Skip to main content

Advertisement

Log in

Review on observational studies of western tropical Pacific Ocean circulation and climate

  • Review
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The Western Tropical Pacific (WTP) Ocean holds the largest area of warm water (>28°C) in the world ocean referred to as the Western Pacific Warm Pool (WPWP), which modulates the regional and global climate through strong atmospheric convection and its variability. The WTP is unique in terms of its complex 3-D ocean circulation system and intensive multiscale variability, making it crucial in the water and energy cycle of the global ocean. Great advances have been made in understanding the complexity of the WTP ocean circulation and associated climate impact by the international scientific community since the 1960s through field experiments. In this study, we review the evolving insight to the 3-D structure and multi-scale variability of the ocean circulation in the WTP and their climatic impacts based on in-situ ocean observations in the past decades, with emphasis on the achievements since 2000. The challenges and open questions remaining are reviewed as well as future plan for international study of the WTP ocean circulation and climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

Data Availability Statement

The mooring data are from the NPOCE program; the SST data are from the Advanced Very High Resolution Radiometer (AVHRR) infrared satellite provided by the National Oceanic and Atmospheric Administration; the ocean heat content data are from the National Centers for Environmental Prediction (NCEP) and Global Ocean Data Assimilation System (GODAS); the SCSSM onset time is derived from the daily wind data from the NCEP/Department of Energy Reanalysis II; the surface currents are from the satellite altimeter Ocean Surface Current Analysis Real-Time (OSCAR) estimate; the Niño 3.4 index is downloaded from http://www.cpc.ncep.noaa.gov/data/indices/; the tropical cyclone track are from the best track data provided by the China Meteorological Administration.

References

  • Akiyama T. 1968. Partial pressure of carbon dioxide in the atmosphere and in sea water over the western North Pacific Ocean. Oceanographic Magazine, 20: 133–146.

    Google Scholar 

  • Alberty M, Sprintall J, MacKinnon J, Germineaud C, Cravatte S, Ganachaud A. 2019. Moored observations of transport in the Solomon Sea. Journal of Geophysical Research, 124(11): 8 166–8 192, https://doi.org/10.1029/2019JC015143.

    Google Scholar 

  • An S I, Jin F F, Kang I S. 1999. The role of zonal advection feedback in phase transition and growth of ENSO in the Cane-Zebiak model. Journal of the Meteorological Society of Japan, 77(6): 1 151–1 160, https://doi.org/10.2151/jmsj1965.77.6_1151.

    Google Scholar 

  • Ando K, Kuroda Y, Fujii Y, Fukuda T, Hasegawa T, Horii T, Ishihara Y, Kashino Y, Masumoto Y, Mizuno K, Nagura M, Ueki I. 2017. Fifteen years progress of the TRITON array in the Western Pacific and Eastern Indian Oceans. Journal of Oceanography, 73(4): 403–426, https://doi.org/10.1007/s10872-017-0414-4.

    Google Scholar 

  • Anutaliya A, Send U, Sprintall J, McClean J L, Lankhorst M, Koelling J. 2019. Mooring and seafloor pressure end point measurements at the southern entrance of the Solomon Sea: subseasonal to interannual flow variability. Journal of Geophysical Research, 124(7): 5 085–5104, https://doi.org/10.1029/2019JC015157.

    Google Scholar 

  • Azminuddin F, Jeon D, Shin C. 2019. Intraseasonal-to-interannual variability of the upper-layer zonal currents in the tropical northwest pacific ocean. Ocean Science Journal, 54(1): 15–27, https://doi.org/10.1007/s12601-019-0001-2.

    Google Scholar 

  • Brown J N, Maes C, Sen Gupta A, Matear R, Cravatte S, Langlais C, Graham F S. 2012. Reinvigorating research on the western Pacific warm pool-first workshop. CLIVAR Exchanges, 59(8): 34–35.

    Google Scholar 

  • Butt J, Lindstrom E. 1994. Currents off the east coast of New Ireland, Papua New Guinea, and their relevance to regional undercurrents in the western equatorial Pacific ocean. Journal of Geophysical Research, 99(C6): 12 503–12 514, https://doi.org/10.1029/94JC00399.

    Google Scholar 

  • Cai W J. 2006. Antarctic ozone depletion causes an intensification of the southern ocean super-gyre circulation. Geophysical Research Letters, 33: L03712, https://doi.org/10.1029/2005GL024911.

    Google Scholar 

  • Cai W J, Borlace S, Lengaigne M, Rensch P, Collins M, Vecchi G, Timmermann A, Santoso A, McPhaden M J, Wu L X, England M H, Wang G J, Guilyardi E, Jin F F. 2014. Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 4(2): 111–116, https://doi.org/10.1038/nclimate2100.

    Google Scholar 

  • Cai W J, Wang G J, Santoso A, McPhaden M J, Wu L X, Jin F F, Timmermann A, Collins M, Vecchi G, Lengaigne M, England M H, Dommenget D, Takahashi K, Guilyardi E. 2015. Increased frequency of extreme La Niña events under greenhouse warming. Nature Climate Change, 5(2): 132–137, https://doi.org/10.1038/nclimate2492.

    Google Scholar 

  • Cai W J, Wu L X, Lengaigne M, Li T, McGregor S, Kug J S, Yu J Y, Stuecker M F, Santoso A, Li X C, Ham Y G, Chikamoto Y, Ng B, McPhaden M J, Du Y, Dommenget D, Jia F, Kajtar J B, Keenlyside N, Lin X P, Luo J J, Martín R M, Ruprich R Y, Wang G J, Xie S P, Yang Y, Kang S M, Choi J Y, Gan B L, Kim G I, Kim C E, Kim S, Kim J H, Chang P. 2019. Pan-tropical climate interactions. Science, 363(6430): eaav4236, https://doi.org/10.1126/science.aav4236.

    Google Scholar 

  • Chan J C L. 1985. Tropical cyclone activity in the northwest Pacific in relation to the El Niño/Southern Oscillation phenomenon. Monthly Weather Review, 113(4): 599–606, https://doi.org/10.1175/1520-0493(1985)113<0599:TCAITN>2.0.CO;2.

    Google Scholar 

  • Chen D K, Lian T, Fu C B, Cane M A, Tang Y M, Murtugudde R, Song X S, Wu Q Y, Zhou L. 2015a. Strong influence of westerly wind bursts on El Niño diversity. Nature Geoscience, 8(5): 339–345, https://doi.org/10.1038/ngeo2399.

    Google Scholar 

  • Chen D K, Smith N, Kessler W. 2018. The evolving ENSO observing system. National Science Review, 5(6): 805–807, https://doi.org/10.1093/nsr/nwy137.

    Google Scholar 

  • Chen Y L, Hu D X. 2003. Influence of heat content anomaly in the tropical western Pacific warm pool region on onset of South China Sea summer monsoon. Acta Meteorologica Sinica, l7(S1): 213–225.

    Google Scholar 

  • Chen Z H, Wu L X, Qiu B, Li L, Hu D X, Liu C Y, Jia F, Liang X. 2015b. Strengthening Kuroshio observed at its origin during November 2010 to October 2012. Journal of Geophysical Research, 120(4): 2 460–2 470, https://doi.org/10.1002/2014JC010590.

    Google Scholar 

  • Chiang T L, Wu C R, Qu T D, Hsin Y C. 2015. Activities of 50-80 day subthermocline eddies near the Philippine coast. Journal of Geophysical Research, 120(5): 3 606–3 623, https://doi.org/10.1002/2013JC009626.

    Google Scholar 

  • Church J A, Boland F M. 1983. A permanent undercurrent adjacent to the great barrier reef. Journal of Physical Oceanography, 13(9): 1 747–1 749, https://doi.org/10.1175/1520-0485(1983)013<1747:APUATT>2.0.CO;2.

    Google Scholar 

  • Collins M, An S I, Cai W J, Ganachaud A, Guilyardi E, Jin F F, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A. 2010. The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geoscience, 3(6): 391–397, https://doi.org/10.1038/ngeo868.

    Google Scholar 

  • Cravatte S, Delcroix T, Zhang D X, McPhaden M, Leloup J. 2009. Observed freshening and warming of the western Pacific warm pool. Climate Dynamics, 33(4): 565–589, https://doi.org/10.1007/s00382-009-0526-7.

    Google Scholar 

  • Cravatte S, Ganachaud A, Duong Q P, Kessler W S, Eldin G, Dutrieux P. 2011. Observed circulation in the Solomon sea from SADCP data. Progress in Oceanography, 88(1–4): 116–130, https://doi.org/10.1016/j.pocean.2010.12.015.

    Google Scholar 

  • Cravatte S, Kestenare E, Eldin G, Ganachaud A, Lefèvre J, Marin F, Menkes C, Aucan J. 2015. Regional circulation around New Caledonia from two decades of observations. Journal of Marine Systems, 148: 249–271, https://doi.org/10.1016/j.jmarsys.2015.03.004.

    Google Scholar 

  • Cravatte S, Kessler W S, Marin F. 2012. Intermediate zonal jets in the tropical Pacific Ocean observed by Argo floats. Journal of Physical Oceanography, 42(9): 1 475–1 485, https://doi.org/10.1175/JPO-D-11-0206.1.

