Skip to main content
Log in

Plant-associated Microbe System in Treatment of Heavy Metals–contaminated Soil: Mechanisms and Applications

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Owing to the ecological applicability, phytoremediation has attracted extensive attention in the remediation of heavy metals–contaminated soil, but the slow plant growth and low remediation efficiency limit its application. Recently, the developed plant-associated microbes has opened up promising areas of research in the field of phytoremediation technology. Various plant growth–promoting rhizobacterias (PGPR) are suggested to be involved in the phytoremediation of heavy metals–contaminated soils, thereby significantly enhancing the removal efficiency of heavy metals. Currently, the published reviews focus on the resistance mechanism of plants and microorganisms to heavy metals, but the function and regulatory machinery of PGPR on phytoremediation have been overlooked. This paper will give a critical review on the processes of PGPR in phytoremediation, including both direct and indirect mechanisms such as (i) the secretion of siderophores, organic acids, biosurfactants, and redox processes and (ii) stimulating plant growth or enhancing their resistance via N fixation, P solubilization, and phytohormone and aminocyclopropane-1-carboxylic acid deaminase synthesis. Moreover, the development of PGPR in phytoremediation is prospected. This work would help readers and researchers better understand the principle and application of PGPR in promoting phytoremediation heavy metals–contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas, G., Murtaza, B., Bibi, I., et al. (2018). Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. International Journal of Environmental Research and Public Health, 15(1), 59.

    Article  Google Scholar 

  • Abbasi, S., Zahedi, H., Sadeghipour, O., et al. (2013). Effect of plant growth promoting rhizobacteria (PGPR) on physiological parameters and nitrogen content of soybean grown under different irrigation regimes. Res Crops, 14, 798–803.

    Google Scholar 

  • Ahalya, N., Ramachandra, T. V., & Kanamadi, R. D. (2003). Biosorption of heavy metals. Research Journal of Chemistry and Environment, 7(4), 71–79.

    CAS  Google Scholar 

  • Ahemad, M. (2019). Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: Paradigms and prospects. Arabian Journal of Chemistry, 12(7), 1365–1377.

    Article  CAS  Google Scholar 

  • Aickin, R. M. (1979). Lead accumulation by Pseudomonas fluorescens and by a Citrobacter sp. Microbios Letters, 9, 55–66.

    Google Scholar 

  • Anuroopa, N., & Bagyaraj, D. J. (2017). Selection of an efficient plant growth promoting rhizobacteria for inoculating Withania somnifera. Journal of Scientific and Industrial Research, 76(4), 244–248.

    Google Scholar 

  • Arif, M. S., Yasmeen, T., Shahzad, S. M., et al. (2019). Lead toxicity induced phytotoxic effects on mung bean can be relegated by lead tolerant Bacillus subtilis (PbRB3). Chemosphere, 234, 70–80.

    Article  CAS  Google Scholar 

  • Arwidsson, Z., Johansson, E., Von Kronhelm, T., et al. (2010). Remediation of metal contaminated soil by organic metabolites from fungi I—Production of organic acids. Water, Air, and Soil Pollution, 205(1–4), 215.

    Article  CAS  Google Scholar 

  • Ateş, Ö., & Kivanc, M. (2020). Isolation of ACC deaminase producing rhizobacteria from wheat rhizosphere and determinating of plant growth activities under salt stress conditions. Applied Ecology and Environmental Research, 18(4), 5997–6008.

    Article  Google Scholar 

  • Azzam, A. M., & Tawfik, A. (2015). Removal of heavy metals using bacterial bio-flocculants of Bacillus sp. and Pseudomonas sp. Journal of Environmental Engineering and Landscape Management, 23(4), 288–294.

    Article  Google Scholar 

  • Baran, M. F., & Duz, M. Z. (2021). Removal of cadmium (II) in the aqueous solutions by biosorption of Bacillus licheniformis isolated from soil in the area of Tigris River. International Journal of Environmental Analytical Chemistry, 101(4), 533–548.

    Article  CAS  Google Scholar 

  • Barazani, O. Z., & Friedman, J. (1999). Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? Journal of Chemical Ecology, 25(10), 2397–2406.

    Article  CAS  Google Scholar 

  • Barea, J. M., & Brown, M. E. (1974). Effects on plant growth produced by Azotobacter paspali related to synthesis of plant growth regulating substances. Journal of Applied Bacteriology, 37(4), 583–593.

    Article  CAS  Google Scholar 

  • Barnawal, D., Bharti, N., Pandey, S. S., et al. (2017). Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiologia Plantarum, 161(4), 502–514.

    Article  CAS  Google Scholar 

  • Batanony, N. H. E., Castellano-Hinojosa, A., Mamdouh, A., et al. (2022). Agronomical parameters of host and non-host legumes inoculated with Melilotus indicus-isolated rhizobial strains in desert unreclaimed soil. Archives of Microbiology, 202, 1–10.

    Google Scholar 

  • Becze, A., Vincze, E. B., Varga, H. M., et al. (2021). Effect of plant growth promoting rhizobacteria on Zea mays development and growth under heavy metal and salt stress condition. Environmental Engineering & Management Journal (EEMJ), 20(4), 547–557.

    Article  CAS  Google Scholar 

  • Bianco, C., & Defez, R. (2010). Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Applied and Environmental Microbiology, 76(14), 4626–4632.

    Article  CAS  Google Scholar 

  • Bingham, F. T., Pereyea, F. J., & Jarrell, W. M. (1986). Metal toxicity to agricultural crops. Metal Ions in Biological System, 20(1), 119–156.

    CAS  Google Scholar 

  • Blaha, D., Prigent-Combaret, C., Mirza, M. S., et al. (2006). Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiology Ecology, 56(3), 455–470.

    Article  CAS  Google Scholar 

  • Brinza, L., Dring, M. J., & Gavrilescu, M. (2007). Marine micro and macro algal species as biosorbents for heavy metals. Environmental Engineering & Management Journal (EEMJ), 6(3), 237–251.

    Article  CAS  Google Scholar 

  • Bullen, R. A., Arnot, T. C., Lakeman, J. B., et al. (2006). Biofuel cells and their development. Biosensors and Bioelectronics, 21(11), 2015–2045.

