Skip to main content
Log in

Correlation between large-scale atmospheric fields and the olive pollen season in Central Italy

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Olives are one of the largest crops in the Mediterranean and in central and southern Italy. This work investigates the correlation of the Olea europaea L. pollen season in Perugia, the capital city of the region of Umbria in central Italy, with atmospheric parameters. The aim of the study is twofold. First, we study the correlation between the pollen season and the surface air temperature of the spring and late spring in Perugia. Second, the correlation between the pollen season and large-scale atmospheric patterns is investigated. The average surface temperature in the spring and late spring has a clear impact on the pollen season in Perugia. Years with higher average temperatures have an earlier onset of the pollen season. In particular, a 1°C higher (lower) average surface temperature corresponds to an earlier (later) start of the pollen season of about 1 week. The correlation between the pollen season and large-scale atmospheric patterns of sea level pressure and 500-hPa geopotential height shows that the cyclonic activity in the Mediterranean is unequivocally tied to the pollen season in Perugia. A larger than average cyclonic activity in the Mediterranean Basin corresponds to a later than average pollen season. Larger than average cyclonic activity in Northern Europe and Siberia corresponds to an earlier than average pollen season. A possible explanation of this correlation, that needs further investigation to be proven, is given. These results can have a practical application by using the seasonal forecast of atmospheric general circulation models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alpert P, Osetinsky I, Ziv B, Shafir H (2004) Semi-objective classification for daily synoptic systems: application to the Eastern Mediterranean climate change. Int J Climatol 24:1001–1011, doi:10.1002/joc.1036

    Article  Google Scholar 

  • Andersen TB (1991) A model to predict the beginning of the pollen season. Grana 30:269–275

    Google Scholar 

  • Anderson D (2000) Bright future for sSeasonal forecasts. Phys World 13(10):43–48

    Google Scholar 

  • Beaubien EG, Freeland HJ (2000) Spring phenology trends in Alberta, Canada: links to ocean temperature. Int J Biometeorol 44:53–59, doi:10.1007/s004840000050

    Article  PubMed  CAS  Google Scholar 

  • Blenckner T, Hillebrand H (2002) North Atlantic Oscillation signature in aquatic and terrestrial ecosystem – a meta-amalysis. Glob Change Biol 8:203–212, doi:10.1046/j.1365–2486.2002.00469.x

    Article  Google Scholar 

  • Brunetti M, Maugeri T, Nanni T (2002) Atmospheric circulation and precipitation in Italy for the last 50 years. Int J Climatol 22:1455–1471, doi:10.1002/joc.805

    Article  Google Scholar 

  • Bolle HJ (2003) Mediterranean Climate (variability and trends). Springer, Berlin

  • Chmielewski FM, Rötzer T (2002) Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes. Clim Res 19:257–264, doi:10.3354/cr019257

    Article  Google Scholar 

  • Chmielewski FM, Muller A, Kuchler W (2005) Possible impacts of climate change on natural vegetation in Saxony (Germany). Int J Biometeorol 50:96–104, doi:10.1007/s00484–005–0275–1

    Article  PubMed  Google Scholar 

  • Chuine I, Cour P (1999) Climatic determinants of budburst seasonality of temperate-zone trees. New Phytol 143:339–349, doi:10.1046/j.1469–8137.1999.00445.x

    Article  Google Scholar 

  • Chuine I, Cour P, Rousseau DD (1998) Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant Cell Environ 21:455–466, doi:10.1046/j.1365–3040.1998.00299.x

    Article  Google Scholar 

  • Clementi M, Clementi S, Fornaciari M, Orlandi F, Romano B (2000) The golpe procedure for predicting olive production from climatic parameters. J Chemometr 15:1–8

    Google Scholar 

  • Federico S, Casella L, Bellecci C, Colacino M (2003) The precipitation field over Calabria: large-scale correlations. Nuov Cim C 26:553–567

