Skip to main content
Log in

Tertiary amine-functionalized Co(II) porphyrin to enhance the electrochemical CO2 reduction activity

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Porphyrin-based molecular catalysts coordinated with transition metals have been extensively applied in the electrocatalytic activity carbon dioxide (CO2) reduction. The enhancement of CO2 adsorption capacity is an efficient strategy to improve the CO2 reduction performance, however, it has few been reported for design of such molecular catalysts, due to difficulties in preparation. In this work, tertiary amine-functionalized porphyrin is synthesized by Buchwald-Hartwig coupling reaction of halogenated porphyrin with diethylamine. Owing to the bulky steric effect of 2,6-dimethylphenyl group, the tertiary amine-functionalized Co(II) porphyrin (2NPorCo) has the similar electronic structure with that of di(2,6-dimethylphenyl)porphyrin (PorCo) precursor. As the electrocatalyst at – 0.7 V versus. RHE, 2NPorCo exhibits a better electrocatalytic CO2 reaction performance including CO Faraday efficiency (96.7% versus. 85.5%) and a nearly three-times higher turnover frequency (5433 h−1 vs. 1918 h−1) than those of PorCo, owing to the enhanced CO2 adsorption capacity by amino group. DFT calculations also confirm that the presence of tertiary amines is beneficial to the formation of *COOH, leading to high performance of CO production. This study bring a new idea for the modification of molecular catalysts to achieve the boosting electrocatalytic CO2RR.

Graphical abstract

Amine-functionalized Co(II) porphyrin possesses the improving the CO2 adsorption capacity, which exhibits a higher electrocatalytic CO2 reaction activity including a CO Faraday efficiency of 96.7% and a turnover frequency of 5433 h−1 than those of non-substituted Co(II) porphyrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Vasileff A, Zheng Y, Qiao SZ (2017) Carbon solving carbon’s problems: recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Adv Energy Mater 7:1700759

    Article  CAS  Google Scholar 

  2. Sun L, Huang Z, Reddu V, Su T, Fisher AC, Wang X (2020) A planar, conjugated N4-macrocyclic cobalt complex for heterogeneous electrocatalytic CO2 reduction with high activity. Angew Chem Int Ed 59:17104–17109

    Article  CAS  Google Scholar 

  3. Handoko AD, Wei F, Jenndy YBS, Seh ZW (2018) Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat Catal 1:922–934

    Article  CAS  Google Scholar 

  4. Seh Zhi W, Kibsgaard J, Dickens Colin F, Chorkendorff I, Nørskov Jens K, Jaramillo Thomas F (2017) Combining theory and experiment in electrocatalysis Insights into materials design. Science 355(4998):6322

    Google Scholar 

  5. Wang J, Dou S, Wang X (2021) structural tuning of heterogeneous molecular catalysts for electrochemical energy conversion. Sci Adv 7:3989

    Article  CAS  Google Scholar 

  6. Lu Q, Rosen J, Zhou Y, Hutchings GS, Kimmel YC, Chen JG, Jiao FA (2014) selective and efficient electrocatalyst for carbon dioxide reduction. Nat Commun 5:3242

    Article  CAS  Google Scholar 

  7. Straß-Eifert A, Sheppard TL, Becker H, Friedland J, Zimina A, Grunwaldt J-D, Güttel R (2021) Cobalt-based nanoreactors in combined fischer-tropsch synthesis and hydroprocessing: effects on methane and CO2 selectivity. ChemCatChem 13:5216–5227

    Article  CAS  Google Scholar 

  8. Elgrishi N, Chambers MB, Fontecave M (2015) Turning it off! disfavouring hydrogen evolution to enhance selectivity for co production during homogeneous co2 reduction by cobalt–terpyridine complexes. Chem Sci 6:2522–2531

    Article  CAS  Google Scholar 

  9. Derrick JS, Loipersberger M, Chatterjee R, Iovan DA, Smith PT, Chakarawet K et al (2020) Metal-Ligand cooperativity via exchange coupling promotes iron- catalyzed electrochemical co2 reduction at low overpotentials. J Am Chem Soc 142:20489–20501

    Article  CAS  Google Scholar 

  10. Corbin N, Zeng J, Williams K, Manthiram K (2019) Heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Nano Res 12:2093–2125

    Article  CAS  Google Scholar 

  11. Liang Z, Qu C, Xia D, Zou R, Xu Q (2018) Atomically dispersed metal sites in mof-based materials for electrocatalytic and photocatalytic energy conversion. Angew Chem Int Ed 57:9604–9633

    Article  CAS  Google Scholar 

  12. Meng Z, Luo J, Li W, Mirica KA (2020) Hierarchical tuning of the performance of electrochemical carbon dioxide reduction using conductive two-dimensional metallophthalocyanine based metal-organic frameworks. J Am Chem Soc 142:21656–21669

