Skip to main content
Log in

Effect of Film Thickness on Slip and Traction Performances in Elastohydrodynamic Lubrication by a Molecular Dynamics Simulation

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The nonequilibrium molecular dynamics simulations were carried out to study the slip and traction properties of a traction fluid with effect of film thickness, under high-temperature and -pressure conditions. The thinnest film of about 14 Å presents a solid-like structure which shows a two-layer discrete distribution. The film of about 24 Å corresponds to the intermediate state between the solid-like and liquid phases. With the increasing film thickness, a continuous bulk structure confined by solid-like phases appears in the central region, leading to relatively loose interlayer structure. The velocity profile across the film was then analyzed to obtain the shear property. It indicates that the thinnest film shows a plug-slip shear, the relatively thick films show a shear localization, and the thickest film of about 86 Å shows a stick–slip phenomenon. The slip length increases and then reaches the maximum as the film thickness increases to 63 Å, which is related to the change of solid-like phase near the inner surface of slab. Finally, the traction coefficient illustrates the locally lowest value of 0.08 in the moderate film of 42 Å while the highest value is reached in the two-layer system. The inverse proportion relationship between slip length and traction coefficient is obtained. This study is helpful to understand the flow and traction characteristics and their relationship in elastohydrodynamic lubricant for the important use in new infinitely variable transmission systems.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nilabh, S., Imtiaz, H.: A review on belt and chain continuously variable transmissions (CVT): dynamics and control. Mech. Mach. Theory 44(1), 19–41 (2009)

    Article  Google Scholar 

  2. Ruan, J.G., Walker, P., Zhang, N.: A comparative study energy consumption and costs of battery electric vehicle transmissions. Appl. Energ. 165, 119–134 (2016)

    Article  Google Scholar 

  3. Webster, M.N., Lee, G.H., Chang, L.: Effect of EHL contact conditions on the behavior of traction fluids. Tribol. Trans. 49(3), 439–448 (2006)

    Article  CAS  Google Scholar 

  4. Gattinoni, C., Heyes, D.M., Lorenz, C.D., Dini, D.: Traction and nonequilibrium phase behavior of confined sheared liquids at high pressure. Phys. Rev. E 88(5), 052406 (2013)

    Article  Google Scholar 

  5. Tsubouchi, T., Abe, K., Hat, H.: Quantitative correlation between molecular structures of traction fluids and their traction properties (part 1): influence of alkylene chain. Jpn. J. Tribol. 38, 403–410 (1993)

    Google Scholar 

  6. Tsubouchi, T., Abe, K., Hata, H.: Quantitative correlation between molecular structures of traction fluids and their traction properties (part 2): precise investigation into the molecular stiffness. Jpn. J. Tribol. 39, 373–381 (1994)

    Google Scholar 

  7. Ewen, J.P., Gao, H.Y., Martin, M.H., Daniele, D.: Shear heating, flow, and friction of confined molecular fluids at high pressure. Phys. Chem. Chem. Phys. 21(10), 5813–5823 (2019)

    Article  CAS  Google Scholar 

  8. Desanker, M., He, X.L., Lu, J., Liu, P.Z., Pickens, D.B., Delferro, M., Marks, T.J., Chung, Y.W., Wang, Q.J.: Alkyl-cyclens as effective sulfur- and phosphorus-free friction modifiers for boundary lubrication. ACS Appl. Mater. Interfaces 9(10), 9118–9125 (2017)

    Article  CAS  Google Scholar 

  9. Lu, X., Khonsari, M., Gelinck, E.: The Stribeck curve: experimental results and theoretical prediction. J. Tribol. 128(4), 789–794 (2006)

    Article  Google Scholar 

  10. Granick, S.: Motions and relaxations of confined liquids. Science 253(5026), 1374–1379 (1991)

    Article  CAS  Google Scholar 

  11. Washizu, H., Ohmori, T.: Molecular dynamics simulations of elastohydrodynamic lubrication oil film. Lubr. Sci. 22(8), 323–340 (2010)

    Article  CAS  Google Scholar 

  12. Neto, C., Evans, D.R., Bonaccurso, E., Butt, H., Craig, V.S.J.: Boundary slip in newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68(12), 2859–2897 (2005)

    Article  CAS  Google Scholar 

  13. Wu, W., Liu, J.X., Li, Z.H., Zhao, X.Y., Liu, G.Q., Liu, S.J., Ma, S.H., Li, W.M., Liu, W.M.: Surface-functionalized nano MOFs in oil for friction and wear reduction and antioxidation. Chem. Eng. J. 410, 128306 (2021)

    Article  CAS  Google Scholar 

  14. Gupta, S.A., Cochran, H.D., Cummings, P.T.: Shear behavior of squalane and tetracosane under extreme confinement. I. Model, simulation method, and interfacial slip. J. Chem. Phys. 107(23), 10316–10326 (1997)

