Skip to main content
Log in

Role of substrate on the conformational stability of the heme active site of cytochrome P450cam: effect of temperature and low concentrations of denaturants

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The effect of 1R-camphor on the conformational stability of the heme active site of cytochrome P450cam has been investigated. The absorption spectra of the heme moiety showed the presence of two hitherto unknown intermediates formed at low urea concentrations or during small temperature perturbations. The corresponding thermodynamic parameters were obtained by global fitting of the experimental data to a generalized sequential unfolding model at different wavelengths, which showed that the active conformation of the enzyme is stabilized by binding of the substrate at the active site. Circular-dichroism spectra of the enzyme in the visible- and far-UV region were studied to identify the critical range of denaturant concentration and the temperature at which the tertiary structure around the heme center was affected with almost no change in the secondary structure of the enzyme. This critical range of urea concentration was 0–2.8 M in the presence of camphor and 0–1.5 M in the absence of camphor. The tertiary structure of the enzyme was found to undergo conformational change in the temperature range 20–60 °C in the presence of the substrate and 20–47 °C in its absence. The spectral assignments of the intermediate species of the heme active site with the intact secondary structure of the enzyme were made by deconvolution of the Soret absorption spectra, and the results were analyzed to determine stabilization of the heme active-site geometry by 1R-camphor. Results showed that subtle conformational changes due to melting of the tertiary contacts in the active site lead to formation of intermediates which are coordinatively similar to the native enzyme. Analogous intermediate species might be responsible for leakage in the redox catalytic cycle of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a
Fig. 3a
Fig. 4
Fig. 5a
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mueller EJ, Loida PJ, Sligar SG (1995) In: Oritz de Montellano PR (ed) Cytochrome P450: structure, mechanism and biochemistry. Plenum Press, New York, pp 83–124

  2. Wong L-L, Westlake ACG, Nickerson DP (1997) Struct Bonding 88:175–207

    Google Scholar 

  3. Oritz de Montellano PR (ed) (1995) Cytochrome P450: structure, mechanism and biochemistry. Plenum Press, New York, pp 83–123

    Google Scholar 

  4. Poulos TL, Finzel B, Howard AJ (1987) J Mol Biol 195:687–700

    Google Scholar 

  5. Omura T, Sato R (1964) J Biol Chem 239:2379–2385

    Google Scholar 

  6. Yu C- A, Gunsalus IC (1974) J Biol Chem 249:94–104

    Google Scholar 

  7. Poulos TL, Barry C, Finzel B, Gunsalus IC, Wagner GC, Kraut J (1985) J Biol Chem 260:16122–16130

    Google Scholar 

  8. Ogliaro F, de Visser SP, Cohen S, Sharma PK, Shaik S (2001) J Am Chem Soc 124:2806–2816

    Google Scholar 

  9. Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar SG (2000) Science 287:1615–1622