    Google Scholar 

  • Cravatte S, Kestenare E, Marin F, Dutrieux P, Firing E. 2017. Subthermocline and intermediate zonal currents in the tropical Pacific ocean: paths and vertical structure. Journal of Physical Oceanography, 47(9): 2 305–2 324, https://doi.org/10.1175/JPO-D-17-0043.1.

    Google Scholar 

  • Davis R E, Kessler W S, Sherman J T. 2012. Gliders measure western boundary current transport from the south Pacific to the equator. Journal of Physical Oceanography, 42(11): 2 001–2 013, https://doi.org/10.1175/jpo-d-12-022.1.

    Google Scholar 

  • De Deckker P. 2016. The Indo-Pacific Warm Pool: critical to world oceanography and world climate. Geoscience Letters, 3: 20, https://doi.org/10.1186/s40562-016-0054-3.

    Google Scholar 

  • Djath B, Verron J, Melet A, Gourdeau L, Barnier B, Molines J M. 2014. Multiscale dynamical analysis of a high-resolution numerical model simulation of the Solomon Sea circulation. Journal of Geophysical Research, 119(9): 6 286–6 304, https://doi.org/10.1002/2013JC009695.

    Google Scholar 

  • Duan J, Li Y L, Wang F, Chen Z H. 2019a. Decadal variations of the mindanao current during 1960–2010. Journal of Geophysical Research, 124(4): 2 660–2 678, https://doi.org/10.1029/2019JC014975.

    Google Scholar 

  • Duan J, Li Y L, Wang F, Chen Z H. 2019b. Multidecadal change of the Mindanao current: is there a robust trend? Geophysical Research Letters, 46(12): 6 755–6 764, https://doi.org/10.1029/2019GL083090.

    Google Scholar 

  • Fang G H, Susanto R D, Wirasantosa S, Qiao F L, Supangat A, Fan B, Wei Z X, Sulistiyo B, Li S J. 2010. Volume, heat, and freshwater transports from the South China Sea to Indonesian seas in the boreal winter of 2007–2008. Journal of Geophysical Research, 115(C12): C12020, https://doi.org/10.1029/2010JC006225.

    Google Scholar 

  • Feng J Q, Hu D C. 2014. How much does heat content of the western tropical Pacific Ocean modulate the South China Sea summer monsoon onset in the last four decades? Journal of Geophysical Research, 119(7): 4 029–4 044, https://doi.org/10.1002/2013JC009683.

    Google Scholar 

  • Feng J Q, Hu D X, Yu L J. 2013. Role of western pacific oceanic variability in the onset of the bay of Bengal summer monsoon. Advances in Atmospheric Sciences, 30(1): 219–234, https://doi.org/10.1007/s00376-012-2040-9.

    Google Scholar 

  • Fine R A, Lukas R, Bingham F M, Warner M J, Gammon R H. 1994. The western equatorial Pacific: a water mass crossroads. Journal of Geophysical Research, 99(C12): 25 063–25 080, https://doi.org/10.1029/94JC02277.

    Google Scholar 

  • Fu H L, Wang X D, Chu P C, Zhang X F, Han G J, Li W. 2014. Tropical cyclone footprint in the ocean mixed layer observed by Argo in the northwest pacific. Journal of Geophysical Research, 119(11): 8 078–8 092, https://doi.org/10.1002/2014JC010316.

    Google Scholar 

  • Gan B L, Wu L X. 2012. Possible origins of the western pacific warm pool decadal variability. Advances in Atmospheric Sciences, 29(1): 169–176, https://doi.org/10.1007/s00376-011-0193-6.

    Google Scholar 

  • Ganachaud A, Cravatte S, Melet A, Schiller A, Holbrook N J, Sloyan B M, Widlansky M J, Bowen M, Verron J, Wiles P, Ridgway K, Sutton P, Sprintall J, Steinberg C, Brassington G, Cai W, Davis R, Gasparin F, Gourdeau L, Hasegawa T, Kessler W, Maes C, Takahashi K, Richards K J, Send U. 2014. The Southwest Pacific Ocean circulation and climate experiment (SPICE). Journal of Geophysical Research, 119(11): 7 660–7 686, https://doi.org/10.1002/2013JC009678.

    Google Scholar 

  • Ganachaud A, Cravatte S, Sprintall J, Germineaud C, Alberty M, Jeandel C, Eldin G, Metzl N, Bonnet S, Benavides M, Heimburger L E, Lefèvre J, Michael S, Resing J, Quéroué F, Sarthou G, Rodier M, Berthelot H, Baurand F, Grelet J, Hasegawa T, Kessler W, Kilepak M, Lacan F, Privat E, Send U, van Beek P, Souhaut M, Sonke J E. 2017. The Solomon Sea: its circulation, chemistry, geochemistry and biology explored during two oceanographic cruises. Elementa: Science of the Anthropocene, 5: 33, https://doi.org/10.1525/elementa.221.

    Google Scholar 

  • Gasparin F, Ganachaud A, Maes C, Marin F, Eldin G. 2012. Oceanic transports through the Solomon Sea: the bend of the New Guinea Coastal Undercurrent. Geophysical Research Letters, 39(15): L15608, https://doi.org/10.1029/2012GL052575.

    Google Scholar 

  • Gasparin F, Maes C, Sudre J, Garcon V, Ganachaud A. 2014. Water mass analysis of the Coral Sea through an Optimum Multiparameter method. Journal of Geophysical Research, 119(10): 7 229–7 244, https://doi.org/10.1002/2014JC010246.

    Google Scholar 

  • Germineaud C, Ganachaud A, Sprintall J, Cravatte S, Eldin G, Alberty M S, Privat E. 2016. Pathways and water mass properties of the thermocline and intermediate waters in the Solomon Sea. Journal of Physical Oceanography, 46(10): 3 031–3 049, https://doi.org/10.1175/JPO-D-16-0107.1.

    Google Scholar 

  • Gordon A L. 1986. Interocean exchange of thermocline water. Journal of Geophysical Research, 91(C4): 5 037–5 046, https://doi.org/10.1029/JC091iC04p05037.

    Google Scholar 

  • Gordon A L, Huber B A, Metzger E J, Susanto R D, Hurlburt H E, Adi T R. 2012. South China Sea throughflow impact on the Indonesian throughflow. Geophysical Research Letters, 39(11): L11602, https://doi.org/10.1029/2012gl052021.

    Google Scholar 

  • Gordon A L, Napitu A, Huber B A, Gruenburg L K, Pujiana K, Agustiadi T, Kuswardani A, Mbay N, Setiawan A. 2019. Makassar Strait throughflow seasonal and interannual variability: an overview. Journal of Geophysical Research, 124(6): 3 724–3 736, https://doi.org/10.1029/2018jc014502.

    Google Scholar 

  • Gordon A L, Sprintall J, van Aken H M, Susanto D, Wijffels S, Molcard R, Ffield A, Pranowo W, Wirasantosa S. 2010. The Indonesian throughflow during 2004–2006 as observed by the INSTANT program. Dynamics of Atmospheres and Oceans, 50(2): 115–128, https://doi.org/10.1016/j.dynatmoce.2009.12.002.

    Google Scholar 

  • Gould W J. 2003. WOCE and TOGA—the foundations of the global ocean observing system. Oceanography, 16(4): 24–30, https://doi.org/10.5670/oceanog.2003.05.

    Google Scholar 

  • Grenier M, Cravatte S, Blanke B, Menkes C, Koch-Larrouy A, Durand F, Melet A, Jeandel C. 2011. From the western boundary currents to the Pacific Equatorial Undercurrent: modeled pathways and water mass evolutions. Journal of Geophysical Research, 116(C12): C12044, https://doi.org/10.1029/2011JC007477.

    Google Scholar 

  • Grenier M, Jeandel C, Cravatte S. 2014. From the subtropics to the equator in the Southwest Pacific: continental material fluxes quantified using neodymium data along modeled thermocline water pathways. Journal of Geophysical Research, 119(6): 3 948–3 966, https://doi.org/10.1002/2013JC009670.

    Google Scholar 

  • Gruenburg L K, Gordon A L. 2018. Variability in Makassar Strait heat flux and its effect on the eastern tropical Indian Ocean. Oceanography31(2):80–87, https://doi.org/10.5670/oceanog.2018.220.

    Google Scholar 

  • Guan C, Chen Y L, Wang F. 2013. Seasonal variability of zonal heat advection in the mixed layer of the tropical Pacific. Chinese Journal of Oceanology and Limnology, 31(6): 1 356–1 367, https://doi.org/10.1007/s00343-014-3019-4.

    Google Scholar 

  • Guan C, Hu S J, McPhaden M J, Wang F, Gao S, Hou Y L. 2019a. Dipole structure of mixed layer salinity in response to El Niño-La Niña asymmetry in the tropical Pacific. Geophysical Research Letters, 46(21): 12 165–12 172, https://doi.org/10.1029/2019GL084817.

    Google Scholar 

  • Guan C, McPhaden M J. 2016. Ocean processes affecting the twenty-first-century shift in ENSO SST variability. Journal of Climate, 29(19): 6 861–6 879, https://doi.org/10.1175/JCLI-D-15-0870.1.

    Google Scholar 

  • Guan C, McPhaden M J, Wang F, Hu S J. 2019b. Quantifying the role of oceanic feedbacks on ENSO asymmetry. Geophysical Research Letters, 46(4): 2 140–2 148, https://doi.org/10.1029/2018GL081332.

