Skip to main content

Advertisement

Log in

Surveillance of Azole Resistance Among Candida spp. as a Strategy for the Indirect Monitoring of Freshwater Environments

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The growing pollution mainly caused by the discharge of industrial, sanitary, and agricultural wastes has become one of the main current environmental issues. Thus, the use of bioindicators has become an important tool for investigating environmental imbalance. In this context, microorganisms have shown to be important for the identification of altered environments because of their ubiquity and their ability to grow in inhospitable habitats. Yeasts of the genus Candida are potential bioindicators because of their ability to survive in contaminated freshwater environments. Besides, they are more frequently recovered than fecal coliforms. It is noteworthy that the nonspecific activity of efflux pumps, which help in cellular detoxification processes, may be associated with the presence of chemical compounds in contaminated environments. Thus, the activity of efflux pumps may be the main mechanism involved in the resistance to azole derivatives in Candida spp. and the assessment of their activity may also be a tool for environmental monitoring. As a result, the phenotypical and molecular evaluation of this antifungal resistance in Candida species has been pointed as a promising tool for monitoring the quality of aquatic environments. Hence, the objective of this study was to collect and systematize data pointing to an alternative use of Candida spp. as bioindicators by assessing the occurrence of azole resistance among environmental Candida as a strategy to monitor the quality of freshwater environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alexander, N. J., McComick, S. P., & Hohn, T. M. (1999). TRI12, a trichothecene afflux pump from Fusarium sporotrichioides: gene isolation and expression in yeast. Molecular Genetics and Genomics, 261, 977–984.

    Article  CAS  Google Scholar 

  • Almeida, J. M. (2005). Yeast community survey in the Tagus estuary. FEMS Microbiology Ecology, 53(2), 295–303.

    Article  Google Scholar 

  • American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environmental Federation (WEF). Standard methods for the examination of water and wastewater. 20. ed. Washington: APHA/ AWWA/ WEF, 1998.

  • Andrade, N. P. C., Filho, F. M., Carrera, M. V., Silva, L. J., Franco, I., & Costa, M. M. (2010). Bacterial microbiota of the Macrobrachium amazonicum from São Francisco river, Brazil. Acta Veterinaria Brasilica, 4(3), 176–180.

    Google Scholar 

  • Arvanitidou, M., Kanellou, K., Katsouyannopoulos, V., & Tsakris, A. (2002). Occurrence and densities of fungi from northern Greek coastal bathing waters and their relation with faecal pollution indicators. Water Research, 36(20), 5127–5131.

    Article  CAS  Google Scholar 

  • Barus, V., Jarkovsky, J., & Prokes, M. (2007). Philometra ovata (Nematoda: Philometroidea): a potential sentinel species of heavy metal accumulation. Parasitology Research, 100, 929–933.

    Article  CAS  Google Scholar 

  • Beeby, A. (2001). What do sentinels stand for? Environmental Pollution, 112(2), 285–298.

    Article  CAS  Google Scholar 

  • Brandão, L. R., Duarte, M. C., Barbosa, A. C., & Rosa, C. A. (2010). Diversity and antifungal susceptibility of yeasts isolated by multiple-tube fermentation from three freshwater lakes in Brazil. Journal of Water and Health, 8(2), 279–289.

    Article  Google Scholar 

  • Brilhante, R. S. N., Paiva, M. A. N., Sampaio, C. M. S., Teixeira, C. E. C., Castelo-Branco, D. S. C. M., Leite, J. J. G., Moreira, C. A., Silva, L. P., Cordeiro, R. A., Monteiro, A. J., Sidrim, J. J. C., & Rocha, M. F. G. (2011). Yeasts from Macrobrachium amazonicum: a focus on antifungal susceptibility and virulence factors of Candida spp. FEMS Microbiology Ecology, 76(2), 268–277.

    Article  CAS  Google Scholar 

  • Brilhante, R. S. N., Castelo-Branco, D. S. C. M., Duarte, G. P. S., Paiva, M. A. N., Teixeira, C. E. C., Zeferino, J. P. O., Monteiro, A. J., Cordeiro, R. A., Sidrim, J. J. C., & Rocha, M. F. G. (2012). Yeast microbiota of raptors: a possible tool for environmental monitoring. Environmental Microbiology Reports, 4(2), 189–193.