    Google Scholar 

  10. Ludemann SK, Carugo O, Wade RC (1997) J Mol Modell 3:369–374

    Google Scholar 

  11. Prasad S, Mazumdar S, Mitra S (2000) FEBS Lett 477:157–160

    Google Scholar 

  12. Peterson JA (1971) Arch Biochem Biophys 144:678–693

    Google Scholar 

  13. Peterson JA, Ishimura Y, Griffin BW (1972) Arch Biochem Biophys 149:197–208

    Google Scholar 

  14. Lange R, Pierre J, Debey P (1980) Eur J Biochem 107:441–445

    Google Scholar 

  15. Winn JW, Ludemann SK, Gauges R, Lounnas V, Wade RC (2002) Proc Natl Acad Sci USA 99:5361–5266

    Google Scholar 

  16. Deprez E, Gerber NC, Di Primo C, Douzou P, Sligar SG, Hui Bon Hoa G (1994) Biochemistry 33:14464–14468

    Google Scholar 

  17. Lange R, Hui Bon Hoa G, Debey P, Gunsalus IC (1977) Eur J Biochem 77:479–485

    Google Scholar 

  18. Sculze H, Hui Bon Hoa G, Helms V, Wade RC, Jung C (1996) Biochemistry 35:14127–14138

    Google Scholar 

  19. Gunsalus IC, Wagner GC (1978) Methods Enzymol 52:166–188

    Google Scholar 

  20. Jung C, Bendzko P, Ristau O, Gunsalus IC (1985) In: Vereczky L, Magyar K (eds) Cytochrome P450: biochemistry, biophysics and induction. Akademiai Kiado, Budapest, pp 19–22

  21. Pfeil W, Nolting BO, Jung C (1993) Biochemistry 32:8856–8862

    Google Scholar 

  22. Nolting B, Jung C, Snatzke G (1992) Biochim Biophys Acta 1100:171–176

    Google Scholar 

  23. Mouro C, Jung C, Bondon A, Simonneaux G (1997) Biochemistry 36:8125–8134

    Google Scholar 

  24. Pfeil W, Nölting B, Jung C (1993) In: van den Tweel W, Harder A, Buitelaar R M (eds) Stability and stabilization of enzymes. Proc Int Symp, Studies Org Chem, Maastricht, The Netherlands, 22–25 November 1992. Elsevier, Amsterdam, pp 407–414

  25. Jung C, Pfeil W, Köpke K, Schulze H, Ristau O (1994) In: Lechner MC (ed) Cytochrome P450, 8th Int Conf, Paris. pp 543–545

  26. Hui Bon Hoa G, Marden MC (1982) Eur J Biochem 124:311–315

    Google Scholar 

  27. Di Primo C, Hui Bon Hoa G, Douzou P, Sligar SG (1992) Eur J Biochem 209:583–588

    Google Scholar 

  28. Marden MC, Hui Bon Hoa G (1982) Eur J Biochem 129:111–117

    Google Scholar 

  29. Yu X-C, Shen S, Strobel HW (1995) Biochemistry 34:5511–5517

    Google Scholar 

  30. Yoshioka S, Takahashi S, Hori H, Ishimori K, Morishima I (2001) Eur J Biochem 268:252–259

    Google Scholar 

  31. Auclair K, Moenne-Locoz P, Oritz de Montellano PR (2001) J Am Chem Soc 123:4877–4885

    Google Scholar 

  32. Unger BP, Gunsalus IC (1986) J Biol Chem 261:1158–1163

    Google Scholar 

  33. Press WH, Flanery BP, Teukolsky SA, Vetterling WT (1986) In: Numerical recipes. Cambridge University Press, Cambridge, p 523

  34. Antonini E, Brunori M (1971) Hemoglobin and myoglobin in their reactions with ligands. North-Holland, Amsterdam

  35. Martinis SA, Blanke SR, Hager LP, Sligar SG (1996) Biochemistry 35:14530–14536

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Tata Institute of Fundamental Research. Authors wish to thank Dr. L.L. Wong, University of Oxford, and Prof. S.G. Sligar, University of Illinois, Urbana-Champaign, for kindly providing E. coli strains of recombinant P450cam. Authors thank the referees for their constructive comments. RM thanks the TIFR Endowment Fund for Career Development for their support and Mr. Ram Reddy for his help in DLS experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyamalava Mazumdar.

