Skip to main content
Log in

3D ductile crack propagation within a polycrystalline microstructure using XFEM

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this contribution we present a gradient enhanced damage based method to simulate discrete crack propagation in 3D polycrystalline microstructures. Discrete cracks are represented using the eXtended finite element method. The crack propagation criterion and the crack propagation direction for each point along the crack front line is based on the gradient enhanced damage variable. This approach requires the solution of a coupled problem for the balance of momentum and the additional global equation for the gradient enhanced damage field. To capture the discontinuity of the displacements as well as the gradient enhanced damage along the discrete crack, both fields are enriched using the XFEM in combination with level sets. Knowing the crack front velocity, level set methods are used to compute the updated crack geometry after each crack propagation step. The applied material model is a crystal plasticity model often used for polycrystalline microstructures of metals in combination with the gradient enhanced damage model. Due to the inelastic material behaviour after each discrete crack propagation step a projection of the internal variables from the old to the new crack configuration is required. Since for arbitrary crack geometries ill-conditioning of the equation system may occur due to (near) linear dependencies between standard and enriched degrees of freedom, an XFEM stabilisation technique based on a singular value decomposition of the element stiffness matrix is proposed. The performance of the presented methodology to capture crack propagation in polycrystalline microstructures is demonstrated with a number of numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Asaro RJ (1983) Crystal plasticity. J Appl Mech 50(4b):921–934

    Article  MATH  Google Scholar 

  2. Babuška I, Banerjee U (2012) Stable generalized finite element method (SGFEM). Comput Methods Appl Mech Eng 201–204:91–111

    Article  MathSciNet  MATH  Google Scholar 

  3. Barth TJ, Sethian JA (1998) Numerical schemes for the hamilton–jacobi and level set equations on triangulated domains. J Comput Phys 145(1):1–40

    Article  MathSciNet  MATH  Google Scholar 

  4. Bažant Z, Pijaudier-Cabot G (1988) Nonlocal damage, localization instability and convergence. J Appl Mech 55:287–293

    Article  MATH  Google Scholar 

  5. Béchet E, Minnebo H, Moës N, Burgardt B (2005) Improved implementation and robustness study of the X-FEM for stress analysis around cracks. Int J Numer Methods Eng 64:1033–1056

    Article  MATH  Google Scholar 

  6. Beese S, Loehnert S, Wriggers P (2016) Modeling of fracture in polycrystalline materials. In: Advances in discretization methods, Springer, pp 79–102

  7. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620

    Article  MATH  Google Scholar 

  8. Belytschko T, Moës N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Methods Eng 50:993–1013

    Article  MATH  Google Scholar 

  9. Bertram A (1999) An alternative approach to finite plasticity based on material isomorphisms. Int J Plast 15(3):353–374

    Article  MATH  Google Scholar 

  10. Chopp DL, Sukumar N (2003) Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method. Int J Eng Sci 41:845–869

    Article  MathSciNet  MATH  Google Scholar 

  11. Duarte CA, Hamzeh ON, Liszka TJ, Tworzydlo WW (2001) A generalized finite element method for the simulation of three-dimensional dynamic crack propagation. Comput Methods Appl Mech Eng 190:2227–2262

    Article  MATH  Google Scholar 

  12. Duflot M (2007) A study of the representation of cracks with level sets. Int J Numer Methods Eng 70:1261–1302

    Article  MathSciNet  MATH  Google Scholar 

  13. Elguedj T, Gravouil A, Combescure A (2006) Appropriate extended functions for X-FEM simulation of plastic fracture mechanics. Comput Methods Appl Mech Eng 195:501–515

    Article  MATH  Google Scholar 

  14. Erdogan F, Sih G (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85:519–525

    Article  Google Scholar 

  15. Eringen AC, Suhubi E (1964) Nonlinear theory of simple micro-elastic solids i. Int J Eng Sci 2(2):189–203

    Article  MathSciNet  MATH  Google Scholar 

  16. Farhat C, Roux FX (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng 32:1205–1227

    Article  MathSciNet  MATH  Google Scholar 

  17. Fries TP (2008) A corrected XFEM approximation without problems in blending elements. Int J Numer Methods Eng 75:503–532

    Article  MathSciNet  MATH  Google Scholar 

  18. Fries TP, Baydoun M (2012) Crack propagation with the extended finite element method and a hybrid explicit–implicit crack description. Int J Numer Methods Eng 89:1527–1558

    Article  MathSciNet  MATH  Google Scholar 

  19. Garzon J, O’Hara P, Duarte CA, Buttlar WG (2014) Improvements of explicit crack surface representation and update within the generalized finite element method with application to three-dimensional crack coalescence. Int J Numer Methods Eng 97(4):231–273

    Article  MATH  Google Scholar 

  20. Gravouil A, Moës N, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets—part II: level set update. Int J Numer Methods Eng 53:2569–2586

    Article  MATH  Google Scholar 

  21. Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond A 221:163–198

    Article  Google Scholar 

  22. Gupta P, Duarte CA (2014) Simulation of non-planar three-dimensional hydraulic fracture propagation. Int J Numer Anal Methods Geomech 38(13):1397–1430

    Article  Google Scholar 

  23. Gupta V, Duarte CA, Babuška I, Banerjee U (2013) A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics. Comput Methods Appl Mech Eng 266:23–39

    Article  MathSciNet  MATH  Google Scholar 

  24. Helm D (2006) Stress computation in finite thermoviscoplasticity. Int J Plast 22(9):1699–1727

    Article  MATH  Google Scholar 

  25. Holl M, Rogge T, Loehnert S, Wriggers P, Rolfes R (2014) 3D multiscale crack propagation using the XFEM applied to a gas turbine blade. Comput Mech 53(1):173–188

