parts of the plant. TPC were performed by the Folin-Ciocalteu method and the antioxidant activity by DPPH, ABTS and FRAP methods. Principal component analysis (PCA) was used to explore the data generated. The variables (extraction solvent, parts of “Taioba” and heat treatment) influenced the TPC concentrations and antioxidant activity. The contents (mg/100 g) of TPC were higher in the nature leaf blade (75.44 ± 1.69) and the integral taioba in all treatments ranging from 44.86 ± 0.44 to 50.46 ± 0.93, in the methanolic extract when compared to the aqueous extract. PCA analysis elucidated the differences in the phenolic profile between the different parts of the “Taioba”, extraction solvent and heat treatment used. The graphs of the scores showed a clear separation of the groups according to the extraction solvents and parts of the “Taioba”, while the loading graph showed the separation of the sample groups according to the variables associated with the different heat treatments. The proposed methods were efficient for the determination of TPC in “Taioba”. Therefore, it is suggested to extend the studies to other conventional and unconventional food plants.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

UEP:

Unconventional edible plants

TPC:

Total phenolic compounds

PCA:

Principal component analysis

PC:

Principal component

AA:

Antioxidant activity

DPPH:

2,2-Diphenyl-1-picryl-hydrazil

ABTS:

2,2 AZINO BIS (3-ethylbenzo thiazoline 6 sulfonic acid) diammoninum salt

FRAP:

Ferric antioxidant power

TPTZ:

2,4,6-Tris(2-piridil)-s-triazina

GAE:

Gallic acid equivalente

TT:

Thermal treatments

BI:

Bleaching by immersion

BS:

Bleaching by steam

References

  1. BRASIL MAPA/ACS (2010) Manual of Non-Conventional Vegetables. Ministry of Agriculture, Livestock and Supply. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/857646/manual-de-hortalicas-nao-convencionais. Accessed 10 September 2021

  2. L.S. Monteiro, B.K. Hassan, C.C.P. Estima, A.M. Souza, E.V. Junior, R. Sichieri, R.A. Pereira, Food consumption according to the days of the week – National Food Survey, 2008-2009. Rev. Saude Publica 51, 1–11 (2017)

    Google Scholar 

  3. C. Graaf, F.J. Kok, Slow food, fast food and the control of food intake. Nat Rev Endocrinol 6(5), 290–293 (2010)

    Article  PubMed  Google Scholar 

  4. V.F. Kinupp, H. Lorenzi, Non-Conventional Food Plants (PANC) in Brazil: identification guide, nutritional aspects and illustrated recipes (Plantarum, São Paulo, 2014)

    Google Scholar 

  5. L.M. Zem, C.V. Helm, K.C. Zuffellato-Ribas, H.S. Koehler, Centesimal and mineral anlysis of cupcakes base meal of leaves and stems of ora-pro-nobis (Pereskia aculeata). Rev Elet Cient UERGS 3(2), 428–446 (2017)

    Article  Google Scholar 

  6. M.S.M. Rufino, R.E. Alves, E.S. De Brito, J. Pérez-Jiménez, F. Saura-Calixto, J. Mancini-Filho, Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem 121(4), 996–1002 (2010)

    Article  CAS  Google Scholar 

  7. O. Oladeji, F. Adelowo, Plant phenolic compounds and health benefits. Commun. Plant Sci. 7(1–2), 20–26 (2017)

    Article  Google Scholar 

  8. E.A. Frison, J. Cherfas, T. Hodgkin, Agricultural biodiversity is essencial for a sustainable improvement in food and nutrition security. Sustainability 3(1), 238–253 (2011)

    Article  Google Scholar 

  9. M.A. Altieri, C.I. Nicholls, Agroecologia y resiliência al cambio climático: princípios y consideraciones metodológicas. Agroecologia 8(1), 7–20 (2013)

    Google Scholar 

  10. E.A. Jackix, E.B. Monteiro, H.F. Raposo, E.C. Vanzela, J. Amaya-Farfán, Taioba (Xanthosoma sagittifolium) leaves: nutrient composition and physiological effects on healthy rats. J Food Sci 78(12), 1929–1934 (2013)

