Skip to main content
Log in

Genetic susceptibility to Parkinson’s disease among South and North Indians: I. Role of polymorphisms in dopamine receptor and transporter genes and association of DRD4 120-bp duplication marker

  • Original Article
  • Published:
Neurogenetics Aims and scope Submit manuscript

An Erratum to this article was published on 30 November 2007

An Erratum to this article was published on 30 November 2007

Abstract

The depletion of dopamine levels in the brain due to degeneration of dopaminergic neurons of substantia nigra pars compacta is a hallmark of Parkinson’s disease (PD). The cumulative contribution of genetic variations in genes from the dopaminergic pathway has been widely implicated to confer susceptibility to idiopathic PD. We present in this paper an extensive association analysis of a total of 20 markers including single nucleotide polymorphism/short tandem repeat/variable number tandem repeat/duplication markers from five candidate genes (namely, dopamine receptors DRD1, DRD2, DRD3, and DRD4, and dopamine transporter) with PD among two independent sample sets. The allelic, genotypic, and haplotypic association of these markers with PD was tested in South Indian (SI) samples (147 cases, 130 controls) and replicated in a larger North Indian (NI) sample set (340 cases, 344 controls). Of the several markers analyzed, 120 bp duplication marker of DRD4 gene showed promising results with PD in both of the sample sets. A significant allelic association in SI [odds ratio, OR (95% confidence interval, CI)=0.67 (0.47–0.97) for 120 bp dup; 1.48 (1.03–2.13) for 120 bp WT] and genotypic association in SI [OR (95% CI)= 0.56 (0.35–0.91) for 120 bp dup/dup; 1.62 (0.99–2.64) for 120 bp dup/120 bp WT] and in NI [OR (95% CI)= 1.41 (1.03–1.93) for 120 bp dup/ 120 bp WT] was observed. This is the first report on the association of dopaminergic gene polymorphisms with PD from the Indian sub-continent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Rijk MC, Tzourio C, Breteler MM, Dartigues JF, Amaducci L, Lopez-Pousa S, Manubens-Bertran JM, Alperovitch A, Rocca WA (1997) Prevalence of parkinsonism and Parkinson’s disease in Europe: the EUROPARKINSON Collaborative Study European Community Concerted Action on the Epidemiology of Parkinson’s disease. J Neurol Neurosurg Psychiatry 62(1):10–15

    Article  PubMed  Google Scholar 

  2. Huang Y, Cheung L, Rowe D, Halliday G (2004) Genetic contributions to Parkinson’s disease. Brain Res Brain Res Rev 46(1):44–70

    Article  PubMed  CAS  Google Scholar 

  3. Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302(5646):819–822

    Article  PubMed  CAS  Google Scholar 

  4. Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047

    Article  PubMed  CAS  Google Scholar 

  5. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608

    Article  PubMed  CAS  Google Scholar 

  6. Leroy E, Boyer R, Auburger G et al (1998) The ubiquitin pathway in Parkinson’s disease. Nature 395(6701):451–452

    Article  PubMed  CAS  Google Scholar 

  7. Bonifati V, Rizzu P, van Baren MJ et al (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299(5604):256–259

    Article  PubMed  CAS  Google Scholar 

  8. Valente EM, Abou-Sleiman PM, Caputo V et al (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304(5674):1158–1160

    Article  PubMed  CAS  Google Scholar 

  9. Paisan-Ruiz C, Jain S, Evans EW et al (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44(4):595–600

    Article  PubMed  CAS  Google Scholar 

  10. Snyder SH, D’Amato RJ (1986) MPTP: a neurotoxin relevant to the pathophysiology of Parkinson’s disease The 1985 George C Cotzias lecture. Neurology 36(2):250–258

    PubMed  CAS  Google Scholar 

  11. Williams A, Waring R (1993) The MPTP tale: pathway to prevention of Parkinson’s disease? Br J Hosp Med 49(10):716–719

    PubMed  CAS  Google Scholar 

  12. Prasad KN, Cole WC, Kumar B (1999) Multiple antioxidants in the prevention and treatment of Parkinson’s disease. J Am Coll Nutr 18(5):413–423

