Skip to main content
Log in

Investigating the Support Effect for Catalytic Elimination of Methyl Mercaptan: Role of Hydroxyl Groups over Cr-based Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The support effect for HZSM-5 and Al2O3-supported chromium (Cr) catalysts on the catalytic decomposition of methyl mercaptan (CH3SH) is investigated. Characterization results reveal that the distribution, reducibility, oxidation states and coordination environment of chromium species mightily depend on the nature of support. Al2O3 support is covered by surface hydroxyl groups, thus conducing to the formation of monochromatic Cr(VI) species with tetrahedral coordination, which remarkably increases the reducibility and dispersion of chromium species. In contrast, plenty of inactive α-Cr2O3 particles are formed on the surface of Cr/HZSM-5 catalyst due to the lack of adequate hydroxyl sites. Furthermore, a positive correlation is established between the content of active Cr(VI) species and the number of surface hydroxyl groups over Cr/Al2O3 catalysts. Reactivity data suggest that the addition of chromium species can observably enhance the conversion of CH3SH for both two supports. More importantly, 5% Cr/Al2O3 catalyst features the superior catalytic performance at 400 °C (100% conversion). The promoting effect can be attributed to the high-content hydroxyl groups on Al2O3, which are proven to stabilize monochromatic Cr(VI) species. This result also provides evidence for the active sites of CH3SH decomposition reaction.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. He C, Cheng J, Zhang X et al (2019) Chem Rev 119:4471–4568

    CAS  PubMed  Google Scholar 

  2. He D, Zhao Y, Yang S et al (2018) Chem Eng J 336:579–586

    CAS  Google Scholar 

  3. Lu J, Hao H, Zhang L et al (2018) Appl Catal B Environ 237:185–197

    CAS  Google Scholar 

  4. Chen D, Zhang D, He D et al (2018) Chin J Catal 39:1929–1941

    CAS  Google Scholar 

  5. Abdullah A, Bakar M, Bhatia S (2006) J Hazard Mater 129:39–49

    CAS  PubMed  Google Scholar 

  6. Yang P, Xue X, Meng Z et al (2013) Chem Eng J 234:203–210

    CAS  Google Scholar 

  7. Sinha AK, Suzuki K (2005) Angew Chem Int Ed 44:271–273

    CAS  Google Scholar 

  8. Cavania F, Koutyreva M, Trifiròa F et al (1996) J Catal 158:236–250

    Google Scholar 

  9. Yang P, Xue X, Meng Z et al (2015) Appl Catal B Environ 162:227–235

    CAS  Google Scholar 

  10. Chen D, He D, Lu J et al (2017) Appl Catal B Environ 218:249–259

    CAS  Google Scholar 

  11. He D, Wan G, Hao H et al (2016) Chem Eng J 289:161–169

    CAS  Google Scholar 

  12. He D, Hao H, Chen D et al (2017) Catal Today 281:559–565

    CAS  Google Scholar 

  13. He D, Zhang L, Zhao Y et al (2018) Environ Sci Technol 52:3669–3675

    CAS  PubMed  Google Scholar 

  14. Zhao Y, Lu J, Chen D et al (2019) New J Chem 43:12814–12822

    CAS  Google Scholar 

  15. He D, Yu J, Mei Y et al (2018) Catal Commun 112:31–34

    CAS  Google Scholar 

  16. Yu J, He D, Zhao Y et al (2020) Mater Chem Phys 239:121952

    CAS  Google Scholar 

  17. Kumar MS, Hammer N, Ronning M et al (2009) J Catal 261:116–128

    Google Scholar 

  18. Su J, Yao W, Liu Y et al (2017) Appl Surf Sci 396:1026–1033

    CAS  Google Scholar 

  19. Ayaria F, Mhamdi M, Álvarez-Rodríguez J et al (2013) Appl Catal B Environ 134–135:367–380

    Google Scholar 

  20. Subhan F, Aslam S, Yan Z et al (2018) Chem Eng J 354:706–715

    CAS  Google Scholar 

  21. Cheng Y, Zhang F, Zhang Y et al (2015) Chin J Catal 36:1242–1248

    CAS  Google Scholar 

  22. Michorczyk P, Pietrzyk P, Ogonowski J (2012) Micropor Mesopor Mat 161:56–66

    CAS  Google Scholar 

  23. Cheng Y, Miao C, Hua W et al (2017) Appl Catal A Gen 532:111–119

    CAS  Google Scholar 

  24. Ye N, Li Y, Yang Z et al (2019) Appl Catal A Gen 579:44–51

    CAS  Google Scholar 

  25. Liu Q, Gu F, Lu X et al (2014) Appl Catal A Gen 488:37–47

    CAS  Google Scholar 

  26. Scierka S, Houalla M, Proctor A et al (1995) J Phys Chem C 99:1537–1542

    CAS  Google Scholar 

  27. Baek J, Yun H, Yun D et al (2012) ACS Catal 2:1893–1903

    CAS  Google Scholar 

  28. Asghari E, Haghighi M, Rahmani F (2016) J Mol Catal A Chem 418–419:115–124

    Google Scholar 

  29. Sun M, Du X, Wang H et al (2011) Catal Lett 141:1703–1708

    CAS  Google Scholar 

  30. Du W, Yin L, Zhuo Y et al (2015) Fuel Process Technol 131:403–408

    CAS  Google Scholar 

  31. Llunga AK, Meijboom R (2017) Appl Catal B Environ 203:505–514

    Google Scholar 

  32. Rahmani F, Haghighi M, Mohammadkhani B (2017) Micropor Mesopor Mat 242:34–49

    CAS  Google Scholar 

  33. Priya SS, Kumar VP, Kantam ML et al (2014) Catal Lett 144:2129–2143

    CAS  Google Scholar 

  34. Tabesh S, Davar F, Loghman-Estarki MR (2018) J Alloy Compd 730:441–449

    CAS  Google Scholar 

  35. Lan S, Guo N, Liu L et al (2013) Appl Surf Sci 283:1032–1040

    CAS  Google Scholar 

  36. Li GC, Liu YQ, Liu CG (2013) Micropor Mesopor Mat 167:137–145

    CAS  Google Scholar 

  37. Mahmoud HR (2014) J Mol Catal A Chem 392:216–222

    CAS  Google Scholar 

  38. He D, Zhang Y, Yang S et al (2019) ACS Sustain Chem Eng 7:3251–3257

    CAS  Google Scholar 

  39. Boningari T, Ettireddy PR, Somogyvari A et al (2015) J Catal 325:145–155

    CAS  Google Scholar 

  40. Li Y, Xu J, Qian M et al (2019) Environ Sci Pollut Res 26:15373–15380

    CAS  Google Scholar 

  41. Ek S, Root A, Peussa M et al (2001) Thermochim Acta 379:201–212

    CAS  Google Scholar 

  42. Mueller R, Kammler HK, Wegner K et al (2003) Langmuir 19:160–165

    CAS  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (21667016, U1402233, 21767016 and 21267011) is gratefully acknowledged for financial support to this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dedong He or Yongming Luo.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3083 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., He, D., Chen, D. et al. Investigating the Support Effect for Catalytic Elimination of Methyl Mercaptan: Role of Hydroxyl Groups over Cr-based Catalysts. Catal Lett 150, 2763–2773 (2020). https://doi.org/10.1007/s10562-020-03178-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03178-z

Keywords

Navigation