    Article  CAS  Google Scholar 

  • Bruins, M. R., Kapil, S., & Oehme, F. W. (2000). Microbial resistance to metals in the environment. Ecotoxicology and Environmental Safety, 45(3), 198–207.

    Article  CAS  Google Scholar 

  • Buchberger, W. W. (2011). Current approaches to trace analysis of pharmaceuticals and personal care products in the environment. Journal of Chromatography A, 1218, 603–618.

    Article  CAS  Google Scholar 

  • Butinar, L., Santos, S., Spencer-Martins, I., Oren, A., & Gunde-Cimerman, N. (2005). Yeast diversity in hypersaline habitats. FEMS Microbiology Letters, 15(2), 229–234.

    Article  Google Scholar 

  • Cannon, R. D., Lamping, E., Holmes, A. R., Niimi, K., Baret, P. V., Keniya, M. V., Tanabe, K., Niimi, M., Goffeau, A., & Monk, B. C. (2009). Efflux-mediated antifungal drug resistance. Clinical Microbiology Reviews, 22(2), 291–321.

    Article  CAS  Google Scholar 

  • Castelo-Branco, D. S. C. M., Brilhante, R. S. N., Paiva, M. A. N., Teixeira, C. E. C., Caetano, E. P., Ribeiro, J. F., Cordeiro, R. A., Sidrim, J. J. C., Monteiro, A. J., & Rocha, M. F. G. (2013). Azole-resistant Candida albicans from a wild Brazilian porcupine (Coendou prehensilis): a sign of an environmental imbalance? Medical Mycology, 51(5), 555–560.

    Article  CAS  Google Scholar 

  • Chen, Y. S., Yanagida, F., & Chen, L. Y. (2009). Isolation of marine yeasts from coastal waters of northeastern Taiwan. Aquatic Biology, 8(55–60), 55–60.

    Article  Google Scholar 

  • Chiba, W. A. C., Passerini, M. D., & Tundisi, J. G. (2011). Metal contamination in benthic macroinvertebrates in a sub-basin in the southeast of Brazil. Brazilian Journal of Biology, 71(2), 391–399.

    Article  CAS  Google Scholar 

  • Chun, S. B. (1984). Ecological studies on Yeasts in the waters of the Yeong San River Estuary. Korean Journal of Microbiology, 22(1), 1–18.

    Google Scholar 

  • Coelho, M. A., Almeida, J. M. F., Martins, I. M., Silva, A. J., & Sampaio, J. P. (2010). The dynamics of the yeast community of the Tagus river estuary: testing the hypothesis of the multiple origins of estuarine yeasts. Antonie van Leeuwenhoek, 98, 331–342.

    Article  Google Scholar 

  • Farag, S., & Soliman, N. A. (2011). Biodegradation of crude petroleum oil and environmental pollutants by Candida tropicalis strain. Brazilian Archives of Biology and Technology, 54(4), 821–830.

    Article  CAS  Google Scholar 

  • Feng, L., Wan, Z., Wang, X., Li, R., & Li, W. (2010). Relationship between antifungal resistance of fluconazole resistant. Strain, 123(5), 544–548.

    CAS  Google Scholar 

  • Gadanho, M., & Sampaio, J. P. (2005). Occurrence and diversity of yeasts in the Mid-Atlantic ridge hydrothermal fields near the Azores archipelago. Microbial Ecology, 50(3), 408–417.

    Article  CAS  Google Scholar 

  • Gerba, C. P. (2009). Indicator microorganisms. In R. M. Maier, I. L. Pepper, & C. P. Gerba (Eds.), Environmental microbiology (pp. 485–499). San Diego, California: Elsevier.

    Chapter  Google Scholar 

  • Hacon, S. (2003). Avaliação e gestão do risco ecotoxicológico à saúde humana. In F. A. Azevedo & A. A. M. Chasin (Eds.), As bases toxicológicas da ecotoxicologia (pp. 245–322). São Carlos: RiMa.

    Google Scholar 

  • Hagler, A. N. (2006). Yeast as indicators of environmental quality. In C. Rosa & P. Gábor (Eds.), Biodiversity and ecophysiology of yeasts (pp. 514–532). Berlin Heidelberg: Springer.