    Article  CAS  Google Scholar 

  11. S.J. Mayo, J. Bogner, P.C. Boyce, The genera of Araceae (Royal Botanic Garden, Kew (UK), 1997), p. 370

    Google Scholar 

  12. N.A.V.D. Pinto, V.D. Carvalho, A.D. Corrêa, A.O. Rios, Evaluation of antinutritional factors of taioba leaves (Xanthosoma sagittifolium (L.) Schott). Ciênc Agrotec 25(3), 601–604 (2001)

    CAS  Google Scholar 

  13. C.M.O. Simões, E.P. Schenkel, J.C.P. Mello, L.A. Mentz, P.R. Petrovick, Pharmacognosy: from the natural product to the medicine (Artmed, Porto Alegre, 2016), p. 502

    Google Scholar 

  14. D.M. Oliveira, D.H.M. Bastos, Phenolic acids bioavailability. Quim. Nova 34(6), 1051–1056 (2011)

    Article  Google Scholar 

  15. B. Sultana, F. Anwar, S. Iqbal, Effect of different cooking methods on the antioxidant activity of some vegetables from Pakistan. Int. J. Food Sci. Technol. 43(3), 560–567 (2008)

    Article  CAS  Google Scholar 

  16. C.M.J. Benevides, R.D.B. Souza, M.V. Souza, M.V. Lopes, Effect of processing on oxalate and tannin contents in gherkin (Cucumi sanguria L.), jiló (Solanum gilo), green bean (Vigna unguiculata (L.) Walp) and Andu bean (Cajanus cajan (L.) Mill sp.). Alim Nutr Araraquara 24(3), 321–327 (2013)

    Google Scholar 

  17. F. Al-juhaimi, K. Ghafoor, M.M. Özcan, M.H.A. Jahurul, E.E. Babiker, S. Jinap, F. Sahena, M.S. Sharifudin, I.S.M. Zaidul, Effect of various food processing and handling methods on preservation of natural antioxidants in fruits and vegetables. J. Food Sci. Technol. 55(10), 3872–3880 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. A. Sussulini, Metabolomics: from fundamentals to clinical applications (Springer, New York, 2017), pp. 3–17

    Book  Google Scholar 

  19. S.L.C. Ferreira, M.M.S. Junior, C.S.A. Felix, D.L.F. da Silva, A.S. Santos, J.H.S. Neto, C.T. de Souza, R.A.C. Junior, A.S. Souza, Multivariate optimization techniques in food analysis–a review. Food Chem. 273, 3–8 (2019)

    Article  CAS  PubMed  Google Scholar 

  20. M.A. Cunha, L.A.A. Paraguassú, J.G.A. Assis, A.B.P.C. Silva, R.C.V. Cardoso, Urban gardening and neglected and underutilized species in Salvador, Bahia, Brazil. J. Ethnobiol. Ethnomed. 16, 67 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  21. IAL (2008) Physicochemical methods for food analysis. Adolfo Lutz Institute. http://www.crq4.org.br/sms/files/file/analisedealimentosial_2008.pdf. Accessed 10 September 2021

  22. M. Naczk, F. Shahidi, Extraction and analysis of phenolics in food. J. Chromatogr. A 1054(1–2), 95–111 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. M. Ikawa, T.D. Schaper, C.A. Dollard, J.J. Sasner, Utilization of Folin-Ciocalteu phenol reagent for the detection of certain nitrogen compounds. J. Agric. Food Chem. 51(7), 1811–1815 (2003)

    Article  CAS  PubMed  Google Scholar 

  24. M.S.M. Rufino, R.E. Alves, E.S. Brito, S.M. Morais, C.G. Sampaio, J. Pérez-Jiménez, F.D. Saura-Calixto (2007) Metodologia Científica: Determinação da atividade antioxidante total em frutas pela captura do radical livre ABTS•+ 4 p.: il – (Documentos /Embrapa Agroindústria Tropical, ISSN 1679-6535; 128).  https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPAT/10225/1/Cot_128.pdf

  25. M.S.M. Rufino, R.E. Alves, E.S. Brito, S.M. Morais, C.G. Sampaio, J. Pérez-Jiménez, F.D. Saura-Calixto (2007) Metodologia Científica: determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH 4 p.: il – (Documentos /Embrapa Agroindústria Tropical, ISSN 1679-6535; 127).  https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPAT/10224/1/Cot_127.pdf