    Article  CAS  Google Scholar 

  • Burken, J. G., & Schnoor, J. L. (1997). Uptake and metabolism of atrazine by poplar trees. Environmental Science & Technology, 31(5), 1399–1406.

    Article  CAS  Google Scholar 

  • Burken, J. G., & Schnoor, J. L. (1999). Distribution and volatilization of organic compounds following uptake by hybrid poplar trees. International Journal of Phytoremediation, 1(2), 139–151.

    Article  CAS  Google Scholar 

  • Cabuk, A., Akar, T., Tunali, S., et al. (2006). Biosorption characteristics of Bacillus sp. ATS-2 immobilized in silica gel for removal of Pb (II). Journal of Hazardous Materials, 136(2), 317–323.

    Article  CAS  Google Scholar 

  • Cao, B., Zhao, Z., Peng, L., et al. (2021). Silver nanoparticles boost charge-extraction efficiency in Shewanella microbial fuel cells. Science, 373(6561), 1336–1340.

    Article  CAS  Google Scholar 

  • Chamekh, A., Kharbech, O., Driss-Limam, R., et al. (2021). Evidences for antioxidant response and biosorption potential of Bacillus simplex strain 115 against lead. World Journal of Microbiology and Biotechnology, 37(3), 1–10.

    Article  Google Scholar 

  • Chang, J. S., Lee, J. H., & Kim, I. S. (2011). Bacterial aox genotype from arsenic contaminated mine to adjacent coastal sediment: Evidences for potential biogeochemical arsenic oxidation. Journal of Hazardous Materials, 193, 233–242.

    Article  CAS  Google Scholar 

  • Chapalain, A., Vial, L., Laprade, N., et al. (2013). Identification of quorum sensing-controlled genes in Burkholderia ambifaria. Microbiologyopen, 2(2), 226–242.

    Article  CAS  Google Scholar 

  • Chaturvedi, R., Favas, P. J. C., Pratas, J., Varun, M., & Paul, M. S. (2021). Harnessing Pisum sativum-Glomus mosseae symbiosis for phytoremediation of soil contaminated with lead, cadmium, and arsenic. International Journal of Phytoremediation, 23(3), 279–290.

    Article  CAS  Google Scholar 

  • Cheng, Z., Park, E., & Glick, B. R. (2007). 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Canadian Journal of Microbiology, 53(7), 912–918.

    Article  CAS  Google Scholar 

  • Dabral, S., Saxena, S. C., Choudhary, D. K., et al. (2020). Synergistic inoculation of Azotobacter vinelandii and Serendipita indica augmented rice growth. Symbiosis, 81, 139–148.

    Article  CAS  Google Scholar 

  • Dardanelli, M. S., Manyani, H., González-Barroso, S., et al. (2010). Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant and Soil, 328(1–2), 483–493.

    Article  CAS  Google Scholar 

  • Dary, M., Chamber-Pérez, M. A., Palomares, A. J., et al. (2010). “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. Journal of Hazardous Materials, 177(1–3), 323–330.

    Article  CAS  Google Scholar 

  • Dastager, S. G., Deepa, C. K., & Pandey, A. (2011). Potential plant growth-promoting activity of Serratia nematodiphila NII-0928 on black pepper (Piper nigrum L.). World Journal of Microbiology and Biotechnology, 27(2), 259–265.

    Article  Google Scholar 

  • De Paepe, A., & Van Der Straeten, D. (2005). Ethylene biosynthesis and signaling: An overview. Vitamins & Hormones, 72, 399–430.

    Article  Google Scholar 

  • Dhevagi, P., Priyatharshini, S., Ramya, A., et al. (2021). Biosorption of lead ions by exopolysaccharide producing Azotobacter sp. Journal of Environmental Biology, 42(1), 40–50.

    Article  CAS  Google Scholar 

  • Dietz, A. C., & Schnoor, J. L. (2001). Advances in phytoremediation. Environmental Health Perspectives, 109(suppl 1), 163–168.

    Article  CAS  Google Scholar 

  • Ding, F., Wang, G., & Zhang, S. (2018). Exogenous melatonin mitigates methyl viologen-triggered oxidative stress in poplar leaf. Molecules, 23(11), 2852.

    Article  Google Scholar 

  • Dushenkov, V., Kumar, P. B. A. N., Motto, H., et al. (1995). Rhizofiltration: The use of plants to remove heavy metals from aqueous streams. Environmental Science & Technology, 29(5), 1239–1245.

    Article  CAS  Google Scholar 

  • Ebbs, S. D., & Kochian, L. V. (1997). Toxicity of zinc and copper to Brassica species: Implications for phytoremediation. Journal of Environmental Quality, 26(3), 776–781.

    Article  CAS  Google Scholar 

  • Elkhatib, E., Moharem, M., Mahmoud, A., et al. (2020). Low cost nanoparticles derived from nitrogen fertilizer industry waste for the remediation of copper contaminated soil and water. Environmental Engineering Research, 25(6), 930–937.

    Article  Google Scholar 

  • Erturk, Y., Ercisli, S., Haznedar, A., et al. (2010). Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings. Biological Research, 43(1), 91–98.

    Article  Google Scholar 

  • Favas, P. J. C., Pratas, J., Varun, M., D’Souza, R., & Paul, M. S. (2014). Phytoremediation of soils contaminated with metals and metalloids at mining areas: Potential of native flora. Environmental Risk Assessment of Soil Contamination, 3, 485–516.

    Google Scholar 

  • Feng, H. (2019). Discussion on microbial remediation technology of heavy metal contaminated soil//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 358(2), 022011.

    Google Scholar 

  • French, K. E., Zhou, Z., & Terry, N. (2020). Horizontal ‘gene drives’ harness indigenous bacteria for bioremediation. Scientific Reports, 10(1), 1–11.

    Article  Google Scholar 

  • Gabr, R. M., Hassan, S. H. A., & Shoreit, A. A. M. (2008). Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a. International Biodeterioration & Biodegradation, 62(2), 195–203.

    Article  CAS  Google Scholar 

  • Ge, L., Dou, Y., Li, M., et al. (2019). Simyb3 in foxtail millet (Setaria italica) confers tolerance to low-nitrogen stress by regulating root growth in transgenic plants. International Journal of Molecular Sciences, 20(22), 5741.

    Article  CAS  Google Scholar 

  • Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 2012, 963401.

