Skip to main content
Log in

Molecular simulation of water behaviors on crystal faces of hydroxyapatite

  • Research Article
  • Published:
Frontiers of Chemistry in China

Abstract

The water behavior on (001) and (100) crystal faces of hydroxyapatite (HAP) were studied using molecular dynamics (MD) simulations. The study showed that the water molecules between the HAP faces were under conditions of strong electrical field and high pressure, and hence formed 2–3 well-organized water layers on the crystal surfaces. These structured water layers had ice-like features. Compared with the crystallographic [100] direction of HAP, the polarity along the [001] direction was stronger, which resulted in more structured water layers on the surface. The interaction of water molecules with the calcium and phosphate sites at the HAP-water interface was also studied. The results indicated the multiple pathways of water adsorption onto the HAP surfaces. This study revealed the formation and the detailed structure of water layers on HAP surfaces and suggested that the interfacial water played an important role in stabilizing the HAP particles in aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mathew M, Takagi S. Structures of biological minerals in dental research. J Res Natl Inst Stand Technol, 2001, 106(6): 1035–1044

    CAS  Google Scholar 

  2. Demer L L, Tintut Y. Mineral exploration: Search for the mechanism of vascular calcification and beyond: The 2003 Jeffrey M. Hoeg award lecture. Arterioscler Thromb Vasc Biol, 2003, 23(10): 1739–1743

    Article  CAS  Google Scholar 

  3. Hayes C W, Conway W F. Calcium hydroxyapatite deposition disease. Radiographics, 1990, 10(6): 1031–1048

    CAS  Google Scholar 

  4. Hauptmann S, Dufner H, Kast S M, Berry R S. Potential energy function for apatites. Phys Chem Chem Phys, 2003, 5(3): 635–639

    Article  CAS  Google Scholar 

  5. Zahn D, Hochrein O. Computational study of interfaces between hydroxyapatite and water. Phys Chem Chem Phys, 2003, 5(18): 4004–4007

    Article  CAS  Google Scholar 

  6. Mkhonto D, de Leeuw NH. A computer modeling study of the effect of water on the surface structure and morphology of fluorapatite: Introducing a Ca10(PO4)6F2 potential model. J Mater Chem, 2002, 12(9): 2633–2642

    Article  CAS  Google Scholar 

  7. Park C, Fenter P, Zhang, Z, Cheng L W, Sturchio N C. Structure of the fluorapatite (100)-water interface by high-resolution X-ray reflectivity. Am Mineral, 2004, 89(11–12): 1647–1654

    CAS  Google Scholar 

  8. Reedijk M F, Arsic J, Hollander F F A, de Vries S A, Vlieg E. Liquid order at the interface of KDP crystals with water: Evidence for ice-like layers. Phys Rev Lett, 2003, 90(6): 066103

    Google Scholar 

  9. Wang J W, Kalinichev A G, Kirkpatrick R J. Molecular modeling of water structure in nano-pores between brucite (001) surfaces. Geochimica et Cosmochimica Acta, 2004, 68(16): 3351–3365

    Article  CAS  Google Scholar 

  10. Michot L J, Villiéras F, François M, Bihannic I, Pelletier M, Cases J M. Water organisation at solid-aqueous solution interface. Geoscience, 2002, 334(9): 611–631

    CAS  Google Scholar 

  11. Fenter P, Cheng L, Park C, Zhang Z, Sturchio N C. Structure of the orthoclase (001)-and (010)-water interfaces by high-resolution X-ray reflectivity. Geochim Cosmochim Acta, 2003, 67(22): 4267–4275

    Article  CAS  Google Scholar 

  12. Park S H, Sposito G. Structure of water adsorbed on a mica surface. Phys Rev Lett, 2002, 89(8): 085501

    Google Scholar 

  13. Moreno E C, Kresak M, Hay D I. Adsorption of molecules of biological interest onto hydroxyapatite. Calcif Tissue Int, 1984, 36(1): 48–59

    Article  CAS  Google Scholar 

  14. Nikolenko N V, Esajenko E E. Surface properties of synthetic calcium hydroxyapatite. Adsorpt Sci Technol, 2005, 23(7): 543–553

    Article  CAS  Google Scholar 

  15. Kay M I, Young R A, Posner A S. Crystal structure of hydroxyapatite. Nature, 1964, 204(4963): 1050–1052

    Article  CAS  Google Scholar 

  16. Wilson R M, Elliott J C, Dowker S E P. Rietveld refinement of the crystallographic structure of human dental enamel apatites. Am Mineral, 1999, 84(9): 1406–1414

