Skip to main content
Log in

Spatial-temporal variations in surface ozone over Ushuaia and the Antarctic region: observations from in situ measurements, satellite data, and global models

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The Antarctic continent is known to be an unpopulated region due to its extreme weather and climate conditions. However, the air quality over this continent can be affected by long-lived anthropogenic pollutants from the mainland. The Argentinian region of Ushuaia is often the main source area of accumulated hazardous gases over the Antarctic Peninsula. The main objective of this study is to report the first in situ observations yet known of surface ozone (O3) over Ushuaia, the Drake Passage, and Coastal Antarctic Peninsula (CAP) on board the RV Australis during the Malaysian Antarctic Scientific Expedition Cruise 2016 (MASEC’16). Hourly O3 data was measured continuously for 23 days using an EcoTech O3 analyzer. To understand more about the distribution of surface O3 over the Antarctic, we present the spatial and temporal of surface O3 of long-term data (2009–2015) obtained online from the World Meteorology Organization of World Data Centre for greenhouse gases (WMO WDCGG). Furthermore, surface O3 satellite data from the free online NOAA-Atmospheric Infrared Sounder (AIRS) database and online data assimilation from the European Centre for Medium-Range Weather Forecasts (ECMWF)-Monitoring Atmospheric Composition and Climate (MACC) were used. The data from both online products are compared to document the data sets and to give an indication of its quality towards in situ data. Finally, we used past carbon monoxide (CO) data as a proxy of surface O3 formation over Ushuaia and the Antarctic region. Our key findings were that the surface O3 mixing ratio during MASEC’16 increased from a minimum of 5 ppb to ~ 10–13 ppb approaching the Drake Passage and the Coastal Antarctic Peninsula (CAP) region. The anthropogenic and biogenic O3 precursors from Ushuaia and the marine region influenced the mixing ratio of surface O3 over the Drake Passage and CAP region. The past data from WDCGG showed that the annual O3 cycle has a maximum during the winter of 30 to 35 ppb between June and August and a minimum during the summer (January to February) of 10 to 20 ppb. The surface O3 mixing ratio during the summer was controlled by photochemical processes in the presence of sunlight, leading to the depletion process. During the winter, the photochemical production of surface O3 was more dominant. The NOAA-AIRS and ECMWF-MACC analysis agreed well with the MASEC’16 data but twice were higher during the expedition period. Finally, the CO past data showed the surface O3 mixing ratio was influenced by the CO mixing ratio over both the Ushuaia and Antarctic regions. Peak surface O3 and CO hourly mixing ratios reached up to ~ 38 ppb (O3) and ~ 500 ppb (CO) over Ushuaia. High CO over Ushuaia led to the depletion process of surface O3 over the region. Monthly CO mixing ratio over Antarctic (South Pole) were low, leading to the production of surface O3 over the Antarctic region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ahamad F, Latif MT, Tang R, Juneng L, Dominick D, Juahir H (2014) Variation of surface ozone exceedance around Klang Valley, Malaysia. Atmos Res 71:251–259

    Google Scholar 

  • Arellano AF Jr, Raeder K, Anderson JL, Hess PG, Emmons LK, Edwards DP, Pfister GG, Campos TL, Sachse GW (2007) Evaluating model performance of an ensemble-based chemical data assimilation system during INTEX-B field mission. Atmos Chem Phys 7:5695–5710. https://doi.org/10.5194/acp-7- 5695-2007

    Article  CAS  Google Scholar 

  • Awang NR, Ramli NA, Shukri YA, Elbayoumi M (2010) High nighttime ground-level ozone concentrations in Kemaman: NO and NO2 concentrations attributions. Aerosol Air Qual Res 15:1357–1366. https://doi.org/10.4209/aaqr.2015.01.0031

    Google Scholar 

  • Ayers GP, Penkett SA, Gillet RW, Bandy B, Galbally IE, Meyer CP, Elsworth CM, Bentley ST, Forgan BW (1992) Evidence for photochemical control of ozone concentrations in unpolluted air. Nature 360:446–449

    Article  CAS  Google Scholar 

  • Boylan, P., Helmig, D., Oltmans, S. (2015) Ozone in the Atlantic Ocean marine boundary layer. https://doi.org/10.12952/journal.elementa.000045