    Article  MathSciNet  MATH  Google Scholar 

  26. Hughes TJ, Franca LP, Hulbert GM (1989) A new finite element formulation for computational fluid dynamics: Viii. the galerkin/least-squares method for advective–diffusive equations. Comput Methods Appl Mech Eng 73(2):173–189

    Article  MathSciNet  MATH  Google Scholar 

  27. Kachanov L (1958) Time of the rupture process under creep conditions. Isv Akad Nauk SSR Otd Tekh Nauk 8:26–31

    Google Scholar 

  28. Laborde P, Pommier J, Renard Y, Salaün M (2005) High-order extended finite element method for cracked domains. Int J Numer Methods Eng 64:354–381

    Article  MATH  Google Scholar 

  29. Legrain G, Moës N, Verron E (2005) Stress analysis around crack tips in finite strain problems using the extended finite element method. Int J Numer Methods Eng 63:290–314

    Article  MathSciNet  MATH  Google Scholar 

  30. Loehnert S (2014) A stabilization technique for the regularization of nearly singular extended finite elements. Comput Mech 54:523–533

    Article  MathSciNet  MATH  Google Scholar 

  31. Loehnert S, Mueller-Hoeppe DS, Wriggers P (2011) 3D corrected XFEM approach and extension to finite deformation theory. Int J Numer Methods Eng 86:431–452

    Article  MathSciNet  MATH  Google Scholar 

  32. Mazars J, Pijaudier-Cabot G (1996) From damage to fracture mechanics and conversely: a combined approach. Int J Solids Struct 33:3327–3342

    Article  MATH  Google Scholar 

  33. Menk A, Bordas SPA (2011) A robust preconditioning technique for the extended finite element method. Int J Numer Methods Eng 85:1609–1632

    Article  MathSciNet  MATH  Google Scholar 

  34. Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69:813–833

    Article  Google Scholar 

  35. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150

    Article  MATH  Google Scholar 

  36. Moës N, Gravouil A, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets—part I: mechanical model. Int J Numer Methods Eng 53:2549–2568

    Article  MATH  Google Scholar 

  37. Oliver J, Huespe AE (2004) Continuum approach to material failure in strong discontinuity settings. Comput Methods Appl Mech Eng 193:3195–3220

    Article  MathSciNet  MATH  Google Scholar 

  38. Peerlings R, de Borst R, Brekelmans W, de Vree J (1996) Gradient enhanced damage for quasi-brittle materials. Int J Numer Methods Eng 39:3391–3403

    Article  MATH  Google Scholar 

  39. Pereira JP, Duarte CA, Guoy D, Jiao X (2009) hp-generalized fem and crack surface representation for non-planar 3-d cracks. Int J Numer Methods Eng 77(5):601–633

    Article  MathSciNet  MATH  Google Scholar 

  40. Perić D, Vaz M, Owen D (1999) On adaptive strategies for large deformations of elasto-plastic solids at finite strains: computational issues and industrial applications. Comput Methods Appl Mech Eng 176(1):279–312

    MATH  Google Scholar 

  41. Pietruszczak S, Mróz Z (1981) Finite element analysis of deformation of strain-softening materials. Int J Numer Methods Eng 17(3):327–334

    Article  MATH  Google Scholar 

  42. Ramasubramaniam A, Ariza M, Ortiz M (2007) A discrete mechanics approach to dislocation dynamics in bcc crystals. J Mech Phys Solids 55(3):615–647

    Article  MathSciNet  MATH  Google Scholar 

  43. Sauerland H, Fries TP (2013) The stable XFEM for two-phase flows. Comput Fluids 87:41–49

    Article  MathSciNet  MATH  Google Scholar 

  44. Sethian J (1996) A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci 93:1591–1595

    Article  MathSciNet  MATH  Google Scholar 

  45. Sethian JA, Vladimirsky A (2000) Fast methods for the eikonal and related hamilton–jacobi equations on unstructured meshes. Proc Natl Acad Sci 97(11):5699–5703

    Article  MathSciNet  MATH  Google Scholar 

  46. Simo JC (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput Methods Appl Mech Eng 60(2):153–173

    Article  MATH  Google Scholar 

  47. Steinmann P, Stein E (1996) On the numerical treatment and analysis of finite deformation ductile single crystal plasticity. Comput Methods Appl Mech Eng 129(3):235–254

    Article  MATH  Google Scholar 

  48. Stolarska M, Chopp LD, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng 51:943–960

    Article  MATH  Google Scholar 

  49. Strouboulis T, Babuška I, Copps K (2000) The design and analysis of the generalized finite element method. Comput Methods Appl Mech Eng 181:43–69

    Article  MathSciNet  MATH  Google Scholar 

  50. Sukumar N, Chopp DL, Moran B (2003) Extended finite element method and fast marching method for three-dimensional fatique crack propagation. Eng Fract Mech 70:29–48

    Article  Google Scholar 

  51. Sukumar N, Moës N, Moran B, Belytschko T (2000) Extended finite element method for three-dimensional crack modelling. Int J Numer Methods Eng 48:1549–1570

    Article  MATH  Google Scholar 

  52. Svendsen B (1998) A thermodynamic formulation of finite-deformation elastoplasticity with hardening based on the concept of material isomorphism. Int J Plast 14(6):473–488

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The support of the German Research Foundation (DFG) within the framework of the Grant SFB TR 73 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Loehnert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beese, S., Loehnert, S. & Wriggers, P. 3D ductile crack propagation within a polycrystalline microstructure using XFEM. Comput Mech 61, 71–88 (2018). https://doi.org/10.1007/s00466-017-1427-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1427-y

Keywords

Navigation