    CAS  Google Scholar 

  17. Hochrein O, Kniep R, Zahn D. Atomistic simulation study of the order-disorder (monoclinic to hexagonal) phase transition of hydroxyapatite. Chem Mater, 2005, 17(8): 1978–1981

    Article  CAS  Google Scholar 

  18. Hermans J, Berendsen H J C, van Gunsteren W F, Postma J P M. A consistent empirical potential for water-protein interactions. Biopolymers, 1984, 23: 1513–1518

    Article  CAS  Google Scholar 

  19. Berendsen H J C, van der Spoel D, van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Comp Phys Comm, 1995, 91(1–3): 43–56

    Article  CAS  Google Scholar 

  20. Lindahl E, Hess B, van der Spoel D. Gromacs 3.0: A package for molecular simulation and trajectory analysis. J Mol Mod, 2001, 7(8): 306–317

    CAS  Google Scholar 

  21. Darden T, York D, Pedersen L. Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems. J Chem Phys, 1993, 98(12): 10089–10092

    Article  CAS  Google Scholar 

  22. Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G. A smooth particle mesh ewald potential. J Chem Phys, 1995, 103(19): 8577–8592

    Article  CAS  Google Scholar 

  23. Berendsen H J C, Postma J P M, DiNola A, Haak J R. Molecular dynamics with coupling to an external bath. J Chem Phys, 1984, 81(8): 3684–3690

    Article  CAS  Google Scholar 

  24. Tang R, Wang L, Orme C A, Bonstein T, Bush P J, Nancollas G H. Dissolution at the nanoscale: self-preservation of biominerals. Angew Chem Int Ed, 2004, 43(20): 2697–2701; Angew Chem, 2004, 116(20): 2751–2755

    Article  CAS  Google Scholar 

  25. Morishige K, Kawano K. Freezing and melting of water in a single cylindrical pore: The pore-size dependence of freezing and melting behavior. J Chem Phys, 1998, 110(10): 4867–4872

    Article  Google Scholar 

  26. Myneni S, Luo Y, Näslund L A, Ojamae L, Ogasawara H, Pelmenschikov A, Wernet P, Väterlein P, Heske C, Hussein Z, Pettersson L G M, Nilsson A. Spectroscopic probing of local hydrogenbonding structures in liquid water. J Phys: Condens Matter, 2002, 14(8): L213–L219

    Article  CAS  Google Scholar 

  27. Zhu Y, Granick S. Viscosity of interfacial water. Phys Rev Lett, 2001, 87(9): 096104

    Google Scholar 

  28. Sakuma H, Tsuchiya T, Kawamura K, Otsuki K. Large self-diffusion of water on brucite surface by ab initio potential energy surface and molecular dynamics simulations. Surf Sci, 2003, 536(1–3): L396–L402

    Article  CAS  Google Scholar 

  29. Teschke O, Ceotto G, de Souza E F. Interfacial water dielectric-permittivity-profile measurements using atomic force microscopy. Phys Rev E, 2001, 64(1): 011605

    Google Scholar 

  30. Wilson E E, Awonusi A, Morris M D, Kohn D H, Tecklenburg M M, Beck L W. Highly ordered interstitial water observed in bone by nuclear magnetic resonance. J Bone Miner Res, 2005, 20(4): 625–634

    Article  CAS  Google Scholar 

  31. Guillot B. A reappraisal of what we have learnt during three decades of computer simulations on water. J Mol Liq, 2002, 101(1–3): 219–260

    Article  CAS  Google Scholar 

  32. Onuma K, Ito A, Tateishi T, Kameyama T. Growth kinetics of hydroxyapatite crystal revealed by atomic force microscopy. J Crys Growth, 1995, 154(1–2): 118–125

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tang Ruikang.

Additional information

Translated from Chinese Journal of Inorganic Chemistry, 2006, 22(8): 1392–1400 (in Chinese)

About this article

Cite this article

Pan, H., Tao, J., Wu, T. et al. Molecular simulation of water behaviors on crystal faces of hydroxyapatite. Front. Chem. China 2, 156–163 (2007). https://doi.org/10.1007/s11458-007-0032-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11458-007-0032-6

Keywords

Navigation