  • Chameides WL, Davis DD (1980) Iodine: Its possible role in tropospheric photochemistry. J Geophys Res 85:7383–7393

    Article  CAS  Google Scholar 

  • Chen G, Davis D, Crawford J, Hutterli LM, Huey LG, Slusher D, Mauldin L, Eisele F, Tanner D, 561 Dibb J, Buhr M, McConnell J, Lefer B, Shetter R, Blake D, Song CH, Lombardi K, 562 Arnoldy J (2004) A reassessment of HOx South Pole chemistry based on observations 563 recorded during ISCAT 2000. Atmos Environ 38:54515461

    Google Scholar 

  • Crawford JH, Davis DD, Chen G, Buhr M, Oltmans S, Weller R, Mauldin L, Eisele F, Shetter R, Lefer B, Arimoto R, Hogan A (2001) Evidence for photochemical production of ozone at the South Pole surface. Geophys Res Lett 28:3641–3644

    Article  CAS  Google Scholar 

  • Conley SA, Faloona IC, Lenschow DH, Campos T, Heizer C (2011) A complete dynamical ozone budget measured in the tropical marine boundary layer during PASE. J Atmos Chem 68(1):55–70. https://doi.org/10.1007/s10874-011-9195-0

    Article  CAS  Google Scholar 

  • Davis DD, Nowak LB, Chen G, Buhr M, Arimoto R, Hogan A, Eisele F, Mauldin L, Tanner D, Shetter R, Lefer B, McMurry P (2001) Unexpected high levels of NO observed at South Pole. Geophys Res Lett 28:3625–3628

    Article  CAS  Google Scholar 

  • Davis D, Crawford J, Liu S, McKeen S, Bandy A, Thornton D, Rowland F, Blake D (1996) Potential impact of iodine on tropospheric levels of ozone and other critical oxidants. J Geophys Res 101:2135–2147

    Article  CAS  Google Scholar 

  • Davis DD, Eisele F, Chen G, Crawford J, Huey G, Tanner D, Slusher D, Mauldin L, Oncley S, Lenschow D, Semmer S, Shetter R, Lefer B, Arimoto R, Hogan A, Grube P, Lazzara M, Bandy A, Thornton D, Berresheim H, Bingemer H, Hutterli M, McConnell J, Bales R, Dibb J, Buhr M, Parko J, McMurry P, Swanson A, Meinardi S, Blake D (2004) An overview of ISCAT 2000. Atmos Environ 38:53635373. https://doi.org/10.1016/j.atmosenv.2004.05.037

    Google Scholar 

  • Dethof A, Holm EV (2004) Ozone assimilation in the ERA-40 re-analysis project. Q. J. Roy. Meteor. Soc. 130:2851–2872

    Article  Google Scholar 

  • Dragani R (2011) On the quality of the ERA-Interim ozone reanalyses: comparisons with satellite data. Q J Roy Meteor Soc 137:1312–1326. https://doi.org/10.1002/qj.82110.1002/qj.821

    Article  Google Scholar 

  • Draxler R and Rolph G (2003) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL ready website (http://www.arl.noaa.gov/ready/hysplit4.html), NOAA Air Resources Laboratory, Silver Spring, MD

  • Derwent RG, Jenkin ME, Saunders SM, Pilling MJ, Simmonds PG, Passant NR, Dollard GJ, Dumitrean P, Kent A (2003) A photochemical ozone formation in north west Europe and its control. Atmos Environ 37:1983–1991

    Article  CAS  Google Scholar 

  • Duncan BN, Prados AI, Lamsal LN, Liu Y, Streets DG, Gupta P, Hilsenrath E, Kahn RA, Nielsen JE, Beyersdorf AJ, Burton SP, Fiore AM, Fishman J, Henze DK, Hostetler CA, Krotkov NA, Lee P, Lin M, Pawson S, Pfister G, Pickering KE, Pierce RB, Yoshida Y, Ziemba D (2014) Satellite data of atmospheric pollution for U.S. air quality applications: examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2014.05.061

  • Frieß U, Hollwedel J, Konig-Langlo G, Wagner T, Platt U (2004) Dynamics and chemistry of troposphieric bromine explosion events in the Antarctic coastal region. J Geophys Res 109:D06305. https://doi.org/10.1029/2003JD004133