    Google Scholar 

  • Hagler, A. N., Mendonça-Hagler, L. C., Rosa, C. A., & Morais, P. P. (1995). Yeast as an example of microbial diversity in Brazilian ecosystems. Oecologia Brasiliensis, 1, 225–244.

    Article  Google Scholar 

  • Hopkins, W. A. (2007). Amphibians as models for studying environmental change. ILAR Journal, 48(3), 270–277.

    Article  CAS  Google Scholar 

  • Jungwirth, H., & Kuchler, K. (2006). Yeast ABC transporters—a tale of sex, stress, drugs and aging. FEBS Letters, 580(4), 1131–1138.

    Article  CAS  Google Scholar 

  • Kanafani, Z. A., & Perfect, J. R. (2008). Resistance to antifungal agents: mechanisms and clinical impact. Clinical Infectious Diseases, 46(1), 120–128.

    Article  Google Scholar 

  • Keenan, P. O., Knight, A. W., Billinton, N., Cahill, P. A., Dalrymple, I. M., & Hawkyard, C. J. (2007). Clear and present danger? The use of a yeast biosensor to monitor changes in the toxicity of industrial effluents subjected to oxidative colour removal treatments. Journal of Environmental Monitoring, 9, 1394–1401.

    Article  CAS  Google Scholar 

  • Kieboom, J., Dennis, J. J., De Bont, J. A., & Zylstra, G. J. (1998). Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. Journal of Biological Chemistry, 273, 85–91.

    Article  CAS  Google Scholar 

  • Kutty, S. N., & Philip, R. (2008). Marine yeasts—a review. Yeast, 25, 465–483.

    Article  CAS  Google Scholar 

  • Lambert, O., Piroux, M., Puyo, S., Thorin, C., Larhantec, M., Delbac, F., & Pouliquen, H. (2012). Bees, honey and pollen as sentinels for lead environmental contamination. Environment Pollution, 170, 254–259.

    Article  CAS  Google Scholar 

  • Lategan, M. J., Torpy, F. R., Newby, S., & Sterphenson, S. (2012). Fungal diversity of shallow aquifers in southeastern Australia. Geomicrobiology Journal, 29(4), 352–361.

    Article  Google Scholar 

  • Libkind, D., Brizzio, S., Ruffini, A., Gadanho, M., Broock, M. V., & Sampaio, P. J. (2003). Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina. Antonie van Leeuwenhoek, 84(4), 313–322.

    Article  CAS  Google Scholar 

  • Loureiro, S. T. A., Cavalcanti, M. A. Q., Neves, R. P., & Passavante, J. Z. O. (2005). Yeasts isolated from sand and sea water in beaches of Olinda, Pernambuco state, Brazil. Brazilian Journal Microbiology, 36(4), 333–337.

    Article  Google Scholar 

  • Mahmoud, K. M. A., & Taleb, H. M. A. A. (2013). Fresh water snails as bioindicator for some heavy metals in the aquatic environment. African Journal of Ecology, 51(2), 193–198.

    Article  Google Scholar 

  • Manastir, L., Ergon, M. C., & Yücesoy, M. (2009). Investigation of mutations in ERG11 gene of fluconazole resistant Candida albicans isolates from Turkish hospitals. Mycoses, 54(2), 99–104.

    Article  Google Scholar 

  • Mariano, V., McCrindle, C. M. E., Cenci-Goga, B., & Picard, J. A. (2009). Case-control study to determine whether river water can spread tetracycline resistance to unexposed Impala (Aepyceros melampus) in Kruger National Park (South Africa). Applied and Environmental Microbiology, 75(1), 113–118.

    Article  CAS  Google Scholar 

  • Mazzia, C., Capowiez, Y., Sanchez-Hernandez, J. C., Köhler, H. R., Triebskorn, R., & Rault, M. (2011). Acetylcholinesterase activity in the terrestrial snail Xeropicta derbentina transplanted in apple orchards with different pesticide management strategies. Environmental Pollution, 159(1), 319–323.

    Article  CAS  Google Scholar 

  • Medeiros, A. O., Kohler, L. M., Hamdan, J. S., Missagia, B. S., Barbosa, F. A. R., & Rosa, C. A. (2008). Diversity and antifungal susceptibility of yeasts from tropical freshwater environments in Southeastern Brazil. Water Research, 42(14), 3921–3929.