    Article  Google Scholar 

  • Goldberg, S. (2005). Inconsistency in the triple layer model description of ionic strength dependent boron adsorption. Journal of Colloid and Interface Science, 285(2), 509–517.

    Article  CAS  Google Scholar 

  • Gontia-Mishra, I., Sapre, S., Kachare, S., et al. (2017). Molecular diversity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing PGPR from wheat (Triticum aestivum L.) rhizosphere. Plant and Soil, 414(1), 213–227.

    Article  CAS  Google Scholar 

  • Gruszka, D. (2018). Crosstalk of the brassinosteroid signalosome with phytohormonal and stress signaling components maintains a balance between the processes of growth and stress tolerance. International Journal of Molecular Sciences, 19(9), 2675.

    Article  Google Scholar 

  • Guerrieri, M. C., Fiorini, A., Fanfoni, E., et al. (2021). Integrated genomic and greenhouse assessment of a novel plant growth-promoting rhizobacterium for tomato plant. Frontiers in Plant Science, 12, 660620.

    Article  Google Scholar 

  • Guiné, V., Spadini, L., Sarret, G., et al. (2006). Zinc sorption to three gram-negative bacteria: Combined titration, modeling, and EXAFS study. Environmental Science & Technology, 40(6), 1806–1813.

    Article  Google Scholar 

  • Guo, J. K., Muhammad, H., Lv, X., et al. (2020). Prospects and applications of plant growth promoting rhizobacteria to mitigate soil metal contamination: A review. Chemosphere, 246, 125823.

    Article  CAS  Google Scholar 

  • Ha, N. T. H., Sakakibara, M., & Sano, S. (2011). Accumulation of Indium and other heavy metals by Eleocharis acicularis: An option for phytoremediation and phytomining. Bioresource Technology, 102(3), 2228–2234.

    Article  Google Scholar 

  • Hanif, A., Zhang, F., Li, P., et al. (2019). Fengycin produced by Bacillus amyloliquefaciens FZB42 inhibits Fusarium graminearum growth and mycotoxins biosynthesis. Toxins, 11(5), 295.

    Article  CAS  Google Scholar 

  • Hao, K., Ullah, H., Qin, X., et al. (2019). Effectiveness of Bacillus pumilus PDSLzg-1, an innovative hydrocarbon-degrading bacterium conferring antifungal and plant growth-promoting function. 3 Biotech, 9(8), 305.

    Article  Google Scholar 

  • Harguinteguy, C. A., Cofré, M. N., Fernández-Cirelli, A., et al. (2016). The macrophytes Potamogeton pusillus L. and Myriophyllum aquaticum (Vell.) Verdc. as potential bioindicators of a river contaminated by heavy metals. Microchemical Journal, 124, 228–234.

    Article  CAS  Google Scholar 

  • Hernández-Calderón, E., Aviles-Garcia, M. E., Castulo-Rubio, D. Y., et al. (2018). Volatile compounds from beneficial or pathogenic bacteria differentially regulate root exudation, transcription of iron transporters, and defense signaling pathways in sorghum bicolor. Plant Molecular Biology, 96(3), 291–304.

    Article  Google Scholar 

  • Herrero, R., Cordero, B., Lodeiro, P., et al. (2006). Interactions of cadmium (II) and protons with dead biomass of marine algae Fucus sp. Marine Chemistry, 99(1–4), 106–116.

    Article  CAS  Google Scholar 

  • Hoffman, B. M., Lukoyanov, D., Yang, Z. Y., et al. (2014). Mechanism of nitrogen fixation by nitrogenase: The next stage. Chemical Reviews, 114(8), 4041–4062.

    Article  CAS  Google Scholar 

  • Hong, S. H., Ryu, H. W., Kim, J., et al. (2011). Rhizoremediation of diesel-contaminated soil using the plant growth-promoting rhizobacterium Gordonia sp. S2RP-17. Biodegradation, 22(3), 593–601.

    Article  CAS  Google Scholar 

  • Huang, F., Zhou, H., Gu, J., et al. (2020). Differences in absorption of cadmium and lead among fourteen sweet potato cultivars and health risk assessment. Ecotoxicology and Environmental Safety, 203, 111012.

    Article  CAS  Google Scholar 

  • Ianiri, G., Coelho, M. A., Ruchti, F., et al. (2020). HGT in the human and skin commensal Malassezia: A bacterially derived flavohemoglobin is required for NO resistance and host interaction. Proceedings of the National Academy of Sciences, 117(27), 15884–15894.

    Article  CAS  Google Scholar 

  • Imron, M. F., Kurniawan, S. B., & Abdullah, S. R. S. (2021). Resistance of bacteria isolated from leachate to heavy metals and the removal of Hg by Pseudomonas aeruginosa strain FZ-2 at different salinity levels in a batch biosorption system. Sustainable Environment Research, 31(1), 1–13.

    Article  Google Scholar 

  • Jacobsen, C. S., & Hjelmsø, M. H. (2014). Agricultural soils, pesticides and microbial diversity. Current Opinion in Biotechnology, 27, 15–20.

    Article  CAS  Google Scholar 

  • Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167–182.

    Article  Google Scholar 

  • Jha, Y., & Subramanian, R. B. (2013). Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline condition. Chilean Journal of Agricultural Research, 73(3), 213–219.

    Article  Google Scholar 

  • Jia, T., Wang, R. H., & Chai, B. F. (2019). Various phyllosphere and soil bacterial communities of natural grasses and the impact factors in a copper tailings dam. Current Microbiology, 76(1), 7–14.

    Article  CAS  Google Scholar 

  • Johnson, D. B., Hedrich, S., & Pakostova, E. (2017). Indirect redox transformations of iron, copper, and chromium catalyzed by extremely acidophilic bacteria. Frontiers in Microbiology, 8, 211.

    Article  Google Scholar 

  • Jung, B. K., Khan, A. R., Hong, S. J., et al. (2017). Quorum sensing activity of the plant growth-promoting rhizobacterium Serratia glossinae GS2 isolated from the sesame (Sesamum indicum L.) rhizosphere. Annals of Microbiology, 67(9), 623–632.