    Article  Google Scholar 

  • Ge BZ, Xu XB, Lin WL, Li J, Wang ZF (2012) Impact of the regional transport of urban Beijing pollutants on downwind areas in summer: ozone production efficiency analysis. Tellus B 64:17348. https://doi.org/10.3402/tellusb.v64i0.17348

    Article  CAS  Google Scholar 

  • Geer AJ, Peubey C, Bannister RN, Brugge R, Jackson DR, Lahoz WA, Migliorini S, O’Neill A, Swinbank R (2006) Assimilation of stratospheric ozone from MIPAS into a global general-circulation model: the September 2002 vortex split. Q J Roy Meteor Soc 132:231–257. https://doi.org/10.1256/qj.04.181

    Article  Google Scholar 

  • Helmig D, Oltmans SJ, Carlson D, Lamarque JF, Jones A, Labuschagne C, Anlauf K, Hayden K (2007a) A review of surface ozone in the polar regions. Atmos Environ 41:5138–5161. https://doi.org/10.1016/j.atmosenv.2006.09.053

    Article  CAS  Google Scholar 

  • Helmig D, Ganzeveld L, Butler T, Oltmans SJ (2007b) The role of ozone atmosphere-snow gas exchange on polar, boundary-layer tropospheric ozone—a review and sensitivity analysis. Atmos Chem Phys 7:15–30

    Article  CAS  Google Scholar 

  • Holm EV, Untch A, Simmons A, Saunders R, Bouttier F, and Andersson E (1999) Multivariate ozone assimilation in four-dimensional data assimilation, in: Proceedings of the Soda Workshop on Chemical Data Assimilation, 9–10 December 1998, KNMI, De Bilt, The Netherlands, 89–94

  • Inness A, Baier F, Benedetti A, Bouarar I, Chabrillat S, Clark H, Clerbaux C, Coheur P, Engelen RJ, Errera Q, Flemming J, George M, Granier C, Hadji-Lazaro J, Huijnen V, Hurtmans D, Jones L, Kaiser JW, Kapsomenakis J, Lefever K, Leitão J, Razinger M, Richter A, Schultz MG, Simmons AJ, Suttie M, Stein O, Thépaut J-N, Thouret V, Vrekoussis M, Zerefos C, the MACC team (2013) The MACC reanalysis: an 8 yr data set of atmospheric composition. Atmos Chem Phys 13:4073–4109. https://doi.org/10.5194/acp-25 13-4073-2013

    Article  CAS  Google Scholar 

  • Inness A, Blechschmidt A-M, Bouarar I, Chabrillat S, Crepulja M, Engelen RJ, Eskes H, Flemming J, Gaudel A, Hendrick F, Huijnen V, Jones L, Kapsomenakis J, Katragkou E, Keppens A, Langerock B, de Mazière M, Melas D, Parrington M, Peuch VH, Razinger M, Richter A, Schultz MG, Suttie M, Thouret V, Vrekoussis M, Wagner A, Zerefos C (2015) Data assimilation of satellite retrieved ozone, carbon monoxide and nitrogen dioxide with ECMWF’s composition-IFS. Atmos Chem Phys 15:5275–5303. https://doi.org/10.5194/acp-15-5275-2015

    Article  CAS  Google Scholar 

  • Johnson JE, Gammon RH, Larsen J, Bates TS, Oltmans SJ (1990) Ozone in the marine boundary layer over the Pacific and Indian Oceans: latitudinal gradients and diurnal cycles. J Geophys Res 95(D8):11847–11856. https://doi.org/10.1029/JD095iD08p11847

    Article  Google Scholar 

  • Jones AE, Weller R, Minikin A, Wolff EW, Sturges WT, McIntyre HP, Leonard SR, Schrems O, Bauguitte S (1999) Oxidized nitrogen chemistry and speciation in the Antarctic troposphere. J Geophys Res 104:21,355–21,366

    Article  CAS  Google Scholar 

  • Jones AE, Weller R, Wolff EW, Jacobi HW (2000) Speciation and rate of photochemical NO and NO2 production in Antarctic snow. Geophys Res Lett 27:345–348