    Google Scholar 

  • Guo H H, Chen Z H, Yang H Y. 2019. Poleward shift of the Pacific North Equatorial Current bifurcation. Journal of Geophysical Research, 124(7): 4 557–4 571, https://doi.org/10.1029/2019JC015019.

    Google Scholar 

  • Harrison D E, Vecchi G A. 1997. Westerly wind events in the tropical Pacific, 1986–95. Journal of Climate, 10(12): 3 131–3 156, https://doi.org/10.1175/1520-0442(1997)010<3131:WWEITT>2.0.CO;2.

    Google Scholar 

  • Hayes S P, Mangum L J, Picaut J, Sumi A, Takeuchi K. 1991. TOGA-TAO: a moored array for real-time measurements in the tropical Pacific Ocean. Bulletin of the American Meteorological Society, 72(3): 339–347, https://doi.org/10.1175/1520-0477(1991)072<0339:TTAMAF>2.0.CO;2.

    Google Scholar 

  • Hayes S P, Toole J M, Mangum L J. 1983. Water-mass and transport variability at 110°W in the equatorial Pacific. Journal of Physical Oceanography, 13(2): 153–168, https://doi.org/10.1175/1520-0485(1983)013<0153:WMATVA>2.0.CO;2.

    Google Scholar 

  • Hill K, Rintoul S, Coleman R, Ridgway K. 2008. Wind forced low frequency variability of the East Australia Current. Geophysical Research Letters, 35: L08602, https://doi.org/10.1029/2007GL032912.

    Google Scholar 

  • Holbrook N J, Chan P S-L, Venegas S A. 2005. Oscillatory and propagating modes of temperature variability at the 3–3.5- and 4–4.5-yr time scales in the upper southwest Pacific Ocean. Journal of Climate, 18(5): 719–736, https://doi.org/10.1175/JCLI-3286.1.

    Google Scholar 

  • Holbrook N J, Goodwin I D, McGregor S, Molina E, Power S B. 2011. ENSO to multi-decadal time scale changes in east Australian current transports and fort Denison sea level: Oceanic Rossby waves as the connecting mechanism. Deep Sea Research Part II: Topical Studies in Oceanography, 58(5): 547–558, https://doi.org/10.1016/j.dsr2.2010.06.007.

    Google Scholar 

  • Hristova H G, Kessler W S. 2012. Surface circulation in the Solomon Sea derived from lagrangian drifter observations. Journal of Physical Oceanography, 42(3): 448–458, https://doi.org/10.1175/JPO-D-11-099.1.

    Google Scholar 

  • Hristova H G, Kessler W S, McWilliams J C, Molemaker M J. 2014. Mesoscale variability and its seasonality in the Solomon and Coral Seas. Journal of Geophysical Research, 119(7): 4 669–4 687, https://doi.org/10.1002/2013JC009741.

    Google Scholar 

  • Hsin Y C, Qiu B. 2012. Seasonal fluctuations of the surface north equatorial countercurrent (NECC) across the pacific basin. Journal of Geophysical Research, 117(C6): C06001, https://doi.org/10.1029/2011JC007794.

    Google Scholar 

  • Hu D X, Cui M C. 1989. The western boundary current in the far-western Pacific Ocean. In: Picaut J, Lukas R, Delcroix T eds. Western Pacific International Meeting and Workshop on TOGA COARE. ORSTOM, Noumea, New Caledonia. p.123–134.

    Google Scholar 

  • Hu D X, Cui M C, Qu T D, Li Y X. 1991. A subsurface northward current off Mindanao identified by dynamic calculation. Elsevier Oceanography Series, 54: 359–365, https://doi.org/10.1016/S0422-9894(08)70108-9.

    Google Scholar 

  • Hu D X, Hu S J, Wu L X, Li L, Zhang L L, Diao X Y, Chen Z H, Li Y L, Wang F, Yuan D L. 2013. Direct measurements of the luzon undercurrent. Journal of Physical Oceanography, 43(7): 1 417–1 425, https://doi.org/10.1175/JPO-D-12-0165.1.

    Google Scholar 

  • Hu D X, Wang F, Wu L X, Chen D K, Liu Q Y, Tian J W, Yuan D L, Mayer B, Adi R, Ando K, Kashino Y, Masumoto Y, Jeon D, Lee J H, Villanoy C, Gordon A, Kessler W, Qiu B, Qu T D, Riser S, Susanto D, Zhang D X. 2011. Northwestern Pacific Ocean Circulation and Climate Experiment (NPOCE) Science/Implementation Plan. China Ocean Press, Beijing, China. 7p.

    Google Scholar 

  • Hu D X, Wu L X, Cai W J, Gupta A S, Ganachaud A, Qiu B, Gordon A L, Lin X P, Chen Z H, Hu S J, Wang G J, Wang Q Y, Sprintall J, Qu T D, Kashino Y, Wang F, Kessler W S. 2015. Pacific western boundary currents and their roles in climate. Nature, 522(7556): 299–308, https://doi.org/10.1038/nature14504.

    Google Scholar 

  • Hu D X, Yu L J. 2008. An approach to prediction of the South China Sea summer monsoon onset. Chinese Journal of Oceanology and Limnology, 26(4): 421–424, https://doi.org/10.1007/s00343-008-0421-9.

    Google Scholar 

  • Hu S J, Hu D X. 2012. Heat center of the western Pacific warm pool. Chinese Journal of Oceanology and Limnology, 30(1): 169–176, https://doi.org/10.1007/s00343-012-1193-9.

    Google Scholar 

  • Hu S J, Hu D X, Guan C, Wang F, Zhang L L, Wang F J, Wang Q Y. 2016. Interannual variability of the Mindanao Current/Undercurrent in direct observations and numerical simulations. Journal of Physical Oceanography, 46(2): 483–499, https://doi.org/10.1175/JPO-D-15-0092.1.

    Google Scholar 

  • Hu S J, Hu D X, Guan C, Xing N, Li J P, Feng J Q. 2017. Variability of the western Pacific warm pool structure associated with El Niño. Climate Dynamics, 49(7): 2 431–2 449, https://doi.org/10.1007/s00382-016-3459-y.

    Google Scholar 

  • Hu S J, Liu L L, Guan C, Zhang L L, Wang J N, Wang Q Y, Ma J, Wang F J, Jia F, Feng J Q, Lu X, Wang F, Hu D X. 2020a. Dynamic features of near-inertial oscillations in the Northwestern Pacific derived from mooring observations from 2015 to 2018. Journal of Oceanology and Limnology, https://doi.org/10.1007/s00343-020-9332-1.

    Google Scholar 

  • Hu S J, Sprintall J. 2016. Interannual variability of the Indonesian Throughflow: the salinity effect. Journal of Geophysical Research, 121(4): 2 596–2 615, https://doi.org/10.1002/2015JC011495.

    Google Scholar 

  • Hu S J, Sprintall J. 2017. Observed strengthening of interbasin exchange via the Indonesian seas due to rainfall intensification. Geophysical Research Letters, 44(3): 1 448–1 456, https://doi.org/10.1002/2016GL072494.

    Google Scholar 

  • Hu S J, Sprintall J, Guan C, McPhaden M J, Wang F, Hu D X, Cai W J. 2020b. Deep-reaching acceleration of global mean ocean circulation over the past two decades. Science Advances, 6(6): eaax7727, https://doi.org/10.1126/sciadv.aax7727.

    Google Scholar 

  • Hu S J, Sprintall J, Guan C, Sun B W, Wang F, Yang G, Jia F, Wang J N, Hu D X, Chai F. 2018. Spatiotemporal features of intraseasonal oceanic variability in the Philippine Sea from mooring observations and numerical simulations. Journal of Geophysical Research, 123(7): 4 874–4 887, https://doi.org/10.1029/2017JC013653.

    Google Scholar 

  • Hu S J, Zhang Y, Feng M, Du Y, Sprintall J, Wang F, Hu D X, Xie Q, Chai F. 2019a. Interannual to decadal variability of upperocean salinity in the southern Indian ocean and the role of the Indonesian Throughflow. Journal of Climate, 32(19): 6 403–6 421, https://doi.org/10.1175/JCLI-D-19-0056.1.

    Google Scholar 

  • Hu X Y, Sprintall J, Yuan D L, Tranchant B, Gaspar P, Koch-Larrouy A, Reffray G, Li X, Wang Z, Li Y, Nugroho D, Corvianawatie C, Surinati D. 2019b. Interannual variability of the Sulawesi Sea Circulation forced by Indo-Pacific planetary waves. Journal of Geophysical Research, 124(3): 1 616–1 633, https://doi.org/10.1029/2018jc014356.

    Google Scholar 

  • Huang R H, Li W J. 1988. Influence of heat source anomaly over the western tropical Pacific on the subtropical high over East Asia and its physical mechanism. Chinese Journal of Atmospheric Sciences, 12(S1): 107–116, https://doi.org/10.3878/j.issn.1006-9895.1988.t1.08. (in Chinese with English abstract)

    Google Scholar 

  • Hui Y C, Zhang L L, Wang F J, Yan X M. 2020. Revisit of seasonal variability of subsurface temperature in the tropical Pacific with Argo data. Journal of Marine Systems, 204: 103 312, https://doi.org/10.1016/j.jmarsys.2020.103312.

    Google Scholar 

  • Hung R, Gu L, Zhou L T, Wu S S. 2006. Impact of the thermal state of the tropical western Pacific on onset date and process of the South China Sea summer monsoon. Advances in Atmospheric Sciences, 23(6): 909–924, https://doi.org/10.1007/s00376-006-0909-1.