    Article  CAS  Google Scholar 

  • Kalita, M., Bharadwaz, M., Dey, T., et al. (2015). Developing novel bacterial based bioformulation having PGPR properties for enhanced production of agricultural crops. Indian Journal of Experimental Biology, 53(1), 56–60.

    Google Scholar 

  • Kamnev, A. A., & van der Lelie, D. (2000). Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Bioscience Reports, 20(4), 239–258.

    Article  CAS  Google Scholar 

  • Kamran, M. A., Mufti, R., Mubariz, N., et al. (2014). The potential of the flora from different regions of Pakistan in phytoremediation: A review. Environmental Science and Pollution Research, 21(2), 801–812.

    Article  Google Scholar 

  • Kardel, F., & Torabi, N. (2019). Biosorption of nickel by Halobacillus sp. KN57 isolated from the Miankaleh Wetland Iran. International Journal of Aquatic Biology, 7(5), 280–290.

    Google Scholar 

  • Kari, A., Nagymáté, Z., Romsics, C., et al. (2021). Evaluating the combined effect of biochar and PGPR inoculants on the bacterial community in acidic sandy soil. Applied Soil Ecology, 160, 103856.

    Article  Google Scholar 

  • Kashefi, K., & Lovley, D. R. (2000). Reduction of Fe (III), Mn (IV), and toxic metals at 100℃ by Pyrobaculum islandicum. Applied and Environmental Microbiology, 66(3), 1050–1056.

    Article  CAS  Google Scholar 

  • Khan, N., & Bano, A. (2016). Modulation of phytoremediation and plant growth by the treatment with PGPR, Ag nanoparticle and untreated municipal wastewater. International Journal of Phytoremediation, 18(12), 1258–1269.

    Article  CAS  Google Scholar 

  • Khan, N., Bano, A., & Zandi, P. (2018). Effects of exogenously applied plant growth regulators in combination with PGPR on the physiology and root growth of chickpea (Cicer arietinum) and their role in drought tolerance. Journal of Plant Interactions, 13(1), 239–247.

    Article  CAS  Google Scholar 

  • Kim, M., & Or, D. (2019). Microscale pH variations during drying of soils and desert biocrusts affect HONO and NH3 emissions. Nature Communications, 10(1), 1–12.

    Google Scholar 

  • Krämer, U. (2010). Metal hyperaccumulation in plants. Annual Review of Plant Biology, 61, 517–534.

    Article  Google Scholar 

  • Kuan, K. B., Othman, R., Abdul Rahim, K., et al. (2016). Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS ONE, 11(3), e0152478.

    Article  Google Scholar 

  • Kudoyarova, G., Arkhipova, T. N., Korshunova, T., et al. (2019). Phytohormone mediation of interactions between plants and non-symbiotic growth promoting bacteria under edaphic stresses. Frontiers in Plant Science, 10, 1368.

    Article  Google Scholar 

  • Kumar, P. B. A. N., Dushenkov, V., Motto, H., et al. (1995). Phytoextraction: The use of plants to remove heavy metals from soils. Environmental Science & Technology, 29(5), 1232–1238.

    Article  CAS  Google Scholar 

  • Kumar, K. V. K., Reddy, M. S., Kloepper, J. W., et al. (2011). Screening and selection of elite plant growth promoting rhizobacteria (PGPR) for suppression of Rhizoctonia solani and enhancement of rice seedling vigor. Journal of Pure Applied Microbiology, 5(2), 1–11.

    CAS  Google Scholar 

  • Kumar, V., Kaur, S., Singh, S., et al. (2016). Unexpected formation of N′-phenyl-thiophosphorohydrazidic acid O, S-dimethyl ester from acephate: Chemical, biotechnical and computational study. 3 Biotech, 6(1), 1–11.

    Article  Google Scholar 

  • Kumar, R., Borker, S. S., Thakur, A., et al. (2021). Physiological and genomic evidence supports the role of Serratia quinivorans PKL: 12 as a biopriming agent for the biohardening of micropropagated Picrorhiza kurroa plantlets in cold regions. Genomics, 113(3), 1448–1457.

    Article  CAS  Google Scholar 

  • Kumar, H., Ishtiyaq, S., Varun, M., Favas, P. J. C., Ogunkunle, C. O., & Paul, M. S. (2022). Bioremediation: Plants and microbes for restoration of heavy metal contaminated soils. Bioenergy Crops, 3, 37–70.

    Article  Google Scholar 

  • Lai, J., Zhang-Xuan, D., Xiao-Hui, J. I., et al. (2020). Absorption and interaction mechanisms of uranium & cadmium in purple sweet potato (Ipomoea batatas L.). Journal of Hazardous Materials, 400, 123264.

    Article  CAS  Google Scholar 

  • Li, P. S., & Tao, H. C. (2015). Cell surface engineering of microorganisms towards adsorption of heavy metals. Critical Reviews in Microbiology, 41(2), 140–149.

    Article  CAS  Google Scholar 

  • Li, G. X., Wu, X. Q., Ye, J. R., et al. (2018). Characteristics of organic acid secretion associated with the interaction between Burkholderia multivorans WS-FJ9 and poplar root system. BioMed Research International, 2018, 1–12.

    Article  Google Scholar 

  • Li, H., Qiu, Y., Yao, T., et al. (2020). Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings. Soil and Tillage Research, 199, 104577.

    Article  Google Scholar 

  • Li, W., Chen, Y., & Wang, T. (2021). Cadmium biosorption by lactic acid bacteria Weissella viridescens ZY-6. Food Control, 123, 107747.

    Article  CAS  Google Scholar 

  • Liu, R., Dai, M., Wu, X., et al. (2012). Suppression of the root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] on tomato by dual inoculation with arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria. Mycorrhiza, 22(4), 289–296.

    Article  Google Scholar 

  • Liu, K., McInroy, J. A., Hu, C. H., et al. (2018). Mixtures of plant-growth-promoting rhizobacteria enhance biological control of multiple plant diseases and plant-growth promotion in the presence of pathogens. Plant Disease, 102(1), 67–72.

    Article  Google Scholar 

  • Liu, S., Zheng, Y., Ma, Y., et al. (2019). Evaluation and proteomic analysis of lead adsorption by lactic acid bacteria. International Journal of Molecular Sciences, 20(22), 5540.

