Skip to main content

Advertisement

Log in

Simulation of a Silicon Heterojunction Solar Cell with a Gradient Doping Emitter Layer

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A silicon heterojunction solar cell structure consisting of a gradient doping emitter layer, which possesses a potential to obtain high power conversion efficiency, is explored by the numerical simulation tool automat for simulation of heterostructures. We have demonstrated that the gradient doping solar cell has a higher open-circuit voltage than a uniform doping solar cell, due to the introduction of an additional electric field, which can achieve a better conversion efficiency, whereas their thickness and defect state distribution are identical. A high conversion efficiency of 29.5% is achieved by using a gradient doping for the n-type emitter layer with the same reference as the uniform doping. In addition, through the investigation of the effect of gradient doping, we find that the field-effect passivation can appropriately explain the interesting behaviors that the recombination rate is less sensitive to the defect density state, and that the open-circuit voltage is enhanced when increasing the doping gradient in the n-a-Si emitter layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, and N. Matsubara, IEEE J. Photovolt. 4, 1433 (2014).

    Article  Google Scholar 

  2. M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, IEEE J. Photovolt. 4, 96 (2014).

    Article  Google Scholar 

  3. T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, Sol. Energy Mat. Sol. Cell 95, 18 (2011).

    Article  Google Scholar 

  4. K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, and H. Uzu, Nat. Energy 2, 17032 (2017).

    Article  Google Scholar 

  5. J. Ganji, A. Kosarian, and H. Kaabi, J. Comput. Electron. 15, 1541 (2016).

    Article  Google Scholar 

  6. J. Bullock, C. Samundsett, A. Cuevas, D. Yan, Y. Wan, and T. Allen, IEEE J. Photovolt. 5, 1591 (2015).

    Article  Google Scholar 

  7. Y. Yao, X. Xu, X. Zhang, H. Zhou, X. Gu, and S. Xiao, Mat. Sci. Semicond. Proc. 77, 16 (2018).

    Article  Google Scholar 

  8. H. Du, W. Wang, B. Ma, T. Long, and J. Zhu, Mat. Sci. Semicond. Proc. 40, 570 (2015).

    Article  Google Scholar 

  9. M. Ghannam, G. Shehadah, Y. Abdulraheem, and J. Poortmans, Sol. Energy Mat. Sol. Cell 132, 320 (2015).

    Article  Google Scholar 

  10. K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, T. Asatani, D. Adachi, M. Kanematsu, and H. Uzu, Sol. Energy Mat. Sol. Cell 173, 37 (2017).

    Article  Google Scholar 

  11. N. Dwivedi, S. Kumar, A. Bisht, K. Patel, and S. Sudhakar, Sol. Energy 88, 31 (2013).

    Article  Google Scholar 

  12. H. Mimura and Y. Hatanaka, Appl. Phys. Lett. 50, 326 (1987).

    Article  Google Scholar 

  13. L. Oppong-Antwi, S. Huang, Q. Li, D. Chi, X. Meng, and L. He, Sol. Energy 141, 222 (2017).

    Article  Google Scholar 

  14. J. He, W. Zhang, J. Ye, and P. Gao, Nano Energy 43, 117 (2018).

    Article  Google Scholar 

  15. Y. Liu, J. Zhang, H. Wu, W. Cui, R. Wang, K. Ding, S. Lee, and B. Sun, Nano Energy 34, 257 (2017).

    Article  Google Scholar 

  16. M. Rahmouni, A. Datta, P. Chatterjee, J. Damon-Lacoste, C. Ballif, P. Roca, and I. Cabarrocas, J. Appl. Phys. 107, 54521 (2010).

    Article  Google Scholar 

  17. J. Werner, G. Dubuis, A. Walter, P. Löper, S. Moon, S. Nicolay, M. Morales-Masis, S. De Wolf, B. Niesen, and C. Ballif, Sol. Energy Mat. Sol. Cell 141, 407 (2015).

    Article  Google Scholar 

  18. C. Battaglia, A. Cuevas, and S. De Wolf, Energy Environ. Sci. 9, 1552 (2016).

    Article  Google Scholar 

  19. T. Yang, M. Wang, C. Duan, X. Hu, L. Huang, J. Peng, F. Huang, and X. Gong, Energy Environ. Sci. 5, 8208 (2012).

    Article  Google Scholar 

  20. D.B. Judd, J. Res. Natl. Bur. Stand. 29, 329 (1942).

    Article  Google Scholar 

  21. Z. Yang, A. Shang, L. Qin, Y. Zhan, C. Zhang, P. Gao, J. Ye, and X. Li, Opt. Lett. 41, 1329 (2016).

    Article  Google Scholar 

  22. Z. Yang, Z. Fang, J. Sheng, Z. Ling, Z. Liu, J. Zhu, P. Gao, and J. Ye, Nanoscale Res. Lett. 12, 26 (2017).

    Article  Google Scholar 

  23. L. Hao, M. Zhang, M. Ni, J. Liu, and X. Feng, Mater. Res. Express 5, 75504 (2018).

    Article  Google Scholar 

  24. N. Jensen, U. Rau, R.M. Hausner, S. Uppal, L. Oberbeck, R.B. Bergmann, and J.H. Werner, J. Appl. Phys. 87, 2639 (2000).

    Article  Google Scholar 

  25. C. Leendertz, N. Mingirulli, T.F. Schulze, J. Kleider, B. Rech, and L. Korte, Appl. Phys. Lett. 98, 202108 (2011).

    Article  Google Scholar 

Download references

Funding

Funding was provided by Natural Science Research of Jiangsu Higher Education Institutions of China (Grant No. 21506100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, L., Zhang, M., Ni, M. et al. Simulation of a Silicon Heterojunction Solar Cell with a Gradient Doping Emitter Layer. J. Electron. Mater. 48, 4688–4696 (2019). https://doi.org/10.1007/s11664-019-07241-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07241-3

Keywords

Navigation