    Google Scholar 

  • Jia F, Wu L X, Gan B L, Cai W J. 2016. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection. Scientific Reports, 6(1): 20 078, https://doi.org/10.1038/srep20078.

    Google Scholar 

  • Jia F, Cai W J, Wu L X, Gan B L, Wang G J, Kucharski F, Chang P, Keenlyside N. 2019. Weakening Atlantic Niño-Pacific connection under greenhouse warming. Science Advances, 5(8): eaax4111, https://doi.org/10.1126/sciadv.aax4111.

    Google Scholar 

  • Jin F F, An S I. 1999. Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophysical Research Letters, 26(19): 2 989–2 992, https://doi.org/10.1029/1999GL002297.

    Google Scholar 

  • Johns W E, Lee T N, Zhang D X, Zantopp R, Liu C T, Yang Y. 2001. The Kuroshio east of Taiwan: moored transport observations from the WOCE PCM-1 array. Journal of Physical Oceanography, 31(4): 1 031–1 053, https://doi.org/10.1175/1520-0485(2001)031<1031:TKEOTM>2.0.CO;2.

    Google Scholar 

  • Johnson G C, Lyman J M, Purkey S G. 2015. Informing deep Argo array design using Argo and full-depth hydrographic section data. Journal of Atmospheric and Oceanic Technology, 32(11): 2 187–2 198, https://doi.org/10.1175/JTECH-D-15-0139.1.

    Google Scholar 

  • Johnson G C, Mecking S, Sloyan B M, Wijffels S E. 2007. Recent bottom water warming in the Pacific Ocean. Journal of Climate, 20(21): 5 365–5 375, https://doi.org/10.1175/2007JCLI1879.1.

    Google Scholar 

  • Kashino Y, Ishida A, Hosoda S. 2011. Observed ocean variability in the Mindanao Dome region. Journal of Physical Oceanography, 41(2): 287–302, https://doi.org/10.1175/2010JPO4329.1.

    Google Scholar 

  • Kashino Y, Ishida A, Kuroda Y. 2005. Variability of the Mindanao current: mooring observation results. Geophysical Research Letters, 32(18): L18611, https://doi.org/10.1029/2005GL023880.

    Google Scholar 

  • Kawabe M, Fujio S. 2010. Pacific Ocean circulation based on observation. Journal of Oceanography, 66(3): 389–403, https://doi.org/10.1007/s10872-010-0034-8.

    Google Scholar 

  • Kawabe M, Taira K. 1998. Water masses and properties at 165°E in the western Pacific. Journal of Geophysical Research, 103(C6): 12 941–12 958, https://doi.org/10.1029/97JC03197.

    Google Scholar 

  • Kawarada Y, Kitou M, Furuhashi K, Sano A. 1968. Plankton in the western North Pacific in the winter of 1967 (CSK). Oceanographic Magazine, 20: 9–29.

    Google Scholar 

  • Kessler W S. 2006. The circulation of the eastern tropical Pacific: a review. Progress in Oceanography, 69(2–4): 181–217, https://doi.org/10.1016/j.pocean.2006.03.009.

    Google Scholar 

  • Kessler W S, Cravatte S. 2013a. Mean circulation of the Coral Sea. Journal of Geophysical Research, 118(12): 6 385–6 410, https://doi.org/10.1002/2013JC009117.

    Google Scholar 

  • Kessler W S, Cravatte S. 2013b. ENSO and short-term variability of the south equatorial current entering the coral sea. Journal of Physical Oceanography, 43(5): 956–969, https://doi.org/10.1175/JPO-D-12-0113.1.

    Google Scholar 

  • Kessler W S, Gourdeau L. 2006. Wind-driven zonal jets in the South Pacific Ocean. Geophysical Research Letters, 33(3): L03608, https://doi.org/10.1029/2005GL025084.

    Google Scholar 

  • Kessler W S, Gourdeau L. 2007. The annual cycle of circulation of the southwest subtropical Pacific, analyzed in an ocean GCM. Journal of Physical Oceanography, 37(6): 1 610–1 627, https://doi.org/10.1175/JPO3046.1.

    Google Scholar 

  • Kessler W S, Hristova H G, Davis R E. 2019a. Equatorward western boundary transport from the South Pacific: glider observations, dynamics and consequences. Progress in Oceanography, 175: 208–225, https://doi.org/10.1016/j.pocean.2019.04.005.

    Google Scholar 

  • Kessler W S, Wijffels S E, Cravatte S, Smith N, Authors L. 2019b. Second report of TPOS 2020.

    Google Scholar 

  • Koch-Larrouy A, Lengaigne M, Terray P, Madec G, Masson S. 2010. Tidal mixing in the Indonesian Seas and its effect on the tropical climate system. Climate Dynamics, 34(6): 891–904, https://doi.org/10.1007/s00382-009-0642-4.

    Google Scholar 

  • Kolodziejczyk N, Gaillard F. 2012. Observation of spiciness interannual variability in the Pacific pycnocline. Journal of Geophysical Research, 117(C12): C12018, https://doi.org/10.1029/2012JC008365.

    Google Scholar 

  • Kuroda Y. 2000. Variability of currents off the northern coast of New Guinea. Journal of Oceanography, 56(1): 103–116, https://doi.org/10.1023/A:1011122810354.

    Google Scholar 

  • Lee T, Fournier S, Gordon A L, Sprintall J. 2019. Maritime Continent water cycle regulates low-latitude chokepoint of global ocean circulation. Nature Communications, 10(1): 2103, https://doi.org/10.1038/s41467-019-10109-z.

    Google Scholar 

  • Lee T N, Johns W E, Liu C T, Zhang D X, Zantopp R, Yang Y. 2001. Mean transport and seasonal cycle of the kuroshio east of Taiwan with comparison to the florida current. Journal of Geophysical Research, 106(C10): 22 143–22 158, https://doi.org/10.1029/2000JC000535.

    Google Scholar 

  • Lei X T, Li Y P, Yu R L, Li H, Tang J, Duan Z Q, Zheng Y X, Fang P Z, Zhao B K, Zeng Z H, Huang W, Bao X W, Yu Z F, Chen G M, Ma L M, Luo J Y, Zhang S, Lin L M. 2019. A new generation of regional air-sea-wave coupled typhoon prediction system. Acta Oceanologica Sinica, 41(6): 123–134, https://doi.org/10.3969/j.issn.0253-4193.2019.06.012. (in Chinese with English abstract)

    Google Scholar 

  • Li J L, Gan J P. 2020. On the formation dynamics of the north equatorial undercurrent. Journal of Physical Oceanography, 50(5): 1 399–1 415, https://doi.org/10.1175/JPO-D-19-0142.1.

    Google Scholar 

  • Li X, Yang Y, Li R, Zhang L L, Yuan D L. 2020a. Structure and dynamics of the Pacific North equatorial subsurface current. Scientific Reports. (in press)

    Google Scholar 

  • Li X, Yuan D L, Wang Z, Li Y, Corvianawatie C, Surinati D, Sandra A, Bayhaqi A, Avianto P, Dirhamsyah E K D, Arifin Z. 2020b. Moored observations of transport and variability of Halmahera sea currents. Journal of Physical Oceanography, 50(2): 471–488, https://doi.org/10.1175/JPO-D-19-0109.1.

    Google Scholar 

  • Li Y L, Wang F. 2015. Thermocline spiciness variations in the tropical Indian Ocean observed during 2003–2014. Deep Sea Research Part I: Oceanographic Research Papers, 97: 52–66, https://doi.org/10.1016/j.dsr.2014.12.004.

    Google Scholar 

  • Li Y L, Wang F, Sun Y. 2012a. Low-frequency spiciness variations in the tropical Pacific Ocean observed during 2003–2012. Geophysical Research Letters, 39(23): L23601, https://doi.org/10.1029/2012GL053971.

    Google Scholar 

  • Li Y L, Wang F, Zhai F G. 2012b. Interannual variations of subsurface spiciness in the Philippine Sea: observations and mechanism. Journal of Physical Oceanography, 42(6): 1 022–1 038, https://doi.org/10.1175/jpo-d-12-06.1.

    Google Scholar 

  • Lian T, Chen D K, Tang Y M, Liu X H, Feng L, Zhou L. 2018. Linkage between westerly wind bursts and tropical cyclones. Geophysical Research Letters, 45(20): 11 431–11 438, https://doi.org/10.1029/2018GL079745.

    Google Scholar 

  • Lian T, Chen D K, Tang Y M, Wu Q Y. 2014. Effects of westerly wind bursts on El Niñ o: a new perspective. Geophysical Research Letters, 41(10): 3 522–3 527, https://doi.org/10.1002/2014GL059989.

    Google Scholar 

  • Liang J Y, Wu S S. 2002. A study of southwest monsoon onset date over the South China sea and its impact factors. Chinese Journal of Atmospheric Sciences, 26(6): 829–844. (in Chinese with English abstract)

    Google Scholar 

  • Lien R C, Ma B, Lee C M, Sanford T B, Mensah V, Centurioni L R, Cornuelle B D, Gopalakrishnan G, Gordon A L, Chang M H, Jayne S R, Yang Y J. 2015. The Kuroshio and Luzon Undercurrent east of Luzon Island. Oceanography, 28(4): 54–63, https://doi.org/10.5670/oceanog.2015.81.