    PubMed  CAS  Google Scholar 

  13. Ischiropoulos H, Beckman JS (2003) Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J Clin Invest 111(2):163–169

    Article  PubMed  CAS  Google Scholar 

  14. Kidd PM (2000) Parkinson’s disease as multifactorial oxidative neurodegeneration: implications for integrative management. Altern Med Rev 5(6):502–529

    PubMed  CAS  Google Scholar 

  15. Schapira AH, Gu M, Taanman JW, Tabrizi SJ, Seaton T, Cleeter M, Cooper JM (1998) Mitochondria in the etiology and pathogenesis of Parkinson’s disease. Ann Neurol 44(3 Suppl 1):S89–S98

    PubMed  CAS  Google Scholar 

  16. Kosel S, Hofhaus G, Maassen A, Vieregge P, Graeber MB (1999) Role of mitochondria in Parkinson disease. Biol Chem 380(7–8):865–870

    Article  PubMed  CAS  Google Scholar 

  17. Rubinstein M, Phillips TJ, Bunzow JR et al (1997) Mice lacking dopamine D4 receptors are supersensitive to ethanol cocaine and methamphetamine. Cell 90(6):991–1001

    Article  PubMed  CAS  Google Scholar 

  18. Oliveri RL, Annesi G, Zappia M et al (2000) The dopamine D2 receptor gene is a susceptibility locus for Parkinson’s disease. Mov Disord (1):127–131

    Google Scholar 

  19. Tan EK, Tan Y, Chai A et al (2003) Dopamine D2 receptor TaqIA and TaqIB polymorphisms in Parkinson’s disease. Mov Disord 18(5):593–595

    Article  PubMed  Google Scholar 

  20. Ricketts MH, Hamer RM, Manowitz P, Feng F, Sage JI, Di Paola R, Menza MA (1998) Association of long variants of the dopamine D4 receptor exon 3 repeat polymorphism with Parkinson’s disease. Clin Genet 54(1):33–38

    Article  PubMed  CAS  Google Scholar 

  21. Wan DC, Law LK, Ip DT, Cheung WT, Ho WK, Tsim KW, Kay R, Woo J, Pang CP (1999) Lack of allelic association of dopamine D4 receptor gene polymorphisms with Parkinson’s disease in a Chinese population. Mov Disord 14(2):225–229

    Article  PubMed  CAS  Google Scholar 

  22. Grondin R, Doan VD, Gregoire L, Bedard PJ (1999) D1 receptor blockade improves l-dopa-induced dyskinesia but worsens parkinsonism in MPTP monkeys. Neurology 52(4):771–776

    PubMed  CAS  Google Scholar 

  23. Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (2001) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347(6289):146–151

    Article  Google Scholar 

  24. Zappia M, Annesi G, Quattrone A (2002) Association study of dopamine D2 D3 receptor gene polymorphisms with motor fluctuations in PD. Neurology 58(5):837

    PubMed  Google Scholar 

  25. Wang J, Zhao C, Chen B, Liu ZL (2004) Polymorphisms of dopamine receptor and transporter genes and hallucinations in Parkinson’s disease. Neurosci Lett 355(3):193–196

    Article  PubMed  CAS  Google Scholar 

  26. Srivastava V, Varma PG, Prasad S, Semwal P, Nimgaonkar VL, Lerer B, Deshpande SN, Thelma BK (2006) Genetic susceptibility to tardive dyskinesia among schizophrenia subjects: ÉV. Role of dopaminergic pathway gene polymorphisms. Pharmacogenet Genomics 16(2):111–117

    Article  PubMed  CAS  Google Scholar 

  27. Accili D, Fishburn CS, Drago J et al (1996) A targeted mutation of the D3 dopamine receptor gene is associated with hyperactivity in mice. Proc Natl Acad Sci USA 93(5):1945–1949

    Article  PubMed  CAS  Google Scholar 

  28. Mercier G, Turpin JC, Lucotte G (1999) Variable number tandem repeat dopamine transporter gene polymorphism and Parkinson’s disease: no association found. J Neurol 246(1):45–47

    Article  PubMed  CAS  Google Scholar 

  29. Lin JJ, Yueh KC, Chang DC, Chang CY, Yeh YH, Lin SZ (2003) The homozygote 10-copy genotype of variable number tandem repeat dopamine transporter gene may confer protection against Parkinson’s disease for male but not to female patients. J Neurol Sci 209(1–2):87–92

