Skip to main content

Advertisement

Log in

Characterization of anaerobic digestion of Chinese cabbage waste by a thermophilic microorganism community

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

To enrich an effective Chinese cabbage waste-anaerobic digesting microorganism community, a mixture of cellulolytic microbial community, anaerobic straw-digesting sludge, and cow dung was loaded in a continuous stirred tank reactor, and the Chinese cabbage wastes were fed as carbon and nitrogenous sources. The methane conversion efficiency reached 235.6 mL/g VS after 37 days of operation. The average biogas producing yield was 452.6 mL/g VS with 10.1 g/(L day) of organic loading rate between day 213 and day 231. This microorganism community could effectively degrade Chinese cabbage waste and filter paper, and the weight losses were 72.6 ± 1.1% and 91.4 ± 2.4% in 7 days, respectively. This microorganism community was further analyzed by high-throughput sequencing of the 16S rRNA gene and shown to have abundant bacterial diversity, but poor archaeal diversity. Longilinea, Candidatus Cloacamonas, and Caldisericum were the top three classes of abundant bacterial community, and the proportional abundances were 7.0%, 5.5%, 3.6%, respectively. Methanothrix and Methanolinea dominated the methanogenic archaeal community and occupied 90.8% proportion of total archaeal abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Askci Consulting (2017) The Research Report on the market prospect of Chinese cabbage in 2017. http://www.sohu.com/a/209730098_350221

  2. Choi MH, Park YH (2003) Production of yeast biomass using waste Chinese cabbage. Biomass Bioenerg 25(2):221–226

    Article  Google Scholar 

  3. Choi MH, Ji GE, Koh KH, Ryu YW, Jo DH, Park YH (2002) Use of waste Chinese cabbage as a substrate for yeast biomass production. Bioresour Technol 83(3):251–253

    Article  Google Scholar 

  4. Zuo Z, Wu S, Zhang W, Dong R (2013) Effects of organic loading rate and effluent recirculation on the performance of two-stage anaerobic digestion of vegetable waste. Bioresour Technol 146:556–561

    Article  Google Scholar 

  5. Wills RBH, Wong AWK, Scriven FM, Greenfield H (1984) Nutrient composition of Chinese vegetables. J Agric Food Chem 32(2):413–416

    Article  Google Scholar 

  6. Ros M, de Souza Oliveira Filho J, Perez Murcia MD, Bustamante MA, Moral R, Coll MD, Lopez Santisima-Trinidad AB, Pascual JA (2017) Mesophilic anaerobic digestion of pig slurry and fruit and vegetable waste: dissection of the microbial community structure. J Clean Prod 156:757–765

    Article  Google Scholar 

  7. Jiang Y, Heaven S, Banks CJ (2012) Strategies for stable anaerobic digestion of vegetable waste. Renew Energy 44:206–214

    Article  Google Scholar 

  8. Bouallagui H, Torrijos M, Godon JJ, Moletta R, Ben Cheikh R, Touhami Y, Delgenes JP, Hamdi M (2004) Two-phases anaerobic digestion of fruit and vegetable wastes: bioreactors performance. Biochem Eng J 21(2):193–197

    Article  Google Scholar 

  9. Raynal J, Delgenès JP, Moletta R (1998) Two-phase anaerobic digestion of solid wastes by a multiple liquefaction reactors process. Bioresour Technol 65(1):97–103

    Article  Google Scholar 

  10. Rajeshwari KV, Lata K, Pant DC, Kishore VVN (2001) A novel process using enhanced acidification and a UASB reactor for biomethanation of vegetable market waste. Waste Manag Res 19(4):292–300

    Article  Google Scholar 

  11. Lin J, Zuo J, Gan L, Li P, Liu F, Wang K, Chen L, Gan H (2011) Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China. J Environ Sci 23(8):1403–1408

    Article  Google Scholar 

  12. Velmurugan B, Alwar Ramanujam R (2011) Anaerobic digestion of vegetable wastes for biogas production in a fed-batch reactor. Int J Emerg Sci 1(3):478–486

    Google Scholar 

  13. Gulhane M, Khardenavis AA, Karia S, Pandit P, Kanade GS, Lokhande S, Vaidya AN, Purohit HJ (2016) Biomethanation of vegetable market waste in an anaerobic baffled reactor: effect of effluent recirculation and carbon mass balance analysis. Bioresour Technol 215:100–109