  26. M.S.M. Rufino, R.E. Alves, E.S. Brito, S.M. Morais, C.G. Sampaio, J. Pérez-Jiménez, F.D. Saura-Calixto (2006) Metodologia Científica: determinação da atividade antioxidante total em frutas pelo método de redução do ferro (FRAP) 4 p.: il – (Documentos /Embrapa Agroindústria Tropical, ISSN 1679-6535; 127).  https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPAT-2010/11964/1/cot-125.pdf

  27. K. Mishra, H. Ojha, N.K. Chaudhury, Estimation of antiradical properties of antioxidants using DPPHassay: A critical review and results. Food Chem. 130, 1036–1043 (2012)

    Article  CAS  Google Scholar 

  28. C. Sánchez-Moreno, J.A. Larrauri, F. Saura-Calixto, A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric. 76, 270–276 (1998)

    Article  Google Scholar 

  29. B.B. Menezes, L.M. Frescura, R. Duarte, M.A. Villetti, M.B. Rosa, A critical examination of the DPPH method: Mistakes and inconsistencies in stoichiometry and IC50 determination by UV–Vis spectroscopy. Anal. Chim. Acta 1157, 338398 (2021)

  30. N. Kumar, N. Goel, Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. (Amst) 24, e00370 (2019)

    Article  Google Scholar 

  31. D.M. Kasote, S.S. Katyare, M.V. Hegde, H. Bae, Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci. 11(8), 982–991 (2016)

    Article  CAS  Google Scholar 

  32. A.V.B. Moreira, J. Mancini Filho, Antioxidant activity of mustard, cinnamon and fennel spices in aqueous and lipid systems. Nutrire Rev. Soc. Bras. Aliment Nutr. 25, 31–46 (2003)

    CAS  Google Scholar 

  33. E. Wada, T. Feyissa, K. Tesfaye, Proximate, mineral and antinutrient contents of Cocoyam (Xanthosoma sagittifolium (L.) Schott) from Ethiopia. Int. J. Food Sci. 2019, 8965476 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. M.S. Hossain, M. Asaduzzaman, M.S. Uddin, M.A.A. Noor, M.A. Rahman, M.S. Munira, Investigation of the in vitro antioxidant and cytotoxic activities of Xanthosoma sagittifolium leaf. Indo. Am. J. Pharm. Res. 5(10), 3300 (2015)

    Google Scholar 

  35. W.G. Sganzerla, R. Schmit, M.D. Melo, M.S. Azevedo, P.I. Ferreira, A.P.D. Veeck, J.P. Ferrareze, Rumex obtusifolius is a wild food plant with great nutritional value, high content of bioactive compounds and antioxidant activity. Emir. J. Food Agric. 31(4), 315–320 (2019)

    Google Scholar 

  36. H.A.B.D. Oliveira, P.C. Anunciação, B.P.D. Silva, Â.M.N.D. Souza, S.S. Pinheiro, C.M. Della Lucia, L.M. Cardoso, L.C.V. Castro, H.M. Pinheiro-Sant’Ana, Nutritional value of non-conventional vegetables prepared by family farmers in rural communities. Cienc Rural 49(8), e20180918 (2019)

    Article  CAS  Google Scholar 

  37. Y. Maghsoudlou, M.A. Ghajari, S. Tavasoli, Effects of heat treatment on the phenolic compounds and antioxidant capacity of quince fruit and its tisane’s sensory properties. J. Food Sci. Technol. 56(5), 2365–2372 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. F. Zhang, F. Liu, A.M. Abbasi, X. Chang, X. Guo, Effect of steaming processing on phenolic profiles and cellular antioxidant activities of Castanea mollissima. Molecules 24(4), 703 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  39. L. Arfaoui, Dietary plant polyphenols: Effects of food processing on their content and bioavailability. Molecules 26(10), 2959 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. M.K. Roy, M. Takenaka, S. Isobe, T. Tsushida, Antioxidant potential, anti-proliferative activities, and phenolic content in water-soluble fractions of some commonly consumed vegetables: Effects of thermal treatment. Food Chem. 103(1), 106–114 (2007)