    Google Scholar 

  • Lin A L, Gu D J, Zheng B, Li C H, Ji Z P. 2013. Relationship between South China Sea summer monsoon onset and Southern Ocean sea surface temperature variation. Chinese Journal of Geophysics, 56(2): 383–391. (in Chinese with English abstract)

    Google Scholar 

  • Lindstrom E, Lukas R, Fine R, Firing E, Godfrey S, Meyers G, Tsuchiya M. 1987. The western equatorial Pacific ocean circulation study. Nature, 330(6148): 533–537, https://doi.org/10.1038/330533a0.

    Google Scholar 

  • Liu Q Y, Feng M, Wang D X, Wijffels S. 2015. Interannual variability of the Indonesian Throughflow transport: a revisit based on 30 year expendable bathythermograph data. Journal of Geophysical Research, 120(12): 8 270–8 282, https://doi.org/10.1002/2015JC011351.

    Google Scholar 

  • Liu S S, Sun L, Wu Q Y, Yang Y J. 2017. The responses of cyclonic and anticyclonic eddies to typhoon forcing: the vertical temperature-salinity structure changes associated with the horizontal convergence/divergence. Journal of Geophysical Research, 122(6): 4 974–4 989, https://doi.org/10.1002/2017JC012814.

    Google Scholar 

  • Liu Z Y. 2012. Dynamics of interdecadal climate variability: a historical perspective. Journal of Climate, 25(6): 1 963–1 995, https://doi.org/10.1175/2011JCLI3980.1.

    Google Scholar 

  • Lu Z M, Wang G H, Shang X D. 2016. Response of a preexisting cyclonic ocean eddy to a typhoon. Journal of Physical Oceanography, 46(8): 2 403–2 410, https://doi.org/10.1175/JPO-D-16-0040.1.

    Google Scholar 

  • Lukas R, Yamagata T, McCreary J P. 1996. Pacific low-latitude western boundary currents and the Indonesian throughflow. Journal of Geophysical Research, 101(C5): 12 209–12 216, https://doi.org/10.1029/96JC01204.

    Google Scholar 

  • Lyu Y, Li Y L, Tang X H, Wang F, Wang J N. 2018. Contrasting intraseasonal variations of the equatorial Pacific Ocean between the 1997–1998 and 2015–2016 El Niño events. Geophysical Research Letters, 45(18): 9 748–9 756, https://doi.org/10.1029/2018GL078915.

    Google Scholar 

  • Ma Q, Wang F, Wang J N, Lyu Y. 2019. Intensified deep ocean variability induced by topographic Rossby waves at the Pacific Yap-Mariana junction. Journal of Geophysical Research, 124(11): 8 360–8 374, https://doi.org/10.1029/2019JC015490.

    Google Scholar 

  • Madden R A, Julian P R. 1994. Observations of the 40–50-day tropical oscillation—a review. Monthly Weather Review, 112(5): 814–837, https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    Google Scholar 

  • Mantua N J, Hare S R, Zhang Y, Wallace J M, Francis R C. 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78(6): 1 069–1 080, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    Google Scholar 

  • Masuzawa J. 1968. Second cruise for CSK, Ryofu Maru, January to March 1968. Oceanographic Magazine, 20: 173–185.

    Google Scholar 

  • Masuzawa J. 1969. The Mindanao current. Bulletin of the Japanese Society of Scientific Fisheries Oceanography, pp.99–104.

    Google Scholar 

  • McPhaden M J, Busalacchi A J, Cheney R, Donguy J R, Gage K S, Halpern D, Ji M, Julian P, Meyers G, Mitchum G T, Niiler P P, Picaut J, Reynolds R W, Smith N, Takeuchi T. 1998. The Tropical Ocean-Global Atmosphere observing system: a decade of progress. Journal of Geophysical Research, 103(C7): 14 169–14 240, https://doi.org/10.1029/97JC02906.

    Google Scholar 

  • Melet A, Gourdeau L, Kessler W S, Verron J, Molines J M. 2010a. Thermocline circulation in the Solomon Sea: a modeling study. Journal of Physical Oceanography, 40(6): 1 302–1 319, https://doi.org/10.1175/2009JPO4264.1.

    Google Scholar 

  • Melet A, Gourdeau L, Verron J. 2010b. Variability in Solomon Sea circulation derived from altimeter sea level data. Ocean Dynamics, 60(4): 883–900, https://doi.org/10.1007/s10236-010-0302-6.

    Google Scholar 

  • Melet A, Gourdeau L, Verron J, Djath B. 2013. Solomon Sea circulation and water mass modifications: response at ENSO timescales. Ocean Dynamics, 63(1): 1–19, https://doi.org/10.1007/s10236-012-0582-0.

    Google Scholar 

  • Melet A, Verron J, Gourdeau L, Koch-Larrouy A. 2011. Equatorward pathways of Solomon sea water masses and their modifications. Journal of Physical Oceanography, 41(4): 810–826, https://doi.org/10.1175/2010JPO4559.1.

    Google Scholar 

  • Munk W H. 1950. On the wind-driven ocean circulation. Journal of the Atmospheric Sciences, 7(2): 80–93, https://doi.org/10.1175/1520-0469(1950)007<0080:OTWDOC>2.0.CO;2.

    Google Scholar 

  • Murray S, Lindstrom E, Kindle J, Weeks E. 1995. Transport through the Vitiaz Strait. WOCE Notes, 7(1): 21–23.

    Google Scholar 

  • Nan F, Yu F, Xue H J, Wang R, Si G C. 2015. Ocean salinity changes in the northwest Pacific subtropical gyre: the quasi-decadal oscillation and the freshening trend. Journal of Geophysical Research, 120(3): 2 179–2 192, https://doi.org/10.1002/2014JC010536.

    Google Scholar 

  • Napitu A M, Gordon A L, Pujiana K. 2015. Intraseasonal sea surface temperature variability across the Indonesian seas. Journal of Climate, 28(22): 8 710–8 727, https://doi.org/10.1175/JCLI-D-14-00758.1.

    Google Scholar 

  • Napitu A M, Pujiana K, Gordon A L. 2019. The madden-Julian oscillation’s impact on the Makassar strait surface layer transport. Journal of Geophysical Research, 124(6): 3 538–3 550, https://doi.org/10.1029/2018JC014729.

    Google Scholar 

  • Nitani H. 1972. Beginning of the kuroshio. In: Stommel H, Yoshida K eds. Kuroshio: Its Physical Aspects. University of Washington Press, Tokyo, Japan. p.129–163.

    Google Scholar 

  • Oka E, Ishii M, Nakano T, Suga T, Kouketsu S, Miyamoto M, Nakano H, Qiu B, Sugimoto S, Takatani Y. 2018. Fifty years of the 137°E repeat hydrographic section in the western North Pacific ocean. Journal of Oceanography, 74(2): 115–145, https://doi.org/10.1007/s10872-017-0461-x.

    Google Scholar 

  • Pei Y H, Zhang R H, Chen D K. 2015. Upper ocean response to tropical cyclone wind forcing: a case study of typhoon Rammasun (2008). Science China Earth Sciences, 58(9): 1 623–1 632, https://doi.org/10.1007/s11430-015-5127-1.

    Google Scholar 

  • Picaut J, Masia F, du Penhoat Y. 1997. An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277(5326): 663–666, https://doi.org/10.1126/science.277.5326.663.

    Google Scholar 

  • Pujiana K, Gordon A L, Sprintall J. 2013. Intraseasonal kelvin wave in Makassar strait. Journal of Geophysical Research, 118(4): 2 023–2 034, https://doi.org/10.1002/jgrc.20069.

    Google Scholar 

  • Pujiana K, McPhaden M J, Gordon A L, Napitu A M. 2019. Unprecedented response of Indonesian throughflow to anomalous Indo-Pacific climatic forcing in 2016. Journal of Geophysical Research, 124(6): 3 737–3 754, https://doi.org/10.1029/2018jc014574.

    Google Scholar 

  • Qi J F, Zhang L L, Qu T D, Yin B S, Xu Z H, Yang D Z, Li D L, Qin Y H. 2019. Salinity variability in the tropical Pacific during the Central-Pacific and Eastern-Pacific El Niño events. Journal of Marine Systems, 199: 103 225, https://doi.org/10.1016/j.jmarsys.2019.103225.

    Google Scholar 

  • Qiu B, Chen S M. 2010. Interannual variability of the North Pacific Subtropical Countercurrent and its associated mesoscale eddy field. Journal of Physical Oceanography, 40(1): 213–225, https://doi.org/10.1175/2009JPO4285.1.

    Google Scholar 

  • Qiu B, Chen S M, Rudnick D L, Kashino Y. 2015. A new paradigm for the north Pacific subthermocline low-latitude western boundary current system. Journal of Physical Oceanography, 45(9): 2 407–2 423, https://doi.org/10.1175/JPO-D-15-0035.1.

    Google Scholar 

  • Qiu B, Chen S M, Sasaki H. 2013a. Generation of the north equatorial undercurrent jets by triad baroclinic Rossby wave interactions. Journal of Physical Oceanography, 43(12): 2 682–2 698, https://doi.org/10.1175/JPO-D-13-099.1.