    Article  CAS  Google Scholar 

  13. Chen Y, Ji S, Chen C, Peng Q, Wang D, Li Y (2018) Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2:1242–1264

    Article  CAS  Google Scholar 

  14. Li M, Wang H, Luo W, Sherrell PC, Chen J, Yang J (2020) Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Adv Mater 32:2001848

    Article  CAS  Google Scholar 

  15. Maurin A, Robert M (2016) Noncovalent immobilization of a molecular iron-based electrocatalyst on carbon electrodes for selective, efficient CO2-to-CO conversion in water. J Am Chem Soc 138:2492–2495

    Article  CAS  Google Scholar 

  16. Zhang X, Wu Z, Zhang X, Li L, Li Y, Xu H et al (2017) Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat Commun 8:14675

    Article  Google Scholar 

  17. Zhang Z, Xiao J, Chen X-J, Yu S, Yu L, Si R et al (2018) Reaction mechanisms of well-defined metal–N4 sites in electrocatalytic co2 reduction. Angew Chem Int Ed 57:16339–16342

    Article  CAS  Google Scholar 

  18. Yang H, Yang D, Zhou Y, Wang X (2021) Polyoxometalate interlayered zinc-metallophthalocyanine molecular layer sandwich as photocoupled electrocatalytic CO2 reduction catalyst. J Am Chem Soc 143:13721–13730

    Article  CAS  Google Scholar 

  19. Lin S, Diercks Christian S, Zhang Y-B, Kornienko N, Nichols Eva M, Zhao Y et al (2015) Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349:1208–1213

    Article  CAS  Google Scholar 

  20. Guo Y, Wang Y, Shen Y, Cai Z, Li Z, Liu J et al (2020) Tunable cobalt-polypyridyl catalysts supported on metal-organic layers for electrochemical CO2 reduction at low overpotentials. J Am Chem Soc 142:21493–21501

    Article  CAS  Google Scholar 

  21. Dou S, Sun L, Xi S, Li X, Su T, Fan HJ, Wang X (2021) Enlarging the π-conjugation of cobalt porphyrin for highly active and selective CO2 electroreduction. Chemsuschem 14:2126–2132

    Article  CAS  Google Scholar 

  22. Yuan Y, Zhao Y, Yang S, Han S, Lu C, Ji H et al (2022) Modulating intramolecular electron and proton transfer kinetics for promoting carbon dioxide conversion. Chem Commun 58:1966–1969

    Article  CAS  Google Scholar 

  23. Costentin C, Drouet S, Robert M, Savéant J-M (2012) A local proton source enhances co2 electroreduction to co by a molecular fe catalyst. Science 338:90–94

    Article  CAS  Google Scholar 

  24. Chapovetsky A, Do TH, Haiges R, Takase MK, Marinescu SC (2016) Proton-assisted reduction of CO2 by cobalt aminopyridine macrocycles. J Am Chem Soc 138:5765–5768

    Article  CAS  Google Scholar 

  25. Hou S, Tan B (2018) Naphthyl substitution-induced fine tuning of porosity and gas uptake capacity in microporous hyper-cross-linked amine polymers. Macromolecules 51:2923–2931

    Article  CAS  Google Scholar 

  26. Byun J, Huang W, Wang D, Li R, Zhang KAI (2018) CO2-triggered switchable hydrophilicity of a heterogeneous conjugated polymer photocatalyst for enhanced catalytic activity in water. Angew Chem Int Ed 57:2967–2971

    Article  CAS  Google Scholar 

  27. Abdinejad M, Seifitokaldani A, Dao C, Sargent EH, Zhang X-a, Kraatz HB (2019) Enhanced electrochemical reduction of CO2 catalyzed by cobalt and iron amino porphyrin complexes. ACS Appl Energy Mater 2:1330–1335

    Article  CAS  Google Scholar 

  28. Abdinejad M, Dao C, Zhang X-A, Kraatz HB (2021) Enhanced electrocatalytic activity of iron amino porphyrins using a flow cell for reduction of CO2 to CO. J Energy Chem 58:162–169

    Article  Google Scholar 

  29. Tlili A, Blondiaux E, Frogneux X, Cantat T (2015) Reductive functionalization of CO2 with amines: an entry to formamide, formamidine and methylamine derivatives. Green Chem 17:157–168

    Article  CAS  Google Scholar 

  30. Guo Y, Shi W, Yang H, He Q, Zeng Z, Ye J-y et al (2019) Cooperative stabilization of the [pyridinium-CO2-Co] adduct on a metal-organic layer enhances electrocatalytic CO2 reduction. J Am Chem Soc 141:17875–17883

    Article  CAS  Google Scholar 

  31. Gao GY, Chen Y, Zhang XP (2003) General and efficient synthesis of arylamino- and alkylamino-substituted diphenylporphyrins and tetraphenylporphyrins via palladium-catalyzed multiple amination reactions. J Org Chem 68:6215–6221