    Google Scholar 

  • Fornaciari M, Orlandi F, Romano B (2000) Phenological and aeropalynological survey in an olive orchard in Umbria (central Italy). Grana (0017–3134) 39:246–251

    Article  Google Scholar 

  • Fornaciari M, Pieroni L, Orlandi F, Romano B (2002) A new approach to consider the pollen variable in forecasting yield models. Econ Bot 56(1):66–72, doi:10.1663/0013–0001(2002)056[0066:ANATCT]2.0.CO;2

    Article  Google Scholar 

  • Galán C, Alcazar P, Carinanos P, Garcia H, Dominguez-Vilches E (2000) Meteorological factors affecting daily Urticaceae pollen counts in southwest Spain. Int J Biometeorol 43:191–195, doi:10.1007/s004840050008

    Article  PubMed  Google Scholar 

  • Galán C, García-Mozo H, Vázquez L, Ruiz L, Díaz de la Guardia C, Trigo MM (2005) Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. Int J Biometeorol 49:184–188, doi:10.1007/s00484–004–0223–5

    Article  PubMed  Google Scholar 

  • Hackett WP, Hartmann HT (1964) Inflorescence formation in olive as influences by low temperature, photoperiod, and leaf area. Bot Gaz 125:65–72, doi:10.1086/336247

    Article  Google Scholar 

  • Hirst JM (1952) An automatic volumetric spore-trap. Ann Appl Biol 39:257–265, doi:10.1111/j.1744–7348.1952.tb00904.x

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitations. Science 269:676–679, doi:10.1126/science.269.5224.676

    Article  PubMed  CAS  Google Scholar 

  • Hurrell JW (1996) Influence of variations in extratropical winter-time teleconnections on Northern Hemisphere temperature. Geophys Res Lett 23:665–668, doi:10.1029/96GL00459

    Article  Google Scholar 

  • Hurrell JW, van Loon H (1997) Decadal variations in climate associated with the North Atlantic Oscillation. Clim Change 36:301–326, doi:10.1023/A:1005314315270

    Article  Google Scholar 

  • Hurrell JW, Kushnir Y, Visbeck M, Ottersen G (2003) An overview of the North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Visbeck M, Ottersen G (eds) The North Atlantic Oscillation: climate significance and environmental impact. Geophysical Monograph Series 134. American Physical Union, Washington, DC, pp 1–35

    Google Scholar 

  • Jaagus J, Ahas R (2000) Space–time variations of climatic seasons and their correlation with the phenological development of nature in Estonia. Clim Res 15:207–219, doi:10.3354/cr015207

    Article  Google Scholar 

  • Menzel A, Estrella N, Fabian P (2001) Spatial and temporal variabilità of the phenological seasons in Germany from 1951 to 1996. Glob Change Biol 7:657–666, doi:10.1046/j.1365–2486.2001.00430.x

    Article  Google Scholar 

  • Munoz-Diaz D, Rodrigo FS (2003) Effects of the North Atlantic oscillation on the probability for climatic categories of local monthly rainfall in southern Spain. Int J Climatol 23:381–397, doi:10.1002/joc.886

    Article  Google Scholar 

  • Nilsson S, Persson S (1981) Three pollen espectra in the Stockholm region (Sweden), 1973–1980. Grana 20:179–182

    Article  Google Scholar 

  • Orlandi F, Garcia Mozo H, Vazquez Ezquerra L, Romano B, Dominguez E, Galán C, Fornaciari M (2004) Phenological olive chilling requirements in Umbria (Italy) and Andalusia (Spain). Plant Biosyst (1126–3504) 138:111–116

    Article  Google Scholar 

  • Orlandi F, Ruga L, Romano B, Fornaciari M (2005a) Olive flowering as an Indicator of local climatic changes. Theor Appl Climatol (0177–798X) 3–4, 81:169–176

    Article  Google Scholar 

  • Orlandi F, Romano B, Fornaciari M (2005b) Relationship between flowering and heat units to analyze crop efficiency of olive cultivars located in southern Italy. Hortscience (0018–5345) 1, 40:64–68