    Article  CAS  Google Scholar 

  • Lloyd, J. R., Cole, J. A., & Macaskie, L. E. (1997). Reduction and removal of heptavalent technetium from solution by Escherichia coli. Journal of Bacteriology, 179(6), 2014–2021.

    Article  CAS  Google Scholar 

  • Ma, J., Xia, M., Zhu, S., et al. (2020). A new alendronate doped HAP nanomaterial for Pb2+, Cu2+ and Cd2+ effect absorption. Journal of Hazardous Materials, 400, 123143.

    Article  CAS  Google Scholar 

  • Macaskie, L. E., Dean, A. C. R., Cheetham, A. K., et al. (1987). Cadmium accumulation by a Citrobacter sp.: The chemical nature of the accumulated metal precipitate and its location on the bacterial cells. Microbiology, 133(3), 539–544.

    Article  CAS  Google Scholar 

  • Mahbub, K. R., Krishnan, K., Naidu, R., et al. (2017). Mercury remediation potential of a mercury resistant strain Sphingopyxis sp. SE2 isolated from contaminated soil. Journal of Environmental Sciences, 51, 128–137.

    Article  CAS  Google Scholar 

  • Manoj, S. R., Karthik, C., Kadirvelu, K., et al. (2020). Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. Journal of Environmental Management, 254, 109779.

    Article  CAS  Google Scholar 

  • Masaki, Y., Tsutsumi, K., & Okibe, N. (2018). Iron redox transformation by the thermo-acidophilic archaea from the genus Sulfolobus. Geomicrobiology Journal, 35(9), 757–767.

    Article  CAS  Google Scholar 

  • Masood, S., Zhao, X. Q., & Shen, R. F. (2020). Bacillus pumilus promotes the growth and nitrogen uptake of tomato plants under nitrogen fertilization. Scientia Horticulturae, 272, 109581.

    Article  CAS  Google Scholar 

  • Mathivanan, K., Chandirika, J. U., Mathimani, T., et al. (2021). Production and functionality of exopolysaccharides in bacteria exposed to a toxic metal environment. Ecotoxicology and Environmental Safety, 208, 111567.

    Article  CAS  Google Scholar 

  • McGrath, S. P., Chaudri, A. M., & Giller, K. E. (1995). Long-term effects of metals in sewage sludge on soils, microorganisms and plants. Journal of Industrial Microbiology, 14(2), 94–104.

    Article  CAS  Google Scholar 

  • Miransari, M. (2011). Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnology Advances, 29(6), 645–653.

    Article  CAS  Google Scholar 

  • Mishra, M., Kumar, U., Mishra, P. K., et al. (2010). Efficiency of plant growth promoting rhizobacteria for the enhancement of Cicer arietinum L. growth and germination under salinity. Advances in Biological Research, 4(2), 92–96.

    CAS  Google Scholar 

  • Mitra, S., Purkait, T., Pramanik, K., et al. (2019). Three-dimensional graphene for electrochemical detection of Cadmium in Klebsiella michiganensis to study the influence of cadmium uptake in rice plant. Materials Science and Engineering: C, 103, 109802.

    Article  CAS  Google Scholar 

  • Mounde, L. G., Boh, M. Y., Cotter, M., et al. (2015). Potential of rhizobacteria for promoting sorghum growth and suppressing Striga hermonthica development. Journal of Plant Diseases and Protection, 122(2), 100–106.

    Article  Google Scholar 

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Engineering Geology, 60(1–4), 193–207.

    Article  Google Scholar 

  • Mwandira, W., Nakashima, K., Kawasaki, S., et al. (2020). Biosorption of Pb (II) and Zn (II) from aqueous solution by Oceanobacillus profundus isolated from an abandoned mine. Scientific Reports, 10(1), 1–9.

    Article  Google Scholar 

  • Myresiotis, C. K., Vryzas, Z., & Papadopoulou-Mourkidou, E. (2012). Biodegradation of soil-applied pesticides by selected strains of plant growth-promoting rhizobacteria (PGPR) and their effects on bacterial growth. Biodegradation, 23(2), 297–310.

    Article  CAS  Google Scholar 

  • Nadeem, S. M., Zahir, Z. A., Naveed, M., et al. (2010). Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Science Society of America Journal, 74(2), 533–542.

    Article  Google Scholar 

  • Nagashetti, V., Mahadevaraju, G. K., Muralidhar, T. S., et al. (2013). Biosorption of heavy metals from soil by Pseudomonas aeruginosa. International Journal of Innovative Technology and Exploring Engineering, 2(6), 22–24.

    Google Scholar 

  • Narula, N., Deubel, A., Gans, W., et al. (2006). Paranodules and colonization of wheat roots by phytohormone producing bacteria in soil. Plant Soil and Environment, 52(3), 119.

    Article  CAS  Google Scholar 

  • Nasab, R. S., Yali, M. P., & Bozorg-Amirkalaee, M. (2019). Effects of humic acid and plant growth-promoting rhizobacteria (PGPR) on induced resistance of canola to Brevicoryne brassicae L. Bulletin of Entomological Research, 109(4), 479–489.

    Article  Google Scholar 

  • Nies, D. H. (1999). Microbial heavy-metal resistance. Applied Microbiology and Biotechnology, 51(6), 730–750.

    Article  CAS  Google Scholar 

  • Nies, D. H., & Silver, S. (1995). Ion efflux systems involved in bacterial metal resistances. Journal of Industrial Microbiology, 14(2), 186–199.

    Article  CAS  Google Scholar 

  • Nishida, H., Tanaka, S., Handa, Y., et al. (2018). A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in Lotus japonicus. Nature Communications, 9(1), 1–14.

    Article  CAS  Google Scholar 

  • Niu, X., Song, L., Xiao, Y., et al. (2018). Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Frontiers in Microbiology, 8, 2580.

    Article  Google Scholar 

  • Ordookhani, K., Khavazi, K., Moezzi, A., et al. (2010). Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. African Journal of Agricultural Research, 5(10), 1108–1116.

    Google Scholar 

  • Pan, B., Bai, Y. M., Leibovitch, S., et al. (1999). Plant-growth-promoting rhizobacteria and kinetin as ways to promote corn growth and yield in a short-growing-season area. European Journal of Agronomy, 11(3–4), 179–186.