    Article  CAS  Google Scholar 

  41. K.A. Arbos, R.J.S. Freitas, S.C. Stertz, M.F. Dornas, Antioxidant activity and phenolic content in organic and conventional vegetables. Food Sci. Technol. 30(2), 501–506 (2010)

    Article  Google Scholar 

  42. T. Herrera, Y. Aguilera, M. Rebollo-Hernanz, E. Bravo, V. Benítez, N. Martinez-Sáez, S.M. Arribas, M.D. Castilho, M.A. Martín-Cabreias, Teas and herbal infusions as sources of melatonin and other bioactive non-nutrient components. LWT - Food Sci. Technol. 89, 65–73 (2018)

    Article  CAS  Google Scholar 

  43. H.F.S. Moura, F.S. Dias, L.B. Souza e Souza, B.E.A. Magalhães, C.A. Tannus, W.C. Carvalho, G.C. Brandão, W.N.L. dos Santos, M.G.A. Korn, D.C.M.B. Santos, M.V. Lopes, D.A. Santana, A.F. Santos Júnior, Evaluation of multielement/proximate composition and bioactive phenolics contents of unconventional edible plants from Brazil using multivariate analysis techniques. Food Chem. 363, 129995 (2021)

    Article  CAS  Google Scholar 

  44. J.P.E. Spencer, M.M.A. El Mohsen, A.M. Minihane, J.C. Mathers, Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. Br. J. Nutr. 99(1), 12–22 (2008)

    Article  CAS  PubMed  Google Scholar 

  45. M. Kussmann, M. Affolter, K. Nagy, B. Holst, L.B. Fay, Mass spectrometry in nutrition: Understanding dietary health effects at the molecular level. Mass Spec. Rev. 26(6), 727–750 (2007)

    Article  CAS  Google Scholar 

  46. D. Stagos, Antioxidant activity of polyphenolic plant extracts. Antioxidants (Basel) 9(1), 19 (2020)

    Article  CAS  Google Scholar 

  47. R.R. Sá, R.A. Matos, V.C. Silva, J.D. Caldas, M.C.D. Sauthier, W.N.L. dos Santos, H.I.F. Magalhaes, A.F. Santos Júnior, Determination of bioactive phenolics in herbal medicines containing Cynara scolymus, Maytenus ilicifolia Mart ex Reiss and Ptychopetalum uncinatum by HPLC-DAD. Microchem. J. 135, 10–15 (2017)

    Article  CAS  Google Scholar 

  48. C. Simó, C. Ibáñez, A. Valdés, A. Cifuentes, V. García-Cañas, Metabolomics of genetically modified crops. Int. J. Mol. Sci. 15(10), 18941–18966 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. G. Cao, Y. Zhang, J.A. Feng, H. Cai, C.R. Zhang, M.J. Ding, X.D. Cong, B.C. Cai, A rapid and sensitive assay for determining the main components in processed Fructus corni by UPLC-Q-TOF-MS. Chromatographia 73(1–2), 135–141 (2011)

    Article  CAS  Google Scholar 

  50. M.A. Farag, L.A. Wessjohann, Metabolome classification of commercial Hypericum perforatum (St. Johns Wort) preparations via UPLC–qTOF–MS and chemometrics. Planta Med. 78(5), 488–496 (2012)

    Article  CAS  PubMed  Google Scholar 

  51. M.A. Farag, M.G.S. Eldin, H. Kassem, M. Abou el Fetouh, Metabolome classification of Brassica napus L. organs via UPLC-QTOF-PDA-MS and their anti-oxidant potential. Phytochem. Anal. 24(3), 277–287 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for State University of Bahia (UNEB), “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES)”, “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)”, and “Fundação de Amparo à Pesquisa do Estado da Bahia”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aníbal de Freitas Santos Júnior.

Ethics declarations

Conflict of interest

The authors declare that have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Jesus Benevides, C.M., da Silva, H.B.M., Lopes, M.V. et al. Multivariate analysis for the quantitative characterization of bioactive compounds in “Taioba” (Xanthosoma sagittifolium) from Brazil. Food Measure 16, 1901–1910 (2022). https://doi.org/10.1007/s11694-021-01265-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01265-2

Keywords

Navigation