Skip to main content

Advertisement

Log in

KIT, PDGFRα and EGFR analysis in nephroblastoma

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Nephroblastoma prognosis has dramatically improved, but an unfavourable prognostic subgroup warrants development of novel therapeutic strategies. Selective KIT, PDGFRα and epidermal growth factor receptor (EGFR) tyrosine kinase inhibition evolved as powerful targeted therapy for gastrointestinal stromal tumours and non-small-cell lung cancer. To investigate a potential role for tyrosine kinase inhibition, we analyzed 209 nephroblastomas for immunohistochemical KIT and EGFR expression, 63 nephroblastomas for mutations in KIT exons 9, 11, 13, EGFR exons 18, 19, 20 and 21, and all 209 nephroblastomas for PDGFRα exons 12, 14 and 18. Twenty-two tumours (10.5%) expressed KIT, 31 (14.8%) EGFR, and 10 (4.8%) both KIT and EGFR, respectively. KIT expression was relatively more common among high-risk tumours (6/27; 22.3%) compared to low-/intermediate-risk tumours (26/181; 14.4%). Nine patients deceased, four of which had high-risk tumours with KIT expression in two of four and EGFR expression in one of four. There were no KIT, PDGFRα or EGFR mutations. Our results suggest no significant contribution of KIT, EGFR or PDGFRα mutations to nephroblastoma pathogenesis. Despite a trend towards association of immunohistochemical KIT and EGFR expression with poor outcome in high-risk nephroblastomas, statistical analysis did not yield significant correlations in this subgroup. Therefore, it remains open if KIT, PDGFRα or EGFR tyrosine kinase inhibition constitute a therapeutic target in nephroblastoma in the absence of KIT, PDGFRα or EGFR mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alpers CE, Hudkins KL, Ferguson M, Johnson RJ, Rutledge JC (1995) Platelet-derived growth factor A—chain expression in developing and mature human kidneys and in Wilms’ tumor. Kidney Int 48(1):146–154

    Article  PubMed  CAS  Google Scholar 

  2. Buchdunger E, Cioffi CL, Law N, Stover D, Ohno-Jones S, Druker BJ, Lydon NB (2000) Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther 295:139–145

    PubMed  CAS  Google Scholar 

  3. Charles AK, Brown KW, Berry PJ (1998) Microdissecting the genetics events in nephrogenic rests and Wilms tumor development. Am J Pathol 153:991–1000

    PubMed  CAS  Google Scholar 

  4. Chirieac RL, Trent JC, Steinert DM, Choi H, Yang Y, Zhang J, Patel SR, Benjamin RS, Raymond AK (2006) Correlation of immunophenotype with progression-free survival in patients with gastrointestinal stromal tumors treated with imatinib mesylate. Cancer 107:2237–2244

    Article  PubMed  CAS  Google Scholar 

  5. Cho BC, Im CK, Park MS, Kim SK, Chang J, Park JP, Choi HJ, Kim YJ, Shin SJ, Sohn JH, Kim H, Kim JH (2007) Phase II study of erlotinib in advanced non-small-cell lung cancer after failure of geftinib. J Clin Oncol 25:2528–2533

    Article  PubMed  CAS  Google Scholar 

  6. Chow LQM, Eckhardt SG (2007) Sunitinib: from rational design to clinical efficacy. J Clin Oncol 25:884–896

    Article  PubMed  CAS  Google Scholar 

  7. Corless CL, Schroeder A, Griffith D, Town A, Mc Greevey L, Harrell P, Shiraga S, Bainbridge T, Morich J, Heinrich MC (2005) PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J Clin Pathol 23:5357–5365

    CAS  Google Scholar 

  8. Dei Tos AP (2003) The reappraisal of gastrointestinal stromal tumors: from Stout to the KIT revolution. Virchows Arch 442:421–428

    PubMed  Google Scholar 

  9. Demetri GD (2001) Targeting c-kit mutations in solid tumors: scientific rationale and novel therapeutic options. Semin Oncol 28(5 Suppl 17):19–26

    Article  PubMed  CAS  Google Scholar 

  10. Dome JS, Coppes MJ (2002) Recent advances in Wilms tumor genetics. Curr Opin Pediatr 14:5–11

    Article  PubMed  Google Scholar 

  11. Eble JN, Sauter G, Epstein JI, Sesterhenn IA (2004) Pathology and genetics, tumours of the urinary system and male genital organs. World health organization classification of tumours. IATC, Lyon

    Google Scholar 

  12. Fraizer GE, Bowen-Pope DF, Vogel AM (1987) Production of platelet-derived growth factor by cultured Wilm’s tumor cells and fetal kidney cells. J Cell Physiol 133:169–174