    Google Scholar 

  • Qiu B, Joyce T M. 1992. Interannual variability in the midand low-latitude western North Pacific. Journal of Physical Oceanography, 22(9): 1 062–1 079, https://doi.org/10.1175/1520-0485(1992)022<1062:IVITMA>2.0.CO;2.

    Google Scholar 

  • Qiu B, Rudnick D L, Chen S M, Kashino Y. 2013b. Quasistationary North Equatorial Undercurrent jets across the tropical North Pacific Ocean. Geophysical Research Letters, 40(10): 2 183–2 187, https://doi.org/10.1002/grl.50394.

    Google Scholar 

  • Qu T D, Gao S, Fine R A. 2013. Subduction of south pacific tropical water and its equatorward pathways as shown by a simulated passive tracer. Journal of Physical Oceanography, 43(8): 1 551–1 565, https://doi.org/10.1175/JPO-D-12-0180.1.

    Google Scholar 

  • Qu T D, Mitsudera H, Yamagata T. 1998. On the western boundary currents in the Philippine Sea. Journal of Geophysical Research, 103(C4): 7 537–7 548, https://doi.org/10.1029/98JC00263.

    Google Scholar 

  • Ren Q P, Li Y L, Wang F, Song L N, Liu C Y, Zhai F G. 2018. Seasonality of the Mindanao current/undercurrent system. Journal of Geophysical Research, 123(2): 1 105–1 122, https://doi.org/10.1002/2017JC013474.

    Google Scholar 

  • Ridgway K R, Benthuysen J A, Steinberg C. 2018. Closing the gap between the Coral Sea and the equator: direct observations of the north Australian western boundary currents. Journal of Geophysical Research, 123(12): 9 212–9 231, https://doi.org/10.1029/2018JC014269.

    Google Scholar 

  • Riser S C, Freeland H J, Roemmich D, Wijffels S, Troisi A, Belbéoch M, Gilbert D, Xu J P, Pouliquen S, Thresher A, Le Traon P Y, Maze G, Klein B, Ravichandran M, Grant F, Poulain P M, Suga T, Lim B, Sterl A, Sutton P, Mork K A, Vélez-Belchí P J, Ansorge I, King B, Turton J, Baringer M, Jayne S R. 2016. Fifteen years of ocean observations with the global Argo array. Nature Climate Change, 6(2): 145–153, https://doi.org/10.1038/nclimate2872.

    Google Scholar 

  • Roemmich D, Gilson J, Davis R, Sutton P, Wijffels S, Riser S. 2007. Decadal spinup of the South Pacific Subtropical Gyre. Journal of Physical Oceanography, 37: 162–173, https://doi.org/10.1175/JPO3004.1.

    Google Scholar 

  • Rowe G D, Firing E, Johnson G C. 2000. Pacific Equatorial Subsurface Countercurrent velocity, transport, and potential vorticity. Journal of Physical Oceanography, 30(6): 1 172–1 187, https://doi.org/10.1175/1520-0485(2000)030<1172:PESCVT>2.0.CO;2.

    Google Scholar 

  • Sasano D, Takatani Y, Kosugi N, Nakano T, Midorikawa T, Ishii M. 2015. Multidecadal trends of oxygen and their controlling factors in the western North Pacific. Global Biogeochemical Cycles, 29(7): 935–956, https://doi.org/10.1002/2014GB005065.

    Google Scholar 

  • Schönau M C, Rudnick D L. 2015. Glider observations of the North Equatorial Current in the western tropical Pacific. Journal of Geophysical Research, 120(4): 3 586–3 605, https://doi.org/10.1002/2014JC010595.

    Google Scholar 

  • Schönau M C, Rudnick D L. 2017. Mindanao Current and Undercurrent: thermohaline structure and transport from repeat glider observations. Journal of Physical Oceanography, 47(8): 2 055–2 075, https://doi.org/10.1175/JPO-D-16-0274.1.

    Google Scholar 

  • Seiki A, Takayabu Y N. 2007. Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: statistics. Monthly Weather Review, 135(10): 3 325–3 345, https://doi.org/10.1175/MWR3477.1.

    Google Scholar 

  • Siedler G, Holfort J, Zenk W, Müller T J, Csernok T. 2004. Deep-water flow in the Mariana and Caroline Basins. Journal of Physical Oceanography, 34(3): 566–581, https://doi.org/10.1175/2511.1.

    Google Scholar 

  • Smith N, Kessler W S, Cravatte S, Sprintall J, Wijffels S, Cronin M F, Sutton A, Serra Y L, Dewitte B, Strutton P G, Hill K, Gupta A S, Lin X P, Takahashi K, Chen D K, Brunner S. 2019. Tropical pacific observing system. Frontiers in Marine Science, 6: 31, https://doi.org/10.3389/fmars.2019.00031.

    Google Scholar 

  • Sobel A H, Maloney E D. 2000. Effect of ENSO and the MJO on western North Pacific tropical cyclones. Geophysical Research Letters, 27(12): 1 739–1 742, https://doi.org/10.1029/1999GL011043.

    Google Scholar 

  • Soden B J, Fu R. 1995. A satellite analysis of deep convection, upper-tropospheric humidity, and the greenhouse effect. Journal of Climate, 8(10): 2 333–2 351, https://doi.org/10.1175/1520-0442(1995)008<2333:ASAODC>2.0.CO;2.

    Google Scholar 

  • Song L N, Li Y L, Liu C Y, Wang F, Wang J N. 2019a. Observed deep-reaching signatures of the madden-Julian oscillation in the ocean circulation of the Western Tropical Pacific. Geophysical Research Letters, 46(24): 14 634–14 643, https://doi.org/10.1029/2019GL085606.

    Google Scholar 

  • Song L N, Li Y L, Wang F, Wang J N, Liu C Y. 2018a. Subsurface structure and variability of the zonal currents in the Northwestern Tropical Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 141: 11–23, https://doi.org/10.1016/j.dsr.2018.09.004.

    Google Scholar 

  • Song L N, Li Y L, Wang J N, Hu S J, Liu C Y, Diao X Y, Guan C. 2018b. Tropical meridional overturning circulation observed by subsurface moorings in the Western Pacific. Scientific Reports, 8: 7 632, https://doi.org/10.1038/s41598-018-26047-7.

    Google Scholar 

  • Song X, Chen Z, Wang H, Yu W, Yu F, Qiao F, Chai F, Lin X, Wang F, Hu D, Shi L, Zou B, Lin M, Jiang X, Cheng L, Huang G, Zhu J, Wang B, Jiang M, Peng W, Han J, Yu J, Gu Y, Li P, Guan X, Huang J, Lin Y, Luo Y, Tao A, Zheng J, Du Y, Wang D. 2019b. China’s vision towards Tropical Pacific Observing System (TPOS) 2020. CLIVAR Exchanges, 75: 6–12.

    Google Scholar 

  • SPICE Community. 2012. Naming a western boundary current from Australia to the Solomon Sea. CLIVAR Exchanges, 17(1): 28.

    Google Scholar 

  • Sprintall J, Cravatte S, Dewitt B et al. 2020. ENSO oceanic teleconnections. In: McPhaden M, Santoso A, Cai W eds. ENSO in A Changing Climate. (in press)

    Google Scholar 

  • Sprintall J, Gordon A L, Koch-Larrouy A, Lee T, Potemra J T, Pujiana K, Wijffels S E. 2014. The Indonesian seas and their role in the coupled ocean-climate system. Nature Geoscience, 7(7): 487–492, https://doi.org/10.1038/ngeo2188.

    Google Scholar 

  • Sprintall J, Gordon A L, Wijffels S E, Feng M, Hu S J, Koch-Larrouy A, Phillips H, Nugroho D, Napitu A, Pujiana K, Susanto R D, Sloyan B, Peña-Molino B, Yuan D L, Riama N F, Siswanto S, Kuswardani A, Arifin Z, Wahyudi A, Zhou H, Nagai T, Ansong J K, Bourdalle-Badié R, Chanut J, Lyard F, Arbic B K, Ramdhani A, Setiawan A. 2019. Detecting change in the Indonesian seas. Frontiers in Marine Science, 6: 257, https://doi.org/10.3389/fmars.2019.00257.

    Google Scholar 

  • Sprintall J, Wijffels S, Gordon A L, Ffield A, Molcard R, Susanto R D, Soesilo I, Sopaheluwakan J, Surachman Y, van Aken H M. 2011. INSTANT: a new international array to measure the Indonesian Throughflow. Eos, Transactions American Geophysical Union, 85(39): 369–376, https://doi.org/10.1029/2004EO390002.

    Google Scholar 

  • Sprintall J, Wijffels S E, Molcard R, Jaya I. 2009. Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006. Journal of Geophysical Research, 114(C7): C07001, https://doi.org/10.1029/2008JC005257.

    Google Scholar 

  • Stommel H, Yoshida K. 1972. Kuroshio: its Physical Aspects. University of Tokyo Press, Tokyo.

    Google Scholar 

  • Sun J, Zuo J C, Ling Z, Yan Y W. 2016. Role of ocean upper layer warm water in the rapid intensification of tropical cyclones: a case study of typhoon Rammasun (1409). Acta Oceanologica Sinica, 35(3): 63–68, https://doi.org/10.1007/s13131-015-0761-1.

    Google Scholar 

  • Sun L, Li Y X, Yang Y J, Wu Q Y, Chen X T, Li Q Y, Li Y B, Xian T. 2014. Effects of super typhoons on cyclonic ocean eddies in the western North Pacific: a satellite data-based evaluation between 2000 and 2008. Journal of Geophysical Research, 119(9): 5 585–5 598, https://doi.org/10.1002/2013JC009575.