    Article  PubMed  CAS  Google Scholar 

  30. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55(3):181–184

    Article  PubMed  CAS  Google Scholar 

  31. Sato M, Soma M, Nakayama T, Kanmatsuse K (2000) Dopamine D1 receptor gene polymorphism is associated with essential hypertension. Hypertension 36(2):183–186

    PubMed  CAS  Google Scholar 

  32. Itokawa M, Arinami T, Futamura N, Hamaguchi H, Toru M (1993) A structural polymorphism of human dopamine D2 receptor D2(Ser311–>Cys). Biochem Biophys Res Commun 196(3):1369–1375

    Article  PubMed  CAS  Google Scholar 

  33. Grandy DK, Zhang Y, Civelli O (1993) PCR detection of the TaqA RFLP at the DRD2 locus. Hum Mol Genet 2(12):2197

    Article  PubMed  CAS  Google Scholar 

  34. Basile VS, Masellis M, Badri F, Paterson AD, Meltzer HY, Lieberman JA, Potkin SG, Macciardi F, Kennedy JL (1999) Association of the MscI polymorphism of the dopamine D3 receptor gene with tardive dyskinesia in schizophrenia. Neuropsychopharmacology 21(1):17–27

    Article  PubMed  CAS  Google Scholar 

  35. Seaman MI, Fisher JB, Chang F, Kidd KK (1999) Tandem duplication polymorphism upstream of the dopamine D4 receptor gene (DRD4). Am J Med Genet 88(6):705–709

    Article  PubMed  CAS  Google Scholar 

  36. Okuyama Y, Ishiguro H, Toru M, Arinami T (1999) A genetic polymorphism in the promoter region of DRD4 associated with expression and schizophrenia. Biochem Biophys Res Commun 258(2):292–295

    Article  PubMed  CAS  Google Scholar 

  37. Van Tol HH, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB, Civelli O (2001) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350(6319):610–614

    Google Scholar 

  38. Sano A, Kondoh K, Kakimoto Y, Kondo I (1993) A 40-nucleotide repeat polymorphism in the human dopamine transporter gene. Hum Genet 91(4):405–406

    Article  PubMed  CAS  Google Scholar 

  39. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  PubMed  CAS  Google Scholar 

  40. Stephens M, Donnelly P (2001) Comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73(6):1162–1169

    Google Scholar 

  41. Cavalli-Sforza LL, Menozzi P, Piazza A (1994) The history and geography of human genes. Princeton University Press, Princeton, NJ, pp 19–20, 101–102, 238–242

    Google Scholar 

  42. Passarino G, Semino O, Bernini LF, Santachiara-Benerecetti AS (1996) Pre-Caucasoid and Caucasoid genetic features of the Indian population, revealed by mtDNA polymorphisms. Am J Hum Genet 59(4):927–934

    PubMed  CAS  Google Scholar 

  43. D’Souza UM, Russ C, Tahir E, Mill J, McGuffin P, Asherson PJ, Craig IW (2004) Functional effects of a tandem duplication polymorphism in the 5′flanking region of the DRD4 gene. Biol Psychiatry 56(9):691–697

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The valuable suggestions and comments on this manuscript by Dr. P. Heutink, Department of Clinical Genetics, Medical Genomics section, VU Medical Center, Amsterdam, are deeply appreciated. The technical assistance of Mohini Khare, Chandini and Kuljeet is acknowledged. Patients and controls, for their valuable participation in the study, and financial assistance through grants from the Department of Science and Technology (grant SP/SO/B-55/2000) and the Department of Biotechnology (grant BT/PR2425/Med/13/089/2001), Govt of India, to RCJ, BKT, MB and UM), New Delhi, India and a senior research fellowship to SP from the University Grants Commission, New Delhi are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh C. Juyal.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10048-007-0108-y

Electronic supplementary material

Below is the link to the electronic supplementary material.

10048_2006_48_MOESM1_ESM.doc

10048_2006_48_MOESM2_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juyal, R.C., Das, M., Punia, S. et al. Genetic susceptibility to Parkinson’s disease among South and North Indians: I. Role of polymorphisms in dopamine receptor and transporter genes and association of DRD4 120-bp duplication marker. Neurogenetics 7, 223–229 (2006). https://doi.org/10.1007/s10048-006-0048-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-006-0048-y

Keywords

Navigation