    Article  CAS  Google Scholar 

  15. Jabbarzadeh, A., Atkinson, J.D., Tanner, R.I.: Wall slip in the molecular dynamics simulation of thin films of hexadecane. J. Chem. Phys. 110, 2612–2620 (1999)

    Article  CAS  Google Scholar 

  16. Ta, D.T., Tieu, A.K., Zhu, H.T., Kosasih, B.: Thin film lubrication of hexadecane confined by iron and iron oxide surfaces: a crucial role of surface structure. J. Chem. Phys. 143(16), 164702 (2015)

    Article  CAS  Google Scholar 

  17. Fillot, N., Berro, H., Vergne, P.: From continuous to molecular scale in modelling elastohydrodynamic lubrication nanoscale surface slip effects on film thickness and friction. Tribol. Lett. 43, 257–266 (2011)

    Article  CAS  Google Scholar 

  18. Habchi, W., Vergne, P., Eyheramendy, D., Morales-Espejel, G.E.: Numerical investigation of the use of machinery low-viscosity working fluids as lubricants in elastohydrodynamic lubricated point contacts. Proc. Inst. Mech. Eng. 225(6), 465–477 (2011)

    Article  Google Scholar 

  19. Zhang, Y.G., Wang, W.Z., Liang, H., Zhao, Z.Q.: Layered oil slip model for investigation of film thickness behaviours at high speed conditions. Tribol. Int. 131, 137–147 (2019)

    Article  Google Scholar 

  20. Heyes, D.M., Smith, E.R., Dini, D., Spikes, H.A., Zaki, T.A.: Pressure dependence of confined liquid behavior subjected to boundary-driven shear. J. Chem. Phys. 136(13), 134705 (2012)

    Article  CAS  Google Scholar 

  21. Fernandes, C., Marques, P., Martins, R.C., Seabra, J.: Film thickness and traction curves of wind turbine gear oils. Tribol. Int. 86, 1–9 (2015)

    Article  Google Scholar 

  22. Ewen, J.P., Gattinoni, C., Zhang, J., Heyes, D.M., Spikes, H.A., Dini, D.: On the effect of confined fluid molecular structure on nonequilibrium phase behaviour and friction. Phys. Chem. Chem. Phys. 19(27), 17883–17894 (2017)

    Article  CAS  Google Scholar 

  23. Liu, H.C., Zhang, B.B., Bader, N., Venner, C.H., Poll, G.: Scale and contact geometry effects on friction in thermal EHL: twin-disc versus ball-on-disc. Tribol. Int. 154, 106694 (2021)

    Article  Google Scholar 

  24. Lu, J., Wang, Q.J., Ren, N., Lockwood, F.E.: Correlation between pressure-viscosity coefficient and traction coefficient of the base stocks in traction lubricants: a molecular dynamic approach. Tribol. Int. 134, 328–334 (2019)

    Article  Google Scholar 

  25. Dauber-Osguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M., Hagler, A.T.: Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins 4(1), 31–47 (1988)

    Article  CAS  Google Scholar 

  26. Shi, J.Q., Zhang, M., Liu, J.X., Liu, G.Q., Zhou, F.: Molecular dynamics simulations of adsorption behavior of organic friction modifiers on hydrophilic silica surfaces under the effects of surface coverage and contact pressure. Tribol. Int. 156, 106826 (2021)

    Article  CAS  Google Scholar 

  27. Shi, J.Q., Zhou, Q., Sun, K., Liu, G.Q., Zhou, F.: Understanding adsorption behaviors of organic friction modifiers on hydroxylated sio2 (001) surfaces: effects of molecular polarity and temperature. Langmuir 36(29), 8543–8553 (2020)

    Article  CAS  Google Scholar 

  28. Huang, D., Zhang, T., Xiong, G., Xu, L., Qu, Z., Lee, E., Luo, T.: Tuning water slip behavior in nanochannels using self-assembled monolayers. ACS Appl. Mater. Interfaces 11(35), 32481–32488 (2019)

    Article  CAS  Google Scholar 

  29. Martini, A., Hsu, H.Y., Patankar, N.A., Lichter, S.: Slip at high shear rates. Phys. Rev. Lett. 100(20), 206001 (2008)

    Article  Google Scholar 

  30. Dushanov, E., Kholmurodov, K., Yasuoka, K.: Molecular dynamics studies of the interaction between water and oxide surfaces. Phys. Part. Nucl. Lett. 9(6–7), 541–551 (2012)