    Article  CAS  Google Scholar 

  • Jones AE, Weller R, Anderson PS, Jacobi HW, Wolff EW, Schrems O, Miller H (2001) Measurements of NOx emissions from the Antarctic snowpack. Geophys Res Lett 28:1499–1502

    Article  CAS  Google Scholar 

  • Kar J, Fishman J, Creilson JK, Richter A, Ziemke J, Chandra S (2010) Are there urban signatures in the tropospheric ozone column products derived from satellite measurements? Atmos Chem Phys 10:5213e5222. https://doi.org/10.5194/acp-10-5213-2010

    Google Scholar 

  • Khattatov BV, Lamarque J-F, Lyjak LV, Menard R, Levelt P, Tie X, Brasseur G, Gille JC (2000) Assimilation of satellite observations of long-lived chemical species in global chemistry transport models. J Geophys Res 105:29135–29144

    Article  CAS  Google Scholar 

  • Kumar A, Gupta VB, Jain SL, Ghude SD, Kulkarni PS (2006) Surface ozone variability between two different Antarctic sites. IJRSP 36:59–64

    Google Scholar 

  • Lahoz WA, Geer AJ, Bekki S, Bormann N, Ceccherini S, Elbern H, Errera Q, Eskes HJ, Fonteyn D, Jackson DR, Khattatov B, Marchand M, Massart S, Peuch V-H, Rharmili S, Ridolfi M, Segers A, Talagrand O, Thornton HE, Vik AF, von Clarmann T (2007) The assimilation of Envisat data (ASSET) project. Atmos Chem Phys 7:1773–1796. https://doi.org/10.5194/acp-7-1773-2007

    Article  CAS  Google Scholar 

  • Latif MT, Huey LS, Juneng L (2012) Variations of surface ozone concentration across the Klang Valley. Malaysia Atmos Environ 61:434–445

    Article  CAS  Google Scholar 

  • Legrand M, Preunkert S, Jourdain B, Gallée H, Goutail F, Weller R, Savarino J (2009) Year-round record of surface ozone at coastal (Dumont d’Urville) and inland (Concordia) sites in East Antarctica. J Geophys Res Atmos 114:D20306. https://doi.org/10.1029/2008JD011667

    Article  Google Scholar 

  • Lin C-YC, Jacob J, Munger JW, Fiore AM (2000) Increasing background ozone in surface air over the United States. Geophys Res Lett 27:3465–3468

    Article  CAS  Google Scholar 

  • Mohd Nadzir MS, Phang SM, Abas MR, Abdul Rahman N, Abu Samah A, Sturges WT, Oram DE, Mills GP, Leedham EC, Pyle JA, Harris NRP, Robinson AD, Ashfold MJ, Mead MI, Latif MT, Khan MF, Amiruddin AM, Banan N, Hanafiah MM (2014) Bromocarbons in the tropical coastal and open ocean atmosphere during the 2009 Prime Expedition Scientific Cruise (PESC-09). Atmos Chem Phys 14:8137–8148. https://doi.org/10.5194/acp-14-8137-2014

    Article  Google Scholar 

  • Monks PS (2000) A review of the observations and origins of the spring ozone maximum. Atmos Environ 34:3545–3561. https://doi.org/10.1016/S1352-2310(00)00129-1

    Article  CAS  Google Scholar 

  • Monks PS (2005) Gas-phase radical chemistry in the troposphere. Chem Soc Rev 34:376–395. https://doi.org/10.1039/b307982c

    Article  CAS  Google Scholar 

  • Murayama S, Nakazawa T, Tanaka M, Aoki S, Kawaguchi S (1992) Variations of tropospheric ozone concentration over Syowa station. Antarctica, Tellus 44B:262–272

    Article  CAS  Google Scholar 

  • Neff W, Helmig D, Garchev A, Davis D (2008) A study of boundary layer behavior associated with high NO concentrations at the South Pole using a minisodar, tethered balloon, and sonic anemometer. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2007.01.033.%2007

  • Niki H, Becker KH (1993) The tropospheric chemistry of ozone in the polar region, NATO ASI Series I. Global environmental change, Vol 7, Springer Verlag, 425 pp.

  • Oltmans SJ, Komhyr WD (1976) Surface ozone in Antarctica. J Geophys Res 81:5359–5364

    Article  CAS  Google Scholar 

  • Oltmans SJ (1993) Climatology of Arctic and Antarctic tropospheric ozone, in The tropospheric chemistry of ozone in the polar regions, eds Niki and Becker, NATO ASI Series I. Global Environmental Change, Vol 7, Springer Verlag, 425 pp.