    Google Scholar 

  • Susanto R D, Ffield A, Gordon A L, Adi T R. 2012. Variability of Indonesian throughflow within Makassar strait, 2004–2009. Journal of Geophysical Research, 117(C9): C09013, https://doi.org/10.1029/2012JC008096.

    Google Scholar 

  • Susanto R D, Wei Z X, Adi R T, Fan B, Li S J, Fang G H. 2013. Observations of the karimata strait througflow from December 2007 to november 2008. Acta Oceanologica Sinica, 32(5): 1–6, https://doi.org/10.1007/s13131-013-0307-3.

    Google Scholar 

  • Suzuoki T, Shirakawa K. 1979. Visual observation on the floating pollutants in Open Ocean. Oceanogr Mag, 30: 55–60.

    Google Scholar 

  • Taguchi B, Furue R, Komori N, Kuwano-Yoshida A, Nonaka M, Sasaki H, Ohfuchi W. 2012. Deep oceanic zonal jets constrained by fine-scale wind stress curls in the South Pacific Ocean: a high-resolution coupled GCM study. Geophysical Research Letters, 39(8): L08602, https://doi.org/10.1029/2012GL051248.

    Google Scholar 

  • Talley L D. 2007. Hydrographic atlas of the World Ocean Circulation Experiment (WOCE): Volume 2: Pacific Ocean. In: Sparrow M, Chapman P, Gould J eds. International WOCE Project Office. National Oceanography Centre, Southampton.

    Google Scholar 

  • Todd R E, Chavez F P, Clayton S, Cravatte S, Goes M, Graco M, Lin X P, Sprintall J, Zilberman N V, Archer M, Arístegui J, Balmaseda M, Bane J M, Baringer M O, Barth J A, Beal L M, Brandt P, Calil P H R, Campos E, Centurioni L R, Chidichimo M P, Cirano M, Cronin M F, Curchitser E N, Davis R E, Dengler M, deYoung B, Dong S F, Escribano R, Fassbender A J, Fawcett S E, Feng M, Goni G J, Gray A R, Gutiérrez D, Hebert D, Hummels R, Ito S I, Krug M, Lacan F, Laurindo L, Lazar A, Lee C M, Lengaigne M, Levine N M, Middleton J, Montes I, Muglia M, Nagai T, Palevsky H I, Palter J B, Phillips H E, Piola A, Plueddemann A J, Qiu B, Rodrigues R R, Roughan M, Rudnick D L, Rykaczewski R R, Saraceno M, Seim H, Gupta A S, Shannon L, Sloyan B M, Sutton A J, Thompson L, van der Plas A K, Volkov D, Wilkin J, Zhang D X, Zhang L L. 2019. Global perspectives on observing ocean boundary current systems. Frontiers in Marine Science, 6: 423, https://doi.org/10.3389/fmars.2019.00423.

    Google Scholar 

  • Tsuchiya M. 1968. Upper Waters of the Intertropical Pacific Ocean. The Johns Hopkins Press, Baltimore. p.307–318.

    Google Scholar 

  • Tsuchiya M. 1975. Subsurface countercurrents in the eastern equatorial Pacific Ocean. Journal of Marine Research, 33(S1): 145–175.

    Google Scholar 

  • Uda M, Hasunuma K. 1969. The eastward Subtropical Countercurrent in the western North Pacific Ocean. Journal of the Oceanographical Society of Japan, 25(4): 201–210, https://doi.org/10.5928/kaiyou1942.25.201.

    Google Scholar 

  • Ueki I, Kashino Y, Kuroda Y. 2003. Observation of current variations off the New Guinea coast including the 1997–1998 El Nino period and their relationship with Sverdrup transport. Journal of Geophysical Research, 108(C7): 3243, https://doi.org/10.1029/2002JC001611.

    Google Scholar 

  • Wang F, Hu D, Bai H. 1998. Western boundary undercurrents east of the Philippines. In: Proceedings of the 4th Pacific Ocean Remote Sensing Conference. Qingdao, China. p.551–556.

    Google Scholar 

  • Wang F, Hu D X. 1999. Preliminary study on the formation mechanism of counter western boundary undercurrents below the thermocline—a conceptual model. Chinese Journal of Oceanology and Limnology, 17(1): 1–9, https://doi.org/10.1007/bf02842694.

    Google Scholar 

  • Wang F, Li Y L, Wang J N. 2016a. Intraseasonal variability of the surface zonal currents in the western Tropical Pacific ocean: characteristics and mechanisms. Journal of Physical Oceanography, 46(12): 3 639–3 660, https://doi.org/10.1175/JPO-D-16-0033.1.

    Google Scholar 

  • Wang F, Song L N, Li Y L, Liu C Y, Wang J N, Lin P F, Yang G, Zhao J, Diao X Y, Zhang D X, Hu D X. 2016b. Semiannually alternating exchange of intermediate waters east of the Philippines. Geophysical Research Letters, 43(13): 7 059–7 065, https://doi.org/10.1002/2016GL069323.

    Google Scholar 

  • Wang F, Wang J N, Guan C, Ma Q, Zhang D X. 2016c. Mooring observations of equatorial currents in the upper 1000 m of the western Pacific Ocean during 2014. Journal of Geophysical Research, 121(6): 3 730–3 740, https://doi.org/10.1002/2015JC011510.

    Google Scholar 

  • Wang F, Wang J N, Xu L J, Zhang X G, Yan S F, Chen Y H. 2020a. The development of a new real-time subsurface mooring. Journal of Oceanology and Limnology, https://doi.org/10.1007/s00343-020-0144-0.

    Google Scholar 

  • Wang F, Zang N, Li Y L, Hu D X. 2015. On the subsurface countercurrents in the Philippine Sea. Journal of Geophysical Research, 120(1): 131–144, https://doi.org/10.1002/2013JC009690.

    Google Scholar 

  • Wang F, Wang Q Y, Zhang L L, Hu D X, Hu S J, Feng J Q. 2019. Spatial distribution of the seasonal variability of the North Equatorial Current. Deep Sea Research Part I: Oceanographic Research Papers, 144: 63–74, https://doi.org/10.1016/j.dsr.2019.01.001.

    Google Scholar 

  • Wang F, Zhang L L, Hu D X, Wang Q Y, Zhai F G, Hu S J. 2017a. The vertical structure and variability of the western boundary currents east of the Philippines: case study from in situ observations from December 2010 to August 2014. Journal of Oceanography, 73(6): 743–758, https://doi.org/10.1007/s10872-017-0429-x.

    Google Scholar 

  • Wang G H, Wu L W, Johnson N C, Ling Z. 2016d. Observed three-dimensional structure of ocean cooling induced by Pacific tropical cyclones. Geophysical Research Letters, 43(14): 7 632–7 638, https://doi.org/10.1002/2016GL069605.

    Google Scholar 

  • Wang J N, Lu Y Y, Wang F, Zhang R H. 2017b. Surface current in “hotspot” serves as a new and effective precursor for El Niño prediction. Scientific Reports, 7(1): 166, https://doi.org/10.1038/s41598-017-00244-2.

    Google Scholar 

  • Wang J N, Ma Q, Wang F, Lu Y Y, Pratt L J. 2020b. Seasonal variation of the deep limb of the pacific meridional overturning circulation at Yap-Mariana junction. Journal of Geophysical Research, 125(7): e2019JC016017, https://doi.org/10.1029/2019JC016017.

    Google Scholar 

  • Wang J N, Wang F, Zhang L L. 2017c. Construction and operation of a deep-sea scientific observation network in the western Pacific. Oceanologia et Limnologia Sinica, 48(6): 1 471–1 479, https://doi.org/10.11693/hyhz20170900228. (in Chinese with English abstract)

    Google Scholar 

  • Wang X D, Wang C Z, Han G J, Li W, Wu X R. 2014. Effects of tropical cyclones on large-scale circulation and ocean heat transport in the South China Sea. Climate Dynamics, 43(12): 3 351–3 366, https://doi.org/10.1007/s00382-014-2109-5.

    Google Scholar 

  • Weller E, Min S K, Cai W J, Zwiers F W, Kim Y H, Lee D. 2016. Human-caused Indo-Pacific warm pool expansion. Science Advances, 2(7): e1501719, https://doi.org/10.1126/sciadv.1501719.

    Google Scholar 

  • Wu L X, Cai W J, Zhang L P, Nakamura H, Timmermann A, Joyce T, McPhaden M J, Alexander M, Qiu B, Visbeck M, Chang P, Giese B. 2012. Enhanced warming over the global subtropical western boundary currents. Nature Climate Change, 2(3): 161–166, https://doi.org/10.1038/nclimate1353.

    Google Scholar 

  • Wu S S, Liang J Y, Li C H. 2003. Relationship between the intensity of South China Sea summer monsoon and the precipitation in raining seasons in China. Journal of Tropical Meteorology, 19(S1): 25–36, https://doi.org/10.3969/j.issn.1004-4965.2003.z1.003. (in Chinese with English abstract)

    Google Scholar 

  • Wyrtki K. 1961. Physical Oceanography of the Southeast Asian Water. NAGA Report Volume 2. Scientific Results of Marine Investigations of the South China Sea and the Gulf of Thailand, 1959–1961. The University of California, Scripps Institution of Oceanography, La Jolla, Clifornia. p.195.

