Skip to main content
Log in

Age-dependent frequencies of NPM1 mutations and FLT3-ITD in patients with normal karyotype AML (NK-AML)

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Prognosis of AML in elderly patients is poor due to adverse patient characteristics and comorbidities. In addition, disease-associated parameters reveal differences between older and younger patients with AML. Survival in normal karyotype AML (NK-AML) is influenced by different clinical and molecular markers. The aim of this work was to investigate the frequencies of molecular markers in patients with NK-AML with a focus on NPM1 mutations and FLT3-ITD in different age groups. In the present study, we analyzed the frequencies of mutations of NPM1 and FLT3-ITD in a cohort of 1,321 adult patients and 148 children with AML treated within the AMLCG99, the AML98, and AML04 trials and their distribution in different age groups. Additionally, the frequencies of mutations in CEBPA genes, FLT3-TKD, and MLL-PTD were analyzed in the cohort with NK-AML (n = 729). Our data show that the presence of mutations of NPM1 (from 60% to 40%) and FLT3-ITD (from 50% to 20%) significantly decreased with age in adult AML. Consequently, the proportion of NPM1−/FLT3-ITD− patients increased with age. The decreasing frequency of NPM1 mutations in elderly patients was paralleled by a reduced complete remission (CR) rate in the elderly of 55% compared to 80% in the younger patients. By contrast, the frequencies of other gene mutations, like FLT3-TKD and MLL-PTD, and mutations in CEBPA were not age-dependent. The decreasing frequency of the favorable NPM1 mutations with increasing age may partially explain the worse outcome in the elderly patients. Furthermore, the increasing amount of elderly patients without NPM1 mutations or FLT3-ITD suggests that other molecular and clinical risk factors may influence prognosis in this age group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Büchner T, Berdel WE, Haferlach C, Haferlach T, Schnittger S, Müller-Tidow C, Braess J, Spiekermann K, Kienast J, Staib P, Gruneisen A, Kern W, Reichle A, Maschmeyer G, Aul C, Lengfelder E, Sauerland MC, Heinecke A, Wörmann B, Hiddemann W (2009) Age-related risk profile and chemotherapy dose response in acute myeloid leukemia: a study by the German Acute Myeloid Leukemia Cooperative Group. J Clin Oncol 27(1):61–69. doi:10.1200/JCO.2007.15.4245

    Article  PubMed  Google Scholar 

  2. Bacher U, Kern W, Schnittger S, Hiddemann W, Haferlach T, Schoch C (2005) Population-based age-specific incidences of cytogenetic subgroups of acute myeloid leukemia. Haematologica 90(11):1502–1510

    PubMed  CAS  Google Scholar 

  3. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, La Starza R, Diverio D, Colombo E, Santucci A, Bigerna B, Pacini R, Pucciarini A, Liso A, Vignetti M, Fazi P, Meani N, Pettirossi V, Saglio G, Mandelli F, Lo-Coco F, Pelicci PG, Martelli MF (2005) Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 352(3):254–266. doi:10.1056/NEJMoa041974

    Article  PubMed  CAS  Google Scholar 

  4. Falini B, Nicoletti I, Martelli MF, Mecucci C (2007) Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features. Blood 109(3):874–885. doi:10.1182/blood-2006-07-012252

    Article  PubMed  CAS  Google Scholar 

  5. Hollink IH, Zwaan CM, Zimmermann M, Arentsen-Peters TC, Pieters R, Cloos J, Kaspers GJ, de Graaf SS, Harbott J, Creutzig U, Reinhardt D, van den Heuvel-Eibrink MM, Thiede C (2009) Favorable prognostic impact of NPM1 gene mutations in childhood acute myeloid leukemia, with emphasis on cytogenetically normal AML. Leukemia 23(2):262–270. doi:10.1038/leu.2008.313