  • Oltmans SJ, Levy H II (1994) Surface ozone measurements from a global network. Atmos Environ 28:9–24

    Article  CAS  Google Scholar 

  • Oncley SP, Buhr M, Lenschow DH, Davis D, Semmer SR (2004) Observations of summertime NO fluxes and boundary-layer height at the South Pole during ISCAT 2000 using scalar similarity. Atmos Environ 38:5389–5398

    Article  CAS  Google Scholar 

  • Rolph G (2003) Real-time Environmental Applications and Display System (READY) Website (http://www.arl.noaa.gov/ready/hysplit4.html), NOAA Air Resources Laboratory, Silver Spring, MD

  • Schnell RC, Liu SC, Oltmans SJ, Stone RS, Hofmann DJ, Dutton EG, Deshler T, Sturges WT, Harder JW, Sewell SD, Trainer M, Harris JM (1991) Decrease of summer tropospheric ozone concentrations in Antarctica. Nature 351:726–729

    Article  CAS  Google Scholar 

  • Simmonds PG, Seuring S, Nickless G, Derwent RG (1997) Segregation and interpretation of ozone and carbon monoxide measurements by air mass origin at the TOR station Mace Head, Ireland from 187 to 1995. J Atmos Chem 28:45–49

    Article  CAS  Google Scholar 

  • Sturges WT, Cota GF, Buckley PT (1992) Bromoform emission from Arctic ice algae. Nature 358:660–662

    Article  CAS  Google Scholar 

  • Sturges G, Cota F, Buckley PT (1997) Vertical profiles of bromoform in snow, sea ice, and seawater in the Canadian Arctic. J Geophys Res 102(C11):25073–25025,25083

    Article  Google Scholar 

  • Taalas P, Kyro E, Supperi A, Tafuri V, Ginzburg M (1993) Vertical distribution of tropospheric ozone in Antarctica and in the European Arctic. Tellus 45B:106–109

    Article  CAS  Google Scholar 

  • Wang Y, Zhang Y, Hao J Luo M (2011) Seasonal and spatial variability of surface ozone over China: contributions from background and domestic pollution. Atmos Chem Phys 11:3511–3525 https://doi.org/10.5194/acp-11-3511-2011

  • Yurganov L, McMillan WW, Grechko E, Dzhola A (2009) Analysis of global and regional CO burdens measured from space between 2000 and 2009 and validated by ground-based solar tracking spectrometers. Atmos Chem Phys Discuss 9:28475–24911 2009, http://www.atmos-chem-phys-discuss.net/9/28475/2009/

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Sultan Mizan Antarctic Research Foundation Grant (YPASM) program registered as ZF-2015-001 as part of the Malaysia Antarctic Research Programme (MARP) under Malaysian Ministry of Science, Technology, and Innovation (MOSTI) and Universiti Kebangsaan Malaysia (UKM) GUP-2014-041 for giving opportunities and financial support for the Centre Tropical System & Climate Change (IKLIM) UKM to participate in this scientific cruise. Secondly, we like to thank MASEC’16 scientists on board R/V Australis and their crews and Envirotech Sdn. Bhd who helped a lot on the exploration activities, Dr. Mohd Aftar Abu Bakar (UKM) and Dr. Noratiqah Mohd Ariff (UKM) for their assistance in statistical data analysis and Dr. Rose Norman (UK) for her assistance in proofreading this article. This study relies on archived surface O3 data sets that were retrieved from the WMO World Data Centre for greenhouse gases (http://gaw.kishou.go.jp/wdcgg.html). We would like also to thank all international research stations who provided all data to the website.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Shahrul Mohd Nadzir.

Additional information

Responsible editor: Gerhard Lammel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadzir, M.S.M., Ashfold, M.J., Khan, M.F. et al. Spatial-temporal variations in surface ozone over Ushuaia and the Antarctic region: observations from in situ measurements, satellite data, and global models. Environ Sci Pollut Res 25, 2194–2210 (2018). https://doi.org/10.1007/s11356-017-0521-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0521-1

Keywords

Navigation