    Article  CAS  Google Scholar 

  • Parveen, G., Urooj, F., Shafique, H. A., et al. (2020). Role of rhizobia in suppressing the root rot and root knot disease of chili used alone or with Pseudomonas aeruginosa. Pakistan Journal of Botany, 52(3), 1097–1104.

    Article  Google Scholar 

  • Pathania, P., Bhatia, R., & Khatri, M. (2020). Cross-competence and affectivity of maize rhizosphere bacteria Bacillus sp. MT7 in tomato rhizosphere. Scientia Horticulturae, 272, 109480.

    Article  CAS  Google Scholar 

  • Pavlova, A. S., Leontieva, M. R., Smirnova, T. A., et al. (2017). Colonization strategy of the endophytic plant growth-promoting strains of Pseudomonas fluorescens and Klebsiella oxytoca on the seeds, seedlings and roots of the epiphytic orchid, Dendrobium nobile Lindl. Journal of Applied Microbiology, 123(1), 217–232.

    Article  CAS  Google Scholar 

  • Pii, Y., Penn, A., Terzano, R., et al. (2015). Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants. Plant Physiology and Biochemistry, 87, 45–52.

    Article  CAS  Google Scholar 

  • Pishchik, V. N., Vorobyev, N. I., Chernyaeva, I. I., et al. (2002). Experimental and mathematical simulation of plant growth promoting rhizobacteria and plant interaction under cadmium stress. Plant and Soil, 243(2), 173–186.

    Article  CAS  Google Scholar 

  • Qin, S., Miao, Q., Feng, W. W., et al. (2015). Biodiversity and plant growth promoting traits of culturable endophytic actinobacteria associated with Jatropha curcas L. growing in Panxi dry-hot valley soil. Applied Soil Ecology, 93, 47–55.

    Article  Google Scholar 

  • Rajendran, P., Muthukrishnan, J., & Gunasekaran, P. (2003). Microbes in heavy metal remediation. Indian Journal of Experimental Biology, 41(9), 935.

    CAS  Google Scholar 

  • Rakić, T., Pešić, M., Kostić, N., et al. (2021). Rhizobacteria associated with Miscanthus x giganteus improve metal accumulation and plant growth in the flotation tailings. Plant and Soil, 462(1), 349–363.

    Article  Google Scholar 

  • Ramírez, V., Munive, J. A., Cortes, L., et al. (2020). Long-chain hydrocarbons (C21, C24, and C31) released by Bacillus sp. MH778713 break dormancy of mesquite seeds subjected to chromium stress. Frontiers in Microbiology, 11, 741.

    Article  Google Scholar 

  • Ranathunge, K., El-Kereamy, A., Gidda, S., et al. (2014). AMT1; 1 transgenic rice plants with enhanced NH4+ permeability show superior growth and higher yield under optimal and suboptimal NH4+ conditions. Journal of Experimental Botany, 65(4), 965–979.

    Article  CAS  Google Scholar 

  • Rani, M. U., & Gopal, R. (2011). Bacillus cereus and Enterobacter cancerogenus screened for their efficient plant growth promoting traits rhizobacteria (PGPR) and antagonistic traits among sixteen bacterial isolates from rhizospheric soils of pigeon pea. African Journal of Microbiology Research, 5(15), 2090–2094.

    Google Scholar 

  • Rani, A., Souche, Y. S., & Goel, R. (2009). Comparative assessment of in situ bioremediation potential of cadmium resistant acidophilic Pseudomonas putida 62BN and alkalophilic Pseudomonas monteilli 97AN strains on soybean. International Biodeterioration & Biodegradation, 63(1), 62–66.

    Article  CAS  Google Scholar 

  • Reddy, K. R., & Parupudi, U. S. (1997). Removal of chromium, nickel and cadmium from clays by in-situ electrokinetic remediation. Soil and Sediment Contamination, 6(4), 391–407.

    Article  CAS  Google Scholar 

  • Ren, X., Guo, S., Tian, W., et al. (2019). Effects of plant growth-promoting bacteria (PGPB) inoculation on the growth, antioxidant activity, Cu uptake, and bacterial community structure of rape (Brassica napus L) grown in Cu-contaminated agricultural soil. Frontiers in Microbiology, 10, 1455.

    Article  Google Scholar 

  • Ryu, C. M., Hu, C. H., Locy, R. D., et al. (2005). Study of mechanisms for plant growth promotion elicited by rhizobacteria in arabidopsis thaliana. Plant and Soil, 268(1), 285–292.

    Article  CAS  Google Scholar 

  • Safdarian, M., Askari, H., Nematzadeh, G., et al. (2020). Halophile plant growth-promoting rhizobacteria induce salt tolerance traits in wheat seedlings (Triticum aestivum L.). Pedosphere, 30(5), 684–693.

    Article  CAS  Google Scholar 

  • Sandhya, V., Ali, S. Z., Venkateswarlu, B., et al. (2010). Effect of osmotic stress on plant growth promoting Pseudomonas spp. Archives of Microbiology, 192(10), 867–876.

    Article  CAS  Google Scholar 

  • Sapre, S., Gontia-Mishra, I., & Tiwari, S. (2021). Plant growth-promoting rhizobacteria ameliorates salinity stress in pea (Pisum sativum). Journal of Plant Growth Regulation, 41, 1–10.

    Google Scholar 

  • Scott, J. A., & Karanjkar, A. M. (1992). Repeated cadmium biosorption by regenerated Enterobacter aerogenes biofilm attached to activated carbon. Biotechnology Letters, 14(8), 737–740.

    Article  CAS  Google Scholar 

  • Segura, A., & Ramos, J. L. (2013). Plant–bacteria interactions in the removal of pollutants. Current Opinion in Biotechnology, 24(3), 467–473.

    Article  CAS  Google Scholar 

  • Selvam, K., Senthilkumar, B., & Selvankumar, T. (2021). Optimization of low-cost biosurfactant produced by Bacillus subtilis SASCBT01 and their environmental remediation potential. Letters in Applied Microbiology, 72(1), 74–81.

    Article  CAS  Google Scholar 

  • Shah, R. M., Crosswell, J., Metcalfe, S. S., et al. (2019). Influence of human activities on broad-scale estuarine-narine habitats using omics-based approaches applied to marine sediments. Microorganisms, 7(10), 419.