    Article  PubMed  CAS  Google Scholar 

  6. Thiede C, Creutzig E, Reinhardt D, Ehninger G, Creutzig U (2007) Different types of NPM1 mutations in children and adults: evidence for an effect of patient age on the prevalence of the TCTG-tandem duplication in NPM1-exon 12. Leukemia 21(2):366–367. doi:10.1038/sj.leu.2404519

    Article  PubMed  CAS  Google Scholar 

  7. Büchner T, Berdel WE, Schoch C, Haferlach T, Serve HL, Kienast J, Schnittger S, Kern W, Tchinda J, Reichle A, Lengfelder E, Staib P, Ludwig WD, Aul C, Eimermacher H, Balleisen L, Sauerland MC, Heinecke A, Wörmann B, Hiddemann W (2006) Double induction containing either two courses or one course of high-dose cytarabine plus mitoxantrone and postremission therapy by either autologous stem-cell transplantation or by prolonged maintenance for acute myeloid leukemia. J Clin Oncol 24(16):2480–2489. doi:10.1200/JCO.2005.04.5013

    Article  PubMed  Google Scholar 

  8. Creutzig U, Büchner T, Sauerland MC, Zimmermann M, Reinhardt D, Döhner H, Schlenk RF (2008) Significance of age in acute myeloid leukemia patients younger than 30 years: a common analysis of the pediatric trials AML-BFM 93/98 and the adult trials AMLCG 92/99 and AMLSG HD93/98A. Cancer 112(3):562–571. doi:10.1002/cncr.23220

    Article  PubMed  Google Scholar 

  9. Bain BJ (2005) Leukaemia diagnosis, 4th edn. Wiley-Blackwell, Oxford

    Google Scholar 

  10. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C (1976) Proposals for the classification of the acute leukaemias. French–American–British (FAB) co-operative group. Br J Haematol 33(4):451–458

    Article  PubMed  CAS  Google Scholar 

  11. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C (1985) Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French–American–British Cooperative Group. Ann Intern Med 103(4):620–625

    PubMed  CAS  Google Scholar 

  12. Büchner T, Hiddemann W, Wormann B, Löffler H, Gassmann W, Haferlach T, Fonatsch C, Haase D, Schoch C, Hossfeld D, Lengfelder E, Aul C, Heyll A, Maschmeyer G, Ludwig WD, Sauerland MC, Heinecke A (1999) Double induction strategy for acute myeloid leukemia: the effect of high-dose cytarabine with mitoxantrone instead of standard-dose cytarabine with daunorubicin and 6-thioguanine: a randomized trial by the German AML Cooperative Group. Blood 93(12):4116–4124

    PubMed  Google Scholar 

  13. Heim S, Mitelman F (2009) Cancer cytogenetics, 3rd edn. Wiley-Blackwell, Hoboken

    Google Scholar 

  14. Kjeldsberg CR (2000) Practical diagnosis of hematologic disorders, 3rd edn. ASCP, Chicago

    Google Scholar 

  15. Standing Committee on Human Cytogenetic Nomenclature, Mitelman F (1995) ISCN 1995: an international system for human cytogenetic nomenclature (1995): recommendations of the International Standing Committee on Human Cytogenetic Nomenclature, Memphis, TN, USA, October 9–13, 1994. Karger, Basel, New York

  16. Swerdlow SH, Jaffe ES, International Agency for Research on Cancer, World Health Organization (2008) WHO classification of tumours of haematopoietic and lymphoid tissues. World Health Organization classification of tumours. International Agency for Research on Cancer, Lyon

    Google Scholar 

  17. Dufour A, Schneider F, Metzeler KH, Hoster E, Schneider S, Zellmeier E, Benthaus T, Sauerland MC, Berdel WE, Büchner T, Wörmann B, Braess J, Hiddemann W, Bohlander SK, Spiekermann K (2010) Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome. J Clin Oncol 28(4):570–577. doi:10.1200/JCO.2008.21.6010