    Article  CAS  Google Scholar 

  32. Zhong H, Ghorbani-Asl M, Ly KH, Zhang J, Ge J, Wang M et al (2020) Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nat Commun 11:1409

    Article  CAS  Google Scholar 

  33. Shen J, Kortlever R, Kas R, Birdja YY, Diaz-Morales O, Kwon Y et al (2015) Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat Commun 6:8177

    Article  Google Scholar 

  34. Chen L, Yang Y, Jiang D (2010) CMPs as scaffolds for constructing porous catalytic frameworks: A Built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. J Am Chem Soc 132:9138–9143

    Article  CAS  Google Scholar 

  35. Yan D, Peng Z, Wang W, Zeng P, Huang Y (2021) Fragmenting C60 toward enhanced electrochemical CO2 reduction. J Mater Sci 56:11426–11435. https://doi.org/10.1007/s10853-021-06061-3

    Article  CAS  Google Scholar 

  36. Wu Z-S, Chen L, Liu J, Parvez K, Liang H, Shu J et al (2014) High-performance electrocatalysts for oxygen reduction derived from cobalt porphyrin-based conjugated mesoporous polymers. Adv Mater 26:1450–1455

    Article  CAS  Google Scholar 

  37. Makhlouf MM (2021) Raman spectroscopy and optical constants of nanostructured oxovanadium(IV) tetraphenylporphyrin thin films. Appl Phys A 127:368

    Article  CAS  Google Scholar 

  38. Lu C, Yang J, Wei S, Bi S, Xia Y, Chen M et al (2019) Atomic Ni anchored covalent triazine framework as high efficient electrocatalyst for Carbon Dioxide Conversion. Adv Funct Mater 29:1806884

    Article  CAS  Google Scholar 

  39. Liu J, Shi H, Shen Q, Guo C, Zhao G (2017) A biomimetic photoelectrocatalyst of Co–porphyrin combined with a g-C3N4 nanosheet based on π–π supramolecular interaction for high-efficiency CO2 reduction in water medium. Green Chem 19:5900–5910

    Article  CAS  Google Scholar 

  40. Ma W, Yu P, Ohsaka T, Mao L (2015) An efficient electrocatalyst for oxygen reduction reaction derived from a Co-porphyrin-based covalent organic framework. Electrochem Commun 52:53–57

    Article  CAS  Google Scholar 

  41. Kataoka N, Kon H (1969) Electron spin resonance of low-spin isocyanide complexes of cobalt(II). I Halides J Phys Chem 73:803–809

    CAS  Google Scholar 

  42. Zheng W, Shan N, Yu L, Wang X (2008) UV–visible, fluorescence and EPR properties of porphyrins and metalloporphyrins. Dyes Pigments 77:153–157

    Article  CAS  Google Scholar 

  43. Bao W, Huang S, Tranca D, Feng B, Qiu F, Rodríguez-Hernández F et al (2022) Molecular engineering of CoII porphyrins with asymmetric architecture for improved electrochemical CO2 reduction. Chemsuschem 15:e202200090

    Article  CAS  Google Scholar 

  44. Qiu F, Zhang F, Tang R, Fu Y, Wang X, Han S, Zhuang X, Feng X (2016) Triple boron-cored chromophores bearing discotic 5,11,17-triazatrinaphthylene-based ligands. Org Lett 18:1398–1401

    Article  CAS  Google Scholar 

  45. Hu X-M, Rønne MH, Pedersen SU, Skrydstrup T, Daasbjerg K (2017) Enhanced catalytic activity of cobalt porphyrin in CO2 electroreduction upon immobilization on carbon materials. Angew Chem Int Ed 56:6468–6472

    Article  CAS  Google Scholar 

  46. Cheng Y, Zhao S, Johannessen B, Veder J-P, Saunders M, Rowles MR et al (2018) Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv Mater 30:1706287

    Article  CAS  Google Scholar 

  47. Huang N, Lee KH, Yue Y, Xu X, Irle S, Jiang Q, Jiang D (2020) A Stable and conductive metallophthalocyanine framework for electrocatalytic carbon dioxide reduction in water. Angew Chem Int Ed 59:16587–16593

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. F. Qiu thanks the support from Science and Technology Foundation for the Youth Development by Shanghai Institute of Technology (ZQ2021-14). Dr. J. Zhu thanks the support from the National Natural Science Foundation of China Young Scientists Fund (51903154). This work was financially supported by the NSFC (52173205, 51973114, 21878188, 21720102002, 51811530013), and the Science and Technology Commission of Shanghai Municipality (19JC412600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Qiu, Sheng Han or Jinhui Zhu.

Ethics declarations

Confilict of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 924 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xuan, X., Jiang, K., Huang, S. et al. Tertiary amine-functionalized Co(II) porphyrin to enhance the electrochemical CO2 reduction activity. J Mater Sci 57, 10129–10140 (2022). https://doi.org/10.1007/s10853-022-07303-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07303-8

Navigation