    Article  CAS  Google Scholar 

  • Shaharoona, B., Jamro, G. M., Zahir, Z. A., et al. (2007). Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.). Journal of Microbiology and Biotechnology, 17(8), 1300–1307.

    CAS  Google Scholar 

  • Sharma, B., & Shukla, P. (2021). Lead bioaccumulation mediated by Bacillus cereus BPS-9 from an industrial waste contaminated site encoding heavy metal resistant genes and their transporters. Journal of Hazardous Materials, 401, 123285.

    Article  CAS  Google Scholar 

  • Sharma, M., Mishra, V., Rau, N., et al. (2016). Increased iron-stress resilience of maize through inoculation of siderophore-producing Arthrobacter globiformis from mine. Journal of Basic Microbiology, 56(7), 719–735.

    Article  CAS  Google Scholar 

  • Shen, X., Hu, H., Peng, H., et al. (2013). Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics, 14(1), 1–20.

    Article  Google Scholar 

  • Sheng, X., He, L., Wang, Q., et al. (2008). Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. Journal of Hazardous Materials, 155(1–2), 17–22.

    Article  CAS  Google Scholar 

  • Sher, S., & Rehman, A. (2019). Use of heavy metals resistant bacteria—A strategy for arsenic bioremediation. Applied Microbiology and Biotechnology, 103(15), 6007–6021.

    Article  CAS  Google Scholar 

  • Shi, D., Li, D., Zhang, Y., et al. (2019). Effects of Pseudomonas alkylphenolica KL28 on immobilization of Hg in soil and accumulation of Hg in cultivated plant. Biotechnology Letters, 41(11), 1343–1354.

    Article  CAS  Google Scholar 

  • Singh, T., & Singh, D. K. (2019). Rhizospheric Microbacterium sp. P27 showing potential of lindane degradation and plant growth promoting traits. Current Microbiology, 76(7), 888–895.

    Article  CAS  Google Scholar 

  • Singh, R. K., Singh, P., Li, H. B., et al. (2020). Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: A comprehensive study of plant-microbe interactions for growth enhancement in Saccharum spp. BMC Plant Biology, 20, 1–21.

    Article  CAS  Google Scholar 

  • Srivastava, A. K., Saxena, P., Sharma, A., et al. (2019). Draft genome sequence of a cold-adapted phosphorous-solubilizing Pseudomonas koreensis P2 isolated from Sela Lake India. 3 Biotech, 9(7), 256.

    Article  Google Scholar 

  • Suresh, G., Balasubramanian, B., Ravichandran, N., et al. (2021). Bioremediation of hexavalent chromium-contaminated wastewater by Bacillus thuringiensis and Staphylococcus capitis isolated from tannery sediment. Biomass Conversion and Biorefinery, 11(2), 383–391.

    Article  CAS  Google Scholar 

  • Tan, L., Xue, X., Du, J., et al. (2020). Probing the molecular toxic mechanism of lead (II) ions with glutathione peroxidase 6 from Arabidopsis thaliana. Spectrochimica Acta Part a: Molecular and Biomolecular Spectroscopy, 226, 117597.

    Article  CAS  Google Scholar 

  • Thokchom, E., Thakuria, D., Kalita, M. C., et al. (2017). Root colonization by host-specific rhizobacteria alters indigenous root endophyte and rhizosphere soil bacterial communities and promotes the growth of mandarin orange. European Journal of Soil Biology, 79, 48–56.

    Article  CAS  Google Scholar 

  • Tiwari, S., & Lata, C. (2018). Heavy metal stress, signaling, and tolerance due to plant-associated microbes: An overview. Frontiers in Plant Science, 9, 452.

    Article  Google Scholar 

  • Tsigie, A., Tilak, K. V. B. R., & Saxena, A. K. (2011). Field response of legumes to inoculation with plant growth-promoting rhizobacteria. Biology and Fertility of Soils, 47(8), 971–974.

    Article  Google Scholar 

  • Tucker, S. L., Thornton, C. R., Tasker, K., et al. (2004). A fungal metallothionein is required for pathogenicity of Magnaporthe grisea. The Plant Cell, 16(6), 1575–1588.

    Article  CAS  Google Scholar 

  • Ul Hassan, T., & Bano, A. (2015). The stimulatory effects of L-tryptophan and plant growth promoting rhizobacteria (PGPR) on soil health and physiology of wheat. Journal of Soil Science and Plant Nutrition, 15(1), 190–201.

    Google Scholar 

  • Ullah, S., & Bano, A. (2015). Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity. Canadian Journal of Microbiology, 61(4), 307–313.

    Article  CAS  Google Scholar 

  • Ullah, A., Mushtaq, H., Ali, H., et al. (2015). Diazotrophs-assisted phytoremediation of heavy metals: A novel approach. Environmental Science and Pollution Research, 22(4), 2505–2514.

    Article  CAS  Google Scholar 

  • Van Ginneken, L., Meers, E., Guisson, R., et al. (2007). Phytoremediation for heavy metal-contaminated soils combined with bioenergy production. Journal of Environmental Engineering and Landscape Management, 15(4), 227–236.

    Article  Google Scholar 

  • Van Roy, S., Vanbroekhoven, K., Dejonghe, W., et al. (2006). Immobilization of heavy metals in the saturated zone by sorption and in situ bioprecipitation processes. Hydrometallurgy, 83(1–4), 195–203.

    Google Scholar 

  • Vangronsveld, J., Van Assche, F., & Clijsters, H. (1995). Reclamation of a bare industrial area contaminated by non-ferrous metals: In situ metal immobilization and revegetation. Environmental Pollution, 87(1), 51–59.

    Article  CAS  Google Scholar 

  • Varotsos, C. A., & Cracknell, A. P. (2020). Remote sensing letters contribution to the success of the Sustainable Development Goals-UN 2030 agenda. Remote Sensing Letters, 11(8), 715–719.

    Article  Google Scholar 

  • Venkatesh, N. M., & Vedaraman, N. (2012). Remediation of soil contaminated with copper using rhamnolipids produced from Pseudomonas aeruginosa MTCC 2297 using waste frying rice bran oil. Annals of Microbiology, 62(1), 85–91.

    Article  CAS  Google Scholar 

  • Verma, J., Kumar, D., Singh, N., et al. (2021). Electricigens and microbial fuel cells for bioremediation and bioenergy production: A review. Environmental Chemistry Letters, 19(3), 2091–2126.