    Article  PubMed  CAS  Google Scholar 

  18. Benthaus T, Schneider F, Mellert G, Zellmeier E, Schneider S, Kakadia PM, Hiddemann W, Bohlander SK, Feuring-Buske M, Braess J, Spiekermann K, Dufour A (2008) Rapid and sensitive screening for CEBPA mutations in acute myeloid leukaemia. Br J Haematol 143(2):230–239. doi:10.1111/j.1365-2141.2008.07328.x

    Article  PubMed  CAS  Google Scholar 

  19. Döhner K, Schlenk RF, Habdank M, Scholl C, Rucker FG, Corbacioglu A, Bullinger L, Fröhling S, Döhner H (2005) Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood 106(12):3740–3746. doi:10.1182/blood-2005-05-2164

    Article  PubMed  Google Scholar 

  20. Verhaak RG, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W, Uitterlinden AG, Erpelinck CA, Delwel R, Lowenberg B, Valk PJ (2005) Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 106(12):3747–3754. doi:10.1182/blood-2005-05-2168

    Article  PubMed  CAS  Google Scholar 

  21. Chou WC, Tang JL, Lin LI, Yao M, Tsay W, Chen CY, Wu SJ, Huang CF, Chiou RJ, Tseng MH, Lin DT, Lin KH, Chen YC, Tien HF (2006) Nucleophosmin mutations in de novo acute myeloid leukemia: the age-dependent incidences and the stability during disease evolution. Cancer Res 66(6):3310–3316. doi:10.1158/0008-5472.CAN-05-4316

    Article  PubMed  CAS  Google Scholar 

  22. Suzuki T, Kiyoi H, Ozeki K, Tomita A, Yamaji S, Suzuki R, Kodera Y, Miyawaki S, Asou N, Kuriyama K, Yagasaki F, Shimazaki C, Akiyama H, Nishimura M, Motoji T, Shinagawa K, Takeshita A, Ueda R, Kinoshita T, Emi N, Naoe T (2005) Clinical characteristics and prognostic implications of NPM1 mutations in acute myeloid leukemia. Blood 106(8):2854–2861. doi:10.1182/blood-2005-04-1733

    Article  PubMed  CAS  Google Scholar 

  23. Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C, Löffler H, Sauerland CM, Serve H, Büchner T, Haferlach T, Hiddemann W (2002) Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 100(1):59–66

    Article  PubMed  CAS  Google Scholar 

  24. Fröhling S, Schlenk RF, Breitruck J, Benner A, Kreitmeier S, Tobis K, Döhner H, Döhner K (2002) Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood 100(13):4372–4380. doi:10.1182/blood-2002-05-1440

    Article  PubMed  Google Scholar 

  25. Gale RE, Hills R, Pizzey AR, Kottaridis PD, Swirsky D, Gilkes AF, Nugent E, Mills KI, Wheatley K, Solomon E, Burnett AK, Linch DC, Grimwade D (2005) Relationship between FLT3 mutation status, biologic characteristics, and response to targeted therapy in acute promyelocytic leukemia. Blood 106(12):3768–3776. doi:10.1182/blood-2005-04-1746

    Article  PubMed  CAS  Google Scholar 

  26. Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U, Wermke M, Bornhauser M, Ritter M, Neubauer A, Ehninger G, Illmer T (2002) Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 99(12):4326–4335

    Article  PubMed  CAS  Google Scholar 

  27. Paschka P, Schlenk RF, Gaidzik VI, Habdank M, Krönke J, Bullinger L, Spath D, Kayser S, Zucknick M, Gotze K, Horst HA, Germing U, Döhner H, Döhner K (2010) IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol 28(22):3636–3643. doi:10.1200/JCO.2010.28.3762

    Article  PubMed  CAS  Google Scholar 

  28. Metzeler KH, Maharry K, Radmacher MD, Mrozek K, Margeson D, Becker H, Curfman J, Holland KB, Schwind S, Whitman SP, Wu YZ, Blum W, Powell BL, Carter TH, Wetzler M, Moore JO, Kolitz JE, Baer MR, Carroll AJ, Larson RA, Caligiuri MA, Marcucci G, Bloomfield CD (2011) TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 29(10):1373–1381. doi:10.1200/JCO.2010.32.7742