    Article  CAS  Google Scholar 

  31. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  CAS  Google Scholar 

  32. Evans, D.J., Lee, H.B.: The Nose–Hoover thermostat. J. Chem. Phys. 83(8), 4069–4074 (1985)

    Article  CAS  Google Scholar 

  33. Hata, H., Tsubouchi, T.: Molecular structures of traction fluids in relation to traction properties. Tribol. Lett. 5, 69–74 (1998)

    Article  CAS  Google Scholar 

  34. Porras-Vazquez, A., Martinie, L., Vergne, P., Fillot, N.: Independence between friction and velocity distribution in fluids subjected to severe shearing and confinement. Phys. Chem. Chem. Phys. 20(43), 27280–27293 (2018)

    Article  CAS  Google Scholar 

  35. Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2010)

    Article  Google Scholar 

  36. Ewen, J.P., Kannam, S.K., Todd, B.D., Dini, D.: Slip of alkanes confined between surfactant monolayers adsorbed on solid surfaces. Langmuir 34(13), 3864–3873 (2018)

    Article  CAS  Google Scholar 

  37. Klein, J., Kumacheva, E.: Simple liquids confined to molecularly thin layers. I. Confinement-induced liquid-to-solid phase transitions. J. Chem. Phys. 108(16), 6996–7009 (1998)

    Article  CAS  Google Scholar 

  38. Gao, H., Müser, M.H.: Why liquids can appear to solidify during squeeze-out–Even when they don’t. J. Colloid Interface Sci. 562, 273–278 (2020)

    Article  CAS  Google Scholar 

  39. Wang, S., Javadpour, F., Feng, Q.: Molecular dynamics simulations of oil transport through inorganic nanopores in shale. Fuel 171, 74–86 (2016)

    Article  CAS  Google Scholar 

  40. Omori, T., et al.: Full characterization of the hydrodynamic boundary condition at the atomic. Phys. Rev. Fluids 4, 114201 (2019)

    Article  Google Scholar 

  41. Maćkowiak, S.Z., Heyes, D.M., Dini, D., Brańka, A.C.: Non-equilibrium phase behavior and friction of confined molecular film under shear: a nonequilibrium molecular dynamics study. J. Chem. Phys. 145, 164704 (2016)

    Article  Google Scholar 

  42. Echeverri, R.S., Marcel, C.P., Ewen, J.P.: Behaviour of n-alkanes confined between iron oxide surfaces at high pressure and shear rate: a nonequilibrium molecular dynamics study. Tribol. Int. 137, 420–432 (2019)

    Article  Google Scholar 

  43. Yong, X., Zhang, L.T.: Thermostats and thermostat strategies for molecular dynamics simulations of nanofluidics. J. Chem. Phys. 138(8), 084503 (2013)

    Article  Google Scholar 

  44. Bernardi, S., Todd, B., Searles, D.J.: Thermostating highly confined fluids. J. Chem. Phys. 132(24), 244706 (2010)

    Article  Google Scholar 

  45. Khare, R., Pablo, J.D., Yethiraj, A.: Molecular simulation and continuum mechanics study of simple fluids in non-isothermal planar couette flows. J. Chem. Phys. 107(7), 2589–2596 (1997)

    Article  CAS  Google Scholar 

  46. Sharif, K.J., Evans, H.P., Snidle, R.W., Newall, J.P.: Modeling of film thickness and traction in a variable ratio traction drive rig. Trans. ASME 126, 92–104 (2004)

    Article  CAS  Google Scholar 

  47. Koshun, O., Haruki, O., Hiroki, K., Yasutaka, Y., Takeshi, O., Samy, M., Laurent, J.: Large effect of lateral box size in molecular dynamics simulations of liquid-solid friction. Phys. Rev. E 100(023101), 1–8 (2019)

    Google Scholar 

  48. Itagaki, H., Ohama, K., Rajan, A.N.R.: Method for estimating traction curves under practical operating conditions. Tribol. Int. 149, 105639 (2020)

    Article  Google Scholar 

  49. Gao, J., Luedtke, W., Landman, U.: Structures, solvation forces and shear of molecular films in a rough nano-confinement. Tribol. Lett. 9(1), 3–13 (2000)

    Article  CAS  Google Scholar 

  50. Ree, T., Eyring, H.: Theory of non-newtonian flow. I. Solid plastic system. J. Chem. Phys. 26(7), 793–800 (1955)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Fundamental Research Funds for the Central Universities, Natural Science Basic Research Program of Shaanxi (Program No. 2021JQ-116), and the Research Fund of the State Key Laboratory of Solidification Processing (NPU), China (Grant No. 2021-TS-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Wang, J., Yi, X. et al. Effect of Film Thickness on Slip and Traction Performances in Elastohydrodynamic Lubrication by a Molecular Dynamics Simulation. Tribol Lett 69, 141 (2021). https://doi.org/10.1007/s11249-021-01516-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01516-9

Keywords

Navigation