    Article  PubMed  CAS  Google Scholar 

  13. Frost MJ, Ferrao PT, Hughes TP, Asman LK (2002) Juxtamembrane mutant V560Gkit is more sensitive to Imatinib (STI571) compared with wild-type c-kit whereas the kinase domain mutant D816Vkit is resistant. Mol Cancer Ther 1:1115–1124

    PubMed  CAS  Google Scholar 

  14. Ghanem MA, Van Der Kwast TH, Den Hollander JC, Sudaryo MK, Mathoera RB, Van den Heuvel MM, Noordzji MA, Nijman RJM, van Steenbrugge GJ (2001) Expression and prognostic value of epidermal growth factor receptor, transforming growth factor-a, and c-erb B-2 in nephroblastoma. Cancer 92:3120–3129

    Article  PubMed  CAS  Google Scholar 

  15. Graf N, Semler O, Reinhard H (2004) Prognosis of Wilm’s tumor in the course of the SIOP trials and studies. Urologe A 43:421–428

    Article  PubMed  CAS  Google Scholar 

  16. Heinrich MC, Corless CL, Demetri GD, Blanke CD, von Mehren M, Joensuu H, McGreevey LS, Chen CJ, Van den Abbeele AD, Druker BJ, Kiese B, Eisenberg B, Roberts PJ, Singer S, Fletcher CD, Silbermen S, Dimitrijevic S, Fletcher JA (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21:4342–4349

    Article  PubMed  CAS  Google Scholar 

  17. Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S, Kawano K, Hanada M, Kurata A, Takeda M, Muhammad Tunio G, Matsuzawa Y, Kanakura Y, Shinomura Y, Kitamura Y (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279:577–580

    Article  PubMed  CAS  Google Scholar 

  18. Hirota S, Ohashi A, Nishida T, Isozaki K, Kinoshity K, Shinomura Y, Kitamura Y (2003) Gain-of-function mutations of platelet-derived growth factor receptor alpha gene in gastrointestinal stromal tumors. Gastroenterology 125:660–667

    Article  PubMed  CAS  Google Scholar 

  19. Hirsch FR, Varella-Garcia M, Bunn PA Jr, Franklin WA, Dziadziuszko R, Thather N, Chang A, Parikh P, Pereira JR, Ciuleanu T, von Pawel J, Watkins C, Flannery A, Ellison G, Donald E, Knight L, Parums D, Botwood N, Holloway B (2006) Molecular predictors of outcome with gefitinib in a phase III placebo-controlled study in advanced non-small-cell lung cancer. J Clin Oncol 24:5034–5042

    Article  PubMed  CAS  Google Scholar 

  20. Hornick JL, Fletcher CDM (2007) The role of KIT in the management of patients with gastrointestinal stromal tumors. Human Pathology 38:679–687

    Article  PubMed  CAS  Google Scholar 

  21. Joensuu H, Roberts PJ, Sarlomo-Rikala M, Andersson LC, Teervahartiala P, Tuveson D, Silberman S, Capdeville R, Dimitrijevic S, Druker B, Demetri GD (2001) Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344:1052–1056

    Article  PubMed  CAS  Google Scholar 

  22. Kato N, Honma K, Hojo H, Sasou S, Matsuzaki O, Motoyama T (2005) KIT expression in normal and neoplastic renal tissues: immunohistochemical and molecular genetic analysis. Pathol Int 55:479–483

    Article  PubMed  CAS  Google Scholar 

  23. Kitadai Y, Sasaki T, Kuwai T, Nakamura T, Bucana CD, Hamilton SR, Fidler IJ (2006) Expression of activated platelet-derived growth factor receptor in stromal cells of human colon carcinomas is associated with metastatic potential. Int J Cancer 119:2567–2574

    Article  PubMed  CAS  Google Scholar 

  24. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4:844–847

    Article  PubMed  CAS  Google Scholar 

  25. Lasota J, Wozniak A, Sarlomo-Rikala M, Rys J, Kordek R, Nassar A, Sobin LH, Miettinen M (2000) Mutations in exons 9 and 13 of KIT gene are rare events in gastrointestinal stromal tumors. A study of 200 cases. Am J Pathol 157:1091–1095

    PubMed  CAS  Google Scholar 

  26. Medinger M, Drevs J (2005) Receptor tyrosine kinases and anticancer therapy. Curr Pharm Des 11:1139–1149

    Article  PubMed  CAS  Google Scholar 

  27. Miliaras D, Karasavvidou F, Papanikolaou A, Sioutopoulou D (2004) KIT expression in fetal, normal adult, and neoplastic renal tissues. J Clin Pathol 57:463–466