    Google Scholar 

  • Wyrtki K, Kilonsky B. 1984. Mean water and current structure during the Hawaii-to-Tahiti shuttle experiment. Journal of Physical Oceanography, 14(2): 242–254, https://doi.org/10.1175/1520-0485(1984)014<0242:MWACSD>2.0.CO;2.

    Google Scholar 

  • Yan Y F, Li L, Wang C Z. 2017. The effects of oceanic barrier layer on the upper ocean response to tropical cyclones. Journal of Geophysical Research, 122(6): 4 829–4 844, https://doi.org/10.1002/2017JC012694.

    Google Scholar 

  • Yan Y F, Qi Y Q, Zhou W. 2010. Interannual heat content variability in the South China Sea and its response to ENSO. Dynamics of Atmospheres and Oceans, 50(3): 400–414, https://doi.org/10.1016/j.dynatmoce.2010.07.002.

    Google Scholar 

  • Yang Y, Li X, Wang J, et al. 2020. Seasonal variability and dynamics of the Pacific North Equatorial Subsurface Current. Journal of Physical Oceanography, published online on July 9, https://doi.org/10.1175/JPO-D-19-0261.1.

    Google Scholar 

  • Yaremchuk M, Qu T D. 2004. Seasonal variability of the large scale currents near the coast of the Philippines. Journal of Physical Oceanography34(4): 844–855, https://doi.org/10.1175/1520-0485(2004)034<0844:SVOTLC>2.0.CO;2.

    Google Scholar 

  • Yoshida K, Kidokoro T. 1967. A subtropical countercurrent (II): a prediction of eastward flows at lower subtropical latitudes. Journal of the Oceanographical Society of Japan, 23(5): 231–246, https://doi.org/10.5928/kaiyou1942.23.231.

    Google Scholar 

  • Yu L J, Hu D X, Feng J Q. 2011. Role of the Pacific and the Indian Ocean in interdecadal variation of the South China Sea summer monsoon onset. Chinese Journal of Atmospheric Sciences, 35(6): 1 091–1 104. (in Chinese with English abstract)

    Google Scholar 

  • Yuan D L, Li X, Wang Z, Li Y, Wang J, Yang Y, Hu X Y, Tan S W, Zhou H, Wardana A K, Surinati D, Purwandana A, Azis I Mochamad F, Avianto P, Dirhamsyah D, Arifin Z, von Storch J S. 2018. Observed transport variations in the Maluku channel of the Indonesian seas associated with western boundary current changes. Journal of Physical Oceanography, 48(8): 1 803–1 813, https://doi.org/10.1175/JPO-D-17-0120.1.

    Google Scholar 

  • Yuan D L, Wang J, Xu T F, Xu P, Hui Z, Zhao X, Luan Y H, Zheng W P, Yu Y Q. 2011. Forcing of the Indian ocean dipole on the interannual variations of the tropical pacific ocean: roles of the Indonesian throughflow. Journal of Climate, 24(14): 3 593–3 608, https://doi.org/10.1175/2011jcli3649.1.

    Google Scholar 

  • Yuan D L, Zhang Z C, Chu P C, Dewar W K. 2014. Geostrophic circulation in the tropical North Pacific Ocean based on Argo profiles. Journal of Physical Oceanography, 44(2): 558–575, https://doi.org/10.1175/JPO-D-12-0230.1.

    Google Scholar 

  • Yuan D L, Zhou H, Zhao X. 2013. Interannual climate variability over the tropical pacific ocean induced by the Indian Ocean dipole through the Indonesian throughflow. Journal of Climate, 26(9): 2 845–2 861, https://doi.org/10.1175/jcli-d-12-00117.1.

    Google Scholar 

  • Zhang D, Johns W E, Lee T N. 2002. The seasonal cycle of meridional heat transport at 24°N in the north pacific and in the global ocean. Journal of Geophysical Research, 107(C7): 3 083, https://doi.org/10.1029/2001JC001011.

    Google Scholar 

  • Zhang D X, Lee T N, Johns W E, Liu C T, Zantopp R. 2001. The Kuroshio east of Taiwan: modes of variability and relationship to interior ocean mesoscale eddies. Journal of Physical Oceanography, 31(4): 1 054–1 074, https://doi.org/10.1175/1520-0485(2001)031<1054:TKEOTM>2.0.CO;2.

    Google Scholar 

  • Zhang H, Chen D K, Zhou L, Liu X H, Ding T, Zhou B F. 2016. Upper ocean response to typhoon Kalmaegi (2014). Journal of Geophysical Research, 121(8): 6 520–6 535, https://doi.org/10.1002/2016JC012064.

    Google Scholar 

  • Zhang H, Liu X H, Wu R H, Liu F, Yu L H, Shang X D, Qi Y F, Wang Y, Song X S, Xie X H, Yang C H, Tian D, Zhang W Y. 2019. Ocean response to successive typhoons sarika and haima (2016) based on data acquired via multiple satellites and moored array. Remote Sensing, 11(20): 2 360, https://doi.org/10.3390/rs11202360.

    Google Scholar 

  • Zhang H, Wu R H, Chen D K, Liu X H, He H L, Tang Y M, Ke D X, Shen Z Q, Li J D, Xie J C, Tian D, Ming J, Liu F, Zhang D N, Zhang W Y. 2018. Net modulation of upper ocean thermal structure by typhoon Kalmaegi (2014). Journal of Geophysical Research, 123(10): 7 154–7 171, https://doi.org/10.1029/2018JC014119.

    Google Scholar 

  • Zhang L L, Hu D X, Hu S J, Wang F, Wang F J, Yuan D L. 2014. Mindanao Current/Undercurrent measured by a subsurface mooring. Journal of Geophysical Research, 119(6): 3 617–3 628, https://doi.org/10.1002/2013JC009693.

    Google Scholar 

  • Zhang L L, Qu T D. 2014. Low-frequency variability of South Pacific Tropical Water from Argo. Geophysical Research Letters, 41(7): 2 441–2 446, https://doi.org/10.1002/2014GL059490.

    Google Scholar 

  • Zhang L L, Qu T D. 2015. Low-frequency variability of the South Pacific Subtropical Gyre as seen from satellite altimetry and Argo. Journal of Physical Oceanography, 45(12): 3 083–3 098, https://doi.org/10.1175/jpo-d-15-0026.1.

    Google Scholar 

  • Zhang L L, Sun C, Hu D X. 2012. Relationship between oceanic heat content and sea surface height on interannual time scale. Chinese Journal of Oceanology and Limnology, 30(6): 1 026–1 032, https://doi.org/10.1007/s00343-012-1247-z.

    Google Scholar 

  • Zhang L L, Wang F J, Wang Q Y, Hu S J, Wang F, Hu D X. 2017. Structure and variability of the north equatorial current/undercurrent from mooring measurements at 130°E in the Western Pacific. Scientific Reports, 7(1): 46 310, https://doi.org/10.1038/srep46310.

    Google Scholar 

  • Zhang Y, Wallace J M, Battisti D S. 1997. ENSO-like interdecadal variability: 1900–93. Journal of Climate, 10(5): 1 004–1 020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    Google Scholar 

  • Zheng J Y, Wu Q Y, Guo Y P, Zhao S. 2016. The impact of summertime North Indian ocean SST on tropical cyclone genesis over the Western North Pacific. SOLA, 12: 242–246, https://doi.org/10.2151/sola.2016-048.

    Google Scholar 

  • Zhou H, Yuan D L, Yang L N, Li X, Dewar W. 2018. Decadal variability of the meridional geostrophic transport in the upper tropical north pacific ocean. Journal of Climate, 31(15): 5 891–5 910, https://doi.org/10.1175/JCLI-D-17-0639.1.

    Google Scholar 

  • Zhou L, Chen D K, Lei X T, Wang W, Wang G H, Han G J. 2019. Progress and perspective on interactions between ocean and typhoon. Chinese Science Bulletin, 64(1): 60–72, https://doi.org/10.1360/N972018-00668.

    Google Scholar 

  • Zhuang W, Feng M, Du Y, Schiller A, Wang D X. 2013. Low-frequency sea level variability in the southern Indian Ocean and its impacts on the oceanic meridional transports. Journal of Geophysical Research, 118(3): 1 302–1 315, https://doi.org/10.1002/jgrc.20129.

    Google Scholar 

  • Zilberman N V, Roemmich D H, Gille S T. 2013. The mean and the time variability of the shallow meridional overturning circulation in the tropical South Pacific Ocean. Journal of Climate, 26(12): 4 069–4 087, https://doi.org/10.1175/JCLI-D-12-00120.1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fan Wang or Linlin Zhang.

Additional information

Supported by the National Natural Science Foundation of China (Nos. 40890150, 41730534, 41776021), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB42000000), the National Key Research and Development Program of China (No. 2017YFA0603200), the Aoshan Science and Technology Innovation Project (No. 2016ASKJ12), and the Major Project of Science and Technology Innovation of Shandong (No. 2018SDKJ01); JS was supported by the USA National Science Foundation award 1851316

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Wang, F., Sprintall, J. et al. Review on observational studies of western tropical Pacific Ocean circulation and climate. J. Ocean. Limnol. 38, 906–929 (2020). https://doi.org/10.1007/s00343-020-0240-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-020-0240-1

Keyword

Navigation