    Article  PubMed  Google Scholar 

  29. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J, Harris CC, Lichti CF, Townsend RR, Fulton RS, Dooling DJ, Koboldt DC, Schmidt H, Zhang Q, Osborne JR, Lin L, O'Laughlin M, McMichael JF, Delehaunty KD, McGrath SD, Fulton LA, Magrini VJ, Vickery TL, Hundal J, Cook LL, Conyers JJ, Swift GW, Reed JP, Alldredge PA, Wylie T, Walker J, Kalicki J, Watson MA, Heath S, Shannon WD, Varghese N, Nagarajan R, Westervelt P, Tomasson MH, Link DC, Graubert TA, DiPersio JF, Mardis ER, Wilson RK (2010) DNMT3A mutations in acute myeloid leukemia. N Engl J Med 363(25):2424–2433. doi:10.1056/NEJMoa1005143

    Article  PubMed  CAS  Google Scholar 

  30. Schnittger S, Dicker F, Kern W, Wendland N, Sundermann J, Alpermann T, Haferlach C, Haferlach T (2011) RUNX1 mutations are frequent in de novo AML with noncomplex karyotype and confer an unfavorable prognosis. Blood 117(8):2348–2357. doi:10.1182/blood-2009-11-255976

    Article  PubMed  CAS  Google Scholar 

  31. Gaidzik VI, Bullinger L, Schlenk RF, Zimmermann AS, Rock J, Paschka P, Corbacioglu A, Krauter J, Schlegelberger B, Ganser A, Spath D, Kundgen A, Schmidt-Wolf IG, Gotze K, Nachbaur D, Pfreundschuh M, Horst HA, Döhner H, Döhner K (2011) RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML Study Group. J Clin Oncol 29(10):1364–1372. doi:10.1200/JCO.2010.30.7926

    Article  PubMed  Google Scholar 

  32. Bacher U, Haferlach C, Kern W, Haferlach T, Schnittger S (2008) Prognostic relevance of FLT3-TKD mutations in AML: the combination matters—an analysis of 3082 patients. Blood 111(5):2527–2537. doi:10.1182/blood-2007-05-091215

    Article  PubMed  CAS  Google Scholar 

  33. Wheatley K, Burnett AK, Goldstone AH, Gray RG, Hann IM, Harrison CJ, Rees JK, Stevens RF, Walker H (1999) A simple, robust, validated and highly predictive index for the determination of risk-directed therapy in acute myeloid leukaemia derived from the MRC AML 10 trial. United Kingdom Medical Research Council's Adult and Childhood Leukaemia Working Parties. Br J Haematol 107(1):69–79

    Article  PubMed  CAS  Google Scholar 

  34. Schneider F, Hoster E, Unterhalt M, Schneider S, Dufour A, Benthaus T, Mellert G, Zellmeier E, Bohlander SK, Feuring-Buske M, Buske C, Braess J, Fritsch S, Heinecke A, Sauerland MC, Berdel WE, Büchner T, Wörmann BJ, Hiddemann W, Spiekermann K (2009) NPM1 but not FLT3-ITD mutations predict early blast cell clearance and CR rate in patients with normal karyotype AML (NK-AML) or high-risk myelodysplastic syndrome (MDS). Blood 113(21):5250–5253. doi:10.1182/blood-2008-09-172668

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Gudrun Mellert and Evelyn Zellmeier (Laboratory for Leukemia Diagnostics, University Hospital Munich) for their excellent technical support.

Conflict of interest

The author indicates no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friederike Schneider.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Overview of patient cohorts (DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, F., Hoster, E., Schneider, S. et al. Age-dependent frequencies of NPM1 mutations and FLT3-ITD in patients with normal karyotype AML (NK-AML). Ann Hematol 91, 9–18 (2012). https://doi.org/10.1007/s00277-011-1280-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-011-1280-6

Keywords

Navigation