    Article  Google Scholar 

  14. Bouallagui H, Touhami Y, Ben Cheikh R, Hamdi M (2005) Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochem 40(3):989–995

    Article  Google Scholar 

  15. Haruta S, Cui Z, Huang Z, Li M, Ishii M, Igarashi Y (2002) Construction of a stable microbial community with high cellulose-degradation ability. Appl Microbiol Biot 59(4):529–534

    Google Scholar 

  16. Lü Y, Li N, Gong D, Wang X, Cui Z (2012) The effect of temperature on the structure and function of a cellulose-degrading microbial community. Appl Biochem Biotech 168(2):219–233

    Article  Google Scholar 

  17. O’Sullivan CA, Burrell PC, Clarke WP, Blackall LL (2005) Structure of a cellulose degrading bacterial community during anaerobic digestion. Biotechnol Bioeng 92(7):871–878

    Article  Google Scholar 

  18. Kato S, Haruta S, Cui ZJ, Ishii M, Yokota A, Igarashi Y (2004) Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. Int J Syst Evol Microbiol 54(6):2043–2047

    Article  Google Scholar 

  19. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JAE (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Evol Microbiol 44(4):812–826

    Google Scholar 

  20. Zhang X, Tu B, Dai L, Lawson PA, Zheng Z, Liu LY, Deng Y, Zhang H, Cheng L (2018) Petroclostridium xylanilyticum gen. nov., sp. nov., a xylan-degrading bacterium isolated from an oilfield, and reclassification of clostridial cluster III members into four novel genera in a new Hungateiclostridiaceae fam. nov. Int J Syst Evol Microbiol 68(10):3197–3211

    Article  Google Scholar 

  21. Tatsuya N, Ginro E, Juu-En C, Jun-Ichi Y, Jun-Ichiro M (1985) Characteristics of carbohydrate degradation and the rate-limiting step in anaerobic digestion. Biotechnol Bioeng 27(10):1482–1489

    Article  Google Scholar 

  22. APHA (1998) Standard methods for the examination of water and wastewater, 20th. APHA, Washington, DC

    Google Scholar 

  23. Yao Y, Lv Y, Li N, Guo J, Tian Y, Gong DG (2017) Study on fermentation characteristics of yeast wastewater treated by biofilm reactor. J China Agric Univ 22(8):133–144

    Google Scholar 

  24. Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571–1579

    Article  Google Scholar 

  25. Takai K, Horikoshi K (2000) Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66(11):5066–5072

    Article  Google Scholar 

  26. Gao X, Gao W, Cui Z, Han B, Yang P, Sun C, Zheng L (2015) Biodiversity and degradation potential of oil-degrading bacteria isolated from deep-sea sediments of South Mid-Atlantic Ridge. Mar Pollut Bull 97(1):373–380

    Article  Google Scholar 

  27. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of pcr amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6(12):e27310

    Article  Google Scholar 

  28. Lemos LN, Fulthorpe RR, Triplett EW, Roesch LFW (2011) Rethinking microbial diversity analysis in the high throughput sequencing era. J Microbiol Methods 86(1):42–51

    Article  Google Scholar 

  29. Bouallagui H, Ben Cheikh R, Marouani L, Hamdi M (2003) Mesophilic biogas production from fruit and vegetable waste in a tubular digester. Bioresour Technol 86(1):85–89

    Article  Google Scholar 

  30. Kafle GK, Bhattarai S, Kim SH, Chen L (2014) Effect of feed to microbe ratios on anaerobic digestion of Chinese cabbage waste under mesophilic and thermophilic conditions: biogas potential and kinetic study. J Environ Manag 133:293–301

    Article  Google Scholar 

  31. Sun L, Liu T, Müller B, Schnürer A (2016) The microbial community structure in industrial biogas plants influences the degradation rate of straw and cellulose in batch tests. Biotechnol Biofuels 9(1):128

    Article  Google Scholar 

  32. Crawford DL, Crawford RL (1976) Microbial degradation of lignocellulose: the lignin component. Appl Environ Micro 31(5):714–717

    Google Scholar 

  33. Wu W, Chen Y, Faisal S, Khan A, Chen Z, Ling Z, Liu P, Li X (2016) Improving methane production in cow dung and corn straw co-fermentation systems via enhanced degradation of cellulose by cabbage addition. Sci Rep UK 6:33628