    Article  CAS  Google Scholar 

  • Müller, F. M. C., Staudigel, A., Salvenmoser, S., Tredup, A., Miltenberger, R., & Hermann, J. V. (2007). Cross-resistance to medical and agricultural azole drugs in yeasts from the oropharynx of human immunodeficiency virus patients and from environmental Bavarian vine grapes. Antimicrobial Agents and Chemotherapy, 51(8), 3014–3016.

    Article  Google Scholar 

  • Papon, N., Savini, V., Lanoue, A., Simkin, A. J., Crèche, J., Giglioli-Guivarc’h, N., Clastre, M., Courdavault, V., & Sibirny, A. A. (2013). Candida guilliermondii: biotechnological applications, perspectives for biological control, emerging clinical importance and recent advances in genetics. Current Genetics, 59(3), 73–90.

    Article  CAS  Google Scholar 

  • Raspor, P., & Zupan, J. (2006). Yeasts in extreme environments. In C. Rosa & P. Gábor (Eds.), Biodiversity and ecophysiology of yeasts (pp. 371–417). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  • Rosa, C. A., Resende, M. A., Franzot, S. P., Morais, P. B., & Barbosa, F. A. R. (1990). Yeasts and coliforms distribution in a palaeo-karstic lake of Lagoa Santa Plateau—MG, Brazil. Revista de Microbiologia, 21(1), 19–24.

    Google Scholar 

  • Sage, L., Bennasser, L., Steiman, R., & Seigle-Murandi, F. (1997). Fungal microflora biodiversity as a function of pollution in Oued Sebou (Morocco). Chemosphere, 35(4), 751–759.

    Article  CAS  Google Scholar 

  • Simard, R. E. (1971). Yeasts as an indicator of pollution. Marine Pollution Bulletin, 2(8), 123–125.

    Article  Google Scholar 

  • Sláviková, E., & Vadkertiová, R. (1997). Seasonal occurrence of yeasts and yeast-like organisms in the river Danube. Antonie van Leeuwenhoek, 72(2), 77–80.

    Article  Google Scholar 

  • Sláviková, E., Vadkertiová, R., & Kocková-Kratochvílová, A. (1992). Yeast isolated from artificial lake water. Canadian Journal of Microbiology, 38(11), 1206–1209.

    Article  Google Scholar 

  • Soares, C. A. G., Maury, M., Pagnocca, F. C., Araújo, F. V., Mendonça-Hagler, L. C., & Hagler, A. N. (1997). Ascomycetous yeast from tropical intertidal dark mud of southeast Brazilian estuaries. Journal of General and Applied Microbiology, 43(5), 265–272.

    Article  CAS  Google Scholar 

  • Valdes-Collazo, L., Schultz, A. J., & Hazenv, T. C. (1987). Survival of Candida albicans in tropical marine and fresh waters. Applied and Environmental Microbiology, 53(8), 1762–1767.

    CAS  Google Scholar 

  • Van Dyk, J. S., & Pletschke, B. (2011). Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment. Chemosphere, 82(3), 291–307.

    Article  Google Scholar 

  • Washington, H. G. (1984). Diversity, biotic and similarity indices: a review with special relevance to aquatic ecosystems. Water Research, 18(6), 653–694.

    Article  Google Scholar 

  • Zorita, I., Ortiz-Zarragoitia, M., Apraiz, I., Cancio, I., Orbea, A., Soto, M., Marigómez, I., & Cajaraville, M. P. (2008). Assessment of biological effects of environmental pollution along the NW Mediterranean Sea using red mullets as sentinel organisms. Environmental Pollution, 153(1), 157–168.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by CNPq process (307606/2013-9) and CAPES (AE1-0052-000650100/11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimunda S. N. Brilhante.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brilhante, R.S.N., Paiva, M.A.N., Sampaio, C.M.S. et al. Surveillance of Azole Resistance Among Candida spp. as a Strategy for the Indirect Monitoring of Freshwater Environments. Water Air Soil Pollut 226, 52 (2015). https://doi.org/10.1007/s11270-015-2340-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2340-7

Keywords

Navigation