Appendix

Appendix

Let us assume a general unfolding model with n sequential (reversible) intermediates. The scheme can be written as follows:

$$ N \rightleftarrows I_{1} \rightleftarrows I_{2} \rightleftarrows I_{3} \rightleftarrows I_{4} \rightleftarrows \ldots \rightleftarrows I_{{n - 1}} \rightleftarrows I_{n} \rightleftarrows U{\left( { \approx I_{{n + 1}} } \right)} $$
$$ \begin{array}{*{20}c} {{K_{1} = {I_{1} } \mathord{\left/ {\vphantom {{I_{1} } N}} \right. \kern-\nulldelimiterspace} N = {k_{1} } \mathord{\left/ {\vphantom {{k_{1} } {k_{{ - 1}} }}} \right. \kern-\nulldelimiterspace} {k_{{ - 1}} }}} \\ {{K_{{n + 1}} = U \mathord{\left/ {\vphantom {U {I_{n} }}} \right. \kern-\nulldelimiterspace} {I_{n} } = {k_{{n + 1}} } \mathord{\left/ {\vphantom {{k_{{n + 1}} } {k_{{ - {\left( {n + 1} \right)}}} }}} \right. \kern-\nulldelimiterspace} {k_{{ - {\left( {n + 1} \right)}}} }}} \\ {{K_{i} = {I_{i} } \mathord{\left/ {\vphantom {{I_{i} } {I_{{i - 1}} }}} \right. \kern-\nulldelimiterspace} {I_{{i - 1}} } = {k_{1} } \mathord{\left/ {\vphantom {{k_{1} } {k_{{ - i}} }}} \right. \kern-\nulldelimiterspace} {k_{{ - i}} }}} \\ \end{array} $$
(3)

where N denotes native protein, U denotes unfolded form, I is concentration of the respective intermediates, k values are corresponding rate constants, and K i (mol−1) is the equilibrium constant for the ith step. The coupled linear equation for the aforementioned scheme can be written as:

$$ k_{1} N_{0} - k_{1} {\sum\nolimits_{i = 1}^{n + 1} {I_{i} - k_{{ - 1}} } } \times I_{1} = 0 $$
(4)

where \( I_{i} = {\left( {{k_{i} } \mathord{\left/ {\vphantom {{k_{i} } {k_{{ - i}} }}} \right. \kern-\nulldelimiterspace} {k_{{ - i}} }} \right)} \times I_{{i - 1}} = K_{i} I_{{i - 1}} \) and \( {\sum\nolimits_{i = 1}^{n + 1} {I_{i} = } }{\left( {{I_{1} } \mathord{\left/ {\vphantom {{I_{1} } {K_{1} }}} \right. \kern-\nulldelimiterspace} {K_{1} }} \right)} \times {\sum\nolimits_{i = 1}^{n + 1} {{\left\lfloor {\prod ^{i}_{{j = 1}} K_{j} } \right\rfloor }} } \).

Therefore:

$$ I_{i} = \frac{{K_{1} \times N_{0} }} {{1 + {\sum\nolimits_{i = 1}^{n + 1} {{\left\{ {\prod ^{i}_{{j = 1}} K_{j} } \right\}}} }}} $$
(5)

Any spectroscopic variable (absorbance, circular dichroism or fluorescence) at given wavelength can be expressed as:

$$ A^{\lambda }_{{{\text{obs}}}} = \varepsilon ^{\lambda }_{N} {\left( {N_{0} - {\sum\nolimits_{i = 1}^{n + 1} {\varepsilon ^{\lambda }_{{I_{i} }} I_{i} } }} \right)} + {\sum\nolimits_{i = 1}^{n + 1} {\varepsilon ^{\lambda }_{{I_{i} }} I_{i} } } $$
(6)

Now using Eqs. (4) and (5), Eq. (6) can be rewritten as:

$$ A^{\lambda }_{{{\text{obs}}}} = A^{\lambda }_{0} - N_{0} \times \frac{{{\sum\nolimits_{i = 1}^{n + 1} {{\left\{ {{\left( {\varepsilon ^{\lambda }_{N} - \varepsilon ^{\lambda }_{{I_{i} }} } \right)} \times {\left\{ {\prod ^{i}_{{j = 1}} K_{j} } \right\}}} \right\}}} }}} {{1 + {\sum\nolimits_{i = 1}^{n + 1} {{\left\{ {\prod ^{i}_{{j = 1}} K_{j} } \right\}}} }}} $$