    Article  Google Scholar 

  34. Brown D, Shi J, Li Y (2012) Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresour Technol 124:379–386

    Article  Google Scholar 

  35. Lo Liew N, Shi J, Li Y (2012) Methane production from solid-state anaerobic digestion of lignocellulosic biomass. Biomass Bioenerg 46:125–132

    Article  Google Scholar 

  36. Yamada T, Imachi H, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y (2007) Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int J Syst Evol Microbiol 57(10):2299–2306

    Article  Google Scholar 

  37. Pelletier E, Kreimeyer A, Bocs S, Rouy Z, Gyapay G, Chouari R, Rivière D, Ganesan A, Daegelen P, Sghir A, Cohen GN, Médigue C, Weissenbach J, Le Paslier D (2008) “Candidatus Cloacamonas Acidaminovorans”: genome sequence reconstruction provides a first glimpse of a new bacterial division. J Bacteriol 190(7):2572–2579

    Article  Google Scholar 

  38. Mori K, Yamaguchi K, Sakiyama Y, Urabe T, Suzuki K (2009) Caldisericum exile gen. nov., sp. nov., an anaerobic, thermophilic, filamentous bacterium of a novel bacterial phylum, Caldiserica phyl. nov., originally called the candidate phylum OP5, and description of Caldisericaceae fam. nov., Caldisericales ord. nov. and Caldisericia classis nov. Int J Syst Evol Microbiol 59(11):2894–2898

    Article  Google Scholar 

  39. Manaia CM, Nogales B, Nunes OC (2003) Tepidiphilus margaritifer gen. nov., sp. nov., isolated from a thermophilic aerobic digester. Int J Syst Evol Microbiol 53(5):1405–1410

    Article  Google Scholar 

  40. Zinder SH, Sowers KR, Ferry JG (1985) NOTES: Methanosarcina thermophila sp. nov., a thermophilic, acetotrophic, methane-producing bacterium. Int J Syst Evol Microbiol 35(4):522–523

    Google Scholar 

  41. Huser BA, Wuhrmann K, Zehnder AJB (1982) Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium. Arch Microbiol 132(1):1–9

    Article  Google Scholar 

  42. Sakai S, Ehara M, Tseng I-C, Yamaguchi T, Bräuer SL, Cadillo-Quiroz H, Zinder SH, Imachi H (2012) Methanolinea mesophila sp. nov., a hydrogenotrophic methanogen isolated from rice field soil, and proposal of the archaeal family Methanoregulaceae fam. nov. within the order Methanomicrobiales. Int J Syst Evol Microbiol 62(6):1389–1395

    Article  Google Scholar 

  43. Imachi H, Sakai S, Sekiguchi Y, Hanada S, Kamagata Y, Ohashi A, Harada H (2008) Methanolinea tarda gen. nov., sp. nov., a methane-producing archaeon isolated from a methanogenic digester sludge. Int J Syst Evol Microbiol 58(1):294–301

    Article  Google Scholar 

  44. Huber R, Dyba D, Huber H, Burggraf S, Rachel R (1998) Sulfur-inhibited Thermosphaera aggregans sp. nov., a new genus of hyperthermophilic archaea isolated after its prediction from environmentally derived 16S rRNA sequences. Int J Syst Evol Microbiol 48(1):31–38

    Google Scholar 

  45. Ferry JG, Smith PH, Wolfe RS (1974) Methanospirillum, a new genus of methanogenic bacteria, and characterization of Methanospirillum hungatii sp. nov. Int J Syst Evol Microbiol 24(4):465–469

    Google Scholar 

  46. Sowers KR, Baron SF, Ferry JG (1984) Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Micro 47(5):971–978

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 31500422, 21776162 and 31370506), the Major Technological Innovation Project in Hubei Province of China (Grant no. 2017ABA157) and the National Key Research and Development Projects of China (Grant no. 2016YFD0800902).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yucai Lyu or Yaoping Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1. The biogas production with fed CCW (dry weight) (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Lyu, Y., Li, P. et al. Characterization of anaerobic digestion of Chinese cabbage waste by a thermophilic microorganism community. J Mater Cycles Waste Manag 21, 1144–1154 (2019). https://doi.org/10.1007/s10163-019-00865-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-019-00865-x

Keywords

Navigation