Skip to main content
Log in

Biotransformation and reduction of estrogenicity of bisphenol A by the biphenyl-degrading Cupriavidus basilensis

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The biphenyl-degrading Gram-negative bacterium Cupriavidus basilensis (formerly Ralstonia sp.) SBUG 290 uses various aromatic compounds as carbon and energy sources and has a high capacity to transform bisphenol A (BPA), which is a hormonally active substance structurally related to biphenyl. Biphenyl-grown cells initially hydroxylated BPA and converted it to four additional products by using three different transformation pathways: (a) formation of multiple hydroxylated BPA, (b) ring fission, and (c) transamination followed by acetylation or dimerization. Products of the ring fission pathway were non-toxic and all five products exhibited a significantly reduced estrogenic activity compared to BPA. Cell cultivation with phenol and especially in nutrient broth (NB) resulted in a reduced biotransformation rate and lower product quantities, and NB-grown cells did not produce all five products in detectable amounts. Thus, the question arose whether enzymes of the biphenyl degradation pathway are involved in the transformation of BPA and was addressed by proteomic analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arai H, Ohishi T, Chang MY, Kudo T (2000) Arrangement and regulation of the genes for meta-pathway enzymes required for degradation of phenol in Comamonas testosteroni TA441. Microbiology-UK 146:1707–1715

    Article  CAS  Google Scholar 

  • Basile T, Petrella A, Petrella M, Boghetich G, Petruzzelli V, Colasuonno S, Petruzzelli D (2011) Review of endocrine-