Using (from linear energy-model assumption):

$$ \Delta G^{j} = \Delta G^{j}_{0} - m_{j} {\left[ D \right]} $$
(7)
$$ A^{\lambda }_{{{\text{obs}}}} {\left[ D \right]} = A^{\lambda }_{0} - N_{0} \times \frac{{{\sum\nolimits_{i = 1}^{n + 1} {{\left\{ {{\left( {\varepsilon ^{\lambda }_{N} - \varepsilon ^{\lambda }_{{I_{i} }} } \right)} \times \prod ^{i}_{{j = 1}} e^{{{ - {\left( {\Delta G^{j}_{0} - m_{j} D} \right)}} \mathord{\left/ {\vphantom {{ - {\left( {\Delta G^{j}_{0} - m_{j} D} \right)}} {RT}}} \right. \kern-\nulldelimiterspace} {RT}}} } \right\}}} }}} {{1 + {\sum\nolimits_{i = 1}^{n + 1} {{\left\{ {\prod ^{i}_{{j = 1}} e^{{{ - {\left( {\Delta G^{j}_{0} - m_{j} D} \right)}} \mathord{\left/ {\vphantom {{ - {\left( {\Delta G^{j}_{0} - m_{j} D} \right)}} {RT}}} \right. \kern-\nulldelimiterspace} {RT}}} } \right\}}} }}} $$
(8)

Using the following approximation:

$$ \Delta G^{{{\text{H}}_{{\text{2}}} {\text{O}}}}_{{T_{i} }} \cong \Delta H_{{m_{i} }} - T\Delta S_{{m_{i} }} $$
(9)
$$ A^{\lambda }_{{{\text{obs}}}} {\left[ T \right]} = A^{\lambda }_{0} - N_{0} \times \frac{{{\sum\nolimits_{i = 1}^{n + 1} {{\left\{ {{\left( {\varepsilon ^{\lambda }_{N} - \varepsilon ^{\lambda }_{{I_{i} }} } \right)} \times \prod ^{i}_{{j = 1}} e^{{{ - \Delta G^{{{\text{H}}_{{\text{2}}} {\text{O}}}}_{{Tj}} } \mathord{\left/ {\vphantom {{ - \Delta G^{{{\text{H}}_{{\text{2}}} {\text{O}}}}_{{Tj}} } {RT}}} \right. \kern-\nulldelimiterspace} {RT}}} } \right\}}} }}} {{1 + {\sum\nolimits_{i = 1}^{n + 1} {{\left\{ {\prod ^{i}_{{j = 1}} e^{{{ - \Delta G^{{{\text{H}}_{{\text{2}}} {\text{O}}}}_{{Tj}} } \mathord{\left/ {\vphantom {{ - \Delta G^{{{\text{H}}_{{\text{2}}} {\text{O}}}}_{{Tj}} } {RT}}} \right. \kern-\nulldelimiterspace} {RT}}} } \right\}}} }}} $$
(10)

Equations (8) and (10) are used in Eqs. (1) and (2) of Materials and method. An intermediate I i is said to be spectroscopically silent at a particular wavelength λ, when \( <!!!>{\left( {\varepsilon ^{\lambda }_{N} - \varepsilon ^{\lambda }_{{I_{i} }} } \right)} = 0 \). In this case, though the corresponding components in Eqs. (8) and (10) become zero, the total free energy is an invariant, i.e., the free-energy component of the ith intermediate will be added to the free energy of the (i+1)th intermediate thus making the total free energy a constant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murugan, R., Mazumdar, S. Role of substrate on the conformational stability of the heme active site of cytochrome P450cam: effect of temperature and low concentrations of denaturants. J Biol Inorg Chem 9, 477–488 (2004). https://doi.org/10.1007/s00775-004-0544-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-004-0544-1

Keywords

Navigation