    Google Scholar 

  • Orlandi F, Vazquez Ezquerra L, Ruga L, Bonofiglio T, Fornaciari M, Garcia Mozo H, Dominquez E, Romano B, Galán C (2005c) Bioclimatic requirements for olive flowering in two Mediterranean regions located at the same latitude (Andalucia, Spain and Sicily, Italy). Ann Agric Environ Med 12:47–52

    PubMed  Google Scholar 

  • Orlandi F, Lanari D, Romano B, Fornaciari M (2006) A new model to predict the timing in olive flowering: a case study in Central Italy. NZ J Crop Hortic Sci 34:93–99

    Google Scholar 

  • Osborne TJ, Briffa KR, Tett SFB, Jones PD, Trigo RM (1999) Evaluation of the North Atlantic Oscillation as simulated by a coupled climate model. Clim Dyn 15:85–702

    Google Scholar 

  • Osborne CP, Chuine I, Viner D, Woodward FI (2000) Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean. Plant Cell Environ 23:701–710, doi:10.1046/j.1365–3040.2000.00584.x

    Article  Google Scholar 

  • Ottersen G, Planque B, Belgrano A, Post E, Reid PC, Stenseth NC (2001) Ecological effects of the North Atlantic Oscillation. Oecologia 128:1–24, doi:10.1007/s004420100655

    Article  Google Scholar 

  • Pannelli G, Alfei B, D’Ambrosio A, Rosati S, Famiani F (2000) Varieta’ di Olivo in Umbria. Editrice Pliniana, Perugia

    Google Scholar 

  • Peňuelas J, Filella I, Comas P (2002) Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Glob Change Biol 8:531–544, doi:10.1046/j.1365–2486.2002.00489.x

    Article  Google Scholar 

  • Press WK, Flannery BP, Teukolsky SA, Vetterling TA (1999) Numerical recipes in FORTRAN 77. Cambridge University Press

  • Sparks TH, Jeffre EP, Jeffre CE (2000) An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Int J Biometeorol 44:82–87, doi:10.1007/s004840000049

    Article  PubMed  CAS  Google Scholar 

  • Teranishi H, Kenda Y, Katoh T, Kasuya M, Oura E, Taira H (2000) Possible role of climate change in the pollen scatter of Japanese cedar Cryptomeria japonica in Japan. Clim Res 14:65–70, doi:10.3354/cr014065

    Article  Google Scholar 

  • Trigo IF, Davies TD, Bigg GR (1999) Objective climatology of cyclones in the Mediterranean region. J Clim 12(6):1685–1696, doi:10.1175/1520–0442(1999)012<1685:OCOCIT>2.0.CO;2

    Article  Google Scholar 

  • Trigo IF, Bigg GR, Davies TD (2002) Climatology of cyclogenesis mechanisms in the Mediterranean. Mon Weather Rev 130(3):549–569, doi:10.1175/1520–0493(2002)130<0549:COCMIT>2.0.CO;2

    Article  Google Scholar 

  • Uppala SM, Kållberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M et al (2005) The ERA-40 reanalysis. Q J R Meteorol Soc 131:2961–3012, doi:10.1256/qj.04.176

    Article  Google Scholar 

  • von Storch H, Zorita E, Cubasch U (1993) Downscaling of global climate change estimates to regional scales: and application to Iberian rainfall in wintertime. J Clim 6:1161–1171, doi:10.1175/1520–0442(1993)006<1161:DOGCCE>2.0.CO;2

    Article  Google Scholar 

  • Wallace JM (2000) North Atlantic Oscillation/annular mode: two paradigms - one phenomenon. Q J R Meteorol Soc 126:791–805, doi:10.1256/smsqj.56401

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Federico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avolio, E., Pasqualoni, L., Federico, S. et al. Correlation between large-scale atmospheric fields and the olive pollen season in Central Italy. Int J Biometeorol 52, 787–796 (2008). https://doi.org/10.1007/s00484-008-0172-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-008-0172-5

Keywords

Navigation