    Article  PubMed  CAS  Google Scholar 

  28. Nocito A, Bubendorf L, Tinner EM, Süess K, Wagner U, Forster T, Kononen J, Fijan A, Bruderer J, Schmid U, Ackermann D, Maurer R, Alund G, Knönagel H, Rist M, Anabitarte M, Hering F, Hardmeier T, Schoenenberger AJ, Flury R, Jäger P, Fehr JL, Schraml P, Moch H, Mihatsch MJ, Gasser T, Sauter G (2001) Microarrays of bladder cancer tissue are highly representative of proliferation index and histological grade. J Pathol 194:349–357

    Article  PubMed  CAS  Google Scholar 

  29. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fuji Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    Article  PubMed  CAS  Google Scholar 

  30. Pan CC, Chih-Hsueh C, Chiang H (2004) Overexpression of KIT (CD117) in chromophobe renal cell carcinoma and renal oncocytoma. Am J Clin Pathol 121:878–883

    Article  PubMed  Google Scholar 

  31. Peres EM, Savasan S, Cushing B, Abella S, Mohamed A (2004) Chromosome analyses of 16 cases of Wilms tumor: different pattern in unfavorable histology. Cancer Genet Cytogenet 148:66–70

    Article  PubMed  CAS  Google Scholar 

  32. Pritchard-Jones K (2002) Controversies and advances in the management of Wilms’ tumour. Arch Dis Child 26:486–493

    Google Scholar 

  33. Ranson M (2004) Epidermal growth factor receptor tyrosine kinase inhibitors. Br J Cancer 90:2250–2255

    PubMed  CAS  Google Scholar 

  34. Schnadig ID, Blanke CD (2006) Gastrointestinal stroma tumors: imatinib and beyond. Curr Treat Options Oncol 7:427–437

    Article  PubMed  Google Scholar 

  35. Sihto H, Sarlomo-Rikala M, Tynninen O, Tanner M, Andersson LC, Franssila K, Nupponem NN, Joensuu H (2005) KIT and platelet-derived growth factor receptor alpha tyrosine kinase gene mutations and KIT amplifications in human solid tumors. J Clin Oncol 23:49–58

    Article  PubMed  CAS  Google Scholar 

  36. Smithey BE, Pappo AS, Hill DA (2002) C-kit expression in pediatric solid tumors: a comparative immunohistochemical study. Am J Surg Pathol 26:486–492

    Article  PubMed  Google Scholar 

  37. Tornillo L, Duchini G, Carafa V, Lugli A, Dirnhofer S, Di Vizio D, Boscaiano A, Russo R, Tapia C, Schneider-Stock R, Sauter G, Insabato L, Terracciano LM (2005) Patterns of gene amplification in gastrointestinal stromal tumors (GIST). Lab Invest 85:921–931

    Article  PubMed  CAS  Google Scholar 

  38. Tornillo L, Terracciano LM (2006) An update on molecular genetics of gastrointestinal stromal tumours. J Clin Pathol 59:557–563

    Article  PubMed  CAS  Google Scholar 

  39. Vujanic GM, Sandstedt B, Harms D, Kelsey A, Leuschner I, De Kraker J (2002) Revised International Society of Paediatric Oncology (SIOP) working classification of renal tumors of childhood. Med Pediatr Oncol 38:79–82

    Article  PubMed  Google Scholar 

  40. Yarden Y, Kuang WJ, Yang-Feng T, Coussens L, Munemitsu S, Dull TJ, Chen E, Schlessinger J, Francke U, Ullrich A (1987) Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J 6:3341–3351

    PubMed  CAS  Google Scholar 

  41. Yokoi A, Mc Cruddden KW, Huang J, Kim ES, Soffer SZ, Frischer JS, Serur A, New T, Yuan J, Mansukhani M, O’toole K, Yamashiro DJ, Kandel JJ (2003) Human epidermal growth factor receptor signaling contributes to tumor growth via angiogenensis in her2/neu-expressing experimental Wilms’ tumor. J Pediatr Surg 38:1569–1573

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Barbara Stalder, Molecular Pathology Section, Institute for Pathology, University Hospital Basel, Switzerland for excellent performance of immunohistochemistry and to Melanie Schlangstedt, Institute for Clinical Chemistry and Laboratory Medicine at the University of Regensburg, Regensburg, Germany for PDGFRα sequence analysis. The study experiments comply with the current laws in the country in which they were performed.

This study was funded by a grant of the Basel Cancer League to EB.

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Bruder.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM

Loc recur local recurrence, Meta metastasis, DOD death of disease, KIT % percent of tumour cells with immunohistochemical KIT expression per positive punch cylinder, EGFR % percent of tumour cells with immunohistochemical EGFR expression per positive punch cylinder, Pre-op Chemo preoperative chemotherapy, Follow-up follow-up period indicated in months (XLS 56.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wetli, S.C., Leuschner, I., Harms, D. et al. KIT, PDGFRα and EGFR analysis in nephroblastoma. Virchows Arch 452, 637–650 (2008). https://doi.org/10.1007/s00428-008-0605-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-008-0605-x

Keywords

Navigation