    Article  CAS  Google Scholar 

  • Wang, L., Pan, Y., Yuan, Z. H., et al. (2016). Two-component signaling system VgrRS directly senses extracytoplasmic and intracellular iron to control bacterial adaptation under iron depleted stress. Plos Pathogens, 12(12), e1006133.

    Article  Google Scholar 

  • Wu, B., Wang, Z., Peng, D., et al. (2020a). Removal and recovery of heavy metals from soil with sodium alginate coated FeSSi nanocomposites in a leaching process. Journal of Hazardous Materials, 398, 122732.

    Article  CAS  Google Scholar 

  • Wu, C., Dan, Y., Tian, D., et al. (2020b). Facile fabrication of MOF (Fe)@ alginate aerogel and its application for a high-performance slow-release N-fertilizer. International Journal of Biological Macromolecules, 145, 1073–1079.

    Article  CAS  Google Scholar 

  • Xiao, R., Shen, F., Du, J., et al. (2018). Screening of native plants from wasteland surrounding a Zn smelter in Feng County China, for phytoremediation. Ecotoxicology and Environmental Safety, 162, 178–183.

    Article  CAS  Google Scholar 

  • Xu, Y., Wang, S., Li, L., et al. (2019). Molecular evidence for origin, diversification and ancient gene duplication of plant subtilases (SBTs). Scientific Reports, 9(1), 1–10.

    Google Scholar 

  • Yadav, J., Verma, J. P., Jaiswal, D. K., et al. (2014). Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecological Engineering, 62, 123–128.

    Article  Google Scholar 

  • Yolcu, H., Gunes, A., Gullap, M. K., et al. (2012). Effects of plant growth-promoting rhizobacteria on some morphologic characteristics, yield and quality contents of Hungarian vetch. Turkish Journal of Field Crops, 17(2), 208–214.

    Google Scholar 

  • Yoolong, S., Kruasuwan, W., Phạm, H. T. T., et al. (2019). Modulation of salt tolerance in Thai jasmine rice (Oryza sativa L. cv. KDML105) by Streptomyces venezuelae ATCC 10712 expressing ACC deaminase. Scientific Reports, 9(1), 1–10.

    Article  CAS  Google Scholar 

  • Zaccardelli, M., Campanile, F., Del Galdo, A., et al. (2010). Control of viral damages on tomato in open field, by treatments with a PGPR strain of Pseudomonas putida//III. International Symposium on Tomato Diseases, 914, 405–407.

    Google Scholar 

  • Zafar-ul-Hye, M., Zahra, M. B., Danish, S., et al. (2020a). Multi-strain inoculation with PGPR producing acc deaminase is more effective than single-strain inoculation to improve wheat (Triticum aestivum) growth and yield. Phyton, 89(2), 405.

    Article  Google Scholar 

  • Zafar-ul-Hye, M., Tahzeeb-ul-Hassan, M., Abid, M., et al. (2020b). Potential role of compost mixed biochar with rhizobacteria in mitigating lead toxicity in spinach. Scientific Reports, 10(1), 1–12.

    Google Scholar 

  • Zahir, Z. A., Akhtar, S. S., Ahmad, M., et al. (2012). Comparative effectiveness of Enterobacter aerogenes and Pseudomonas fluorescens for mitigating the depressing effect of brackish water on maize. International Journal of Agriculture & Biology, 14(3), 337–344.

    CAS  Google Scholar 

  • Zeng, W., Li, F., Wu, C., et al. (2020). Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals. Bioprocess and Biosystems Engineering, 43(1), 153–167.

    Article  CAS  Google Scholar 

  • Zenginbal, H., & Eşitken, A. (2016). Effects of the application of various substances and grafting methods on the grafting success and growth of black mulberry (Morus nigra L.). Acta Scientiarum Polonorum-Hortorum Cultus, 15(4), 99–109.

    Google Scholar 

  • Zhang, S., Reddy, M. S., Kokalis-Burelle, N., et al. (2001). Lack of induced systemic resistance in peanut to late leaf spot disease by plant growth-promoting rhizobacteria and chemical elicitors. Plant Disease, 85(8), 879–884.

    Article  CAS  Google Scholar 

  • Zhang, J., Wang, X., Zhang, L. X., et al. (2021). Reducing cadmium bioavailability and accumulation in vegetable by an alkalizing bacterial strain. Science of the Total Environment, 758, 143596.

    Article  CAS  Google Scholar 

  • Baker A J M, Reeves R D, McGrath S P. In situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants—A feasibility study//in situ bioreclamation. Butterworth-Heinemann, (1991): 600–605.

  • Gupta A, Singh S K, Singh M K, et al. Plant growth–promoting rhizobacteria and their functional role in salinity stress management//Abatement of Environmental Pollutants, 2020: 151–160.

  • Kang Y, Chu C, Wang F, et al. CRISPR/Cas9-mediated genome editing in nonhuman primates. Disease Models & Mechanisms, 2019, 12(10).

  • Santoyo G, Equihua A, Flores A, et al. Plant growth promotion by ACC deaminase-producing bacilli under salt stress conditions//Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol, 2019: 81–95.

  • Zhang W, Niu Y, Li Y X, et al. Enrichment of hydrogen-oxidizing bacteria with nitrate recovery as biofertilizers in the mixed culture. Bioresource Technology, 2020: 123645.

Download references

Funding

This work was supported by the National key research and development plans of special project for site soils (2018YFC1800600), the National Key R&D Program of China, High efficient Development and Utilization of Water Resource (2019YFC0408202), the National Natural Science Foundation of China (NSFC) (21876050), Shanghai Rising-Star Program (19QB1405300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Chen or Lehua Zhang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Application of plant-associated microbes has opened up promising areas of phytoremediation technology.

2. Various PGPR are involved in the enhancing the removal efficiency of heavy metals in soil.

3. Further research on the application of PGPR in phytoremediation is prospected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Z., Cheng, R., Chen, P. et al. Plant-associated Microbe System in Treatment of Heavy Metals–contaminated Soil: Mechanisms and Applications. Water Air Soil Pollut 234, 39 (2023). https://doi.org/10.1007/s11270-023-06061-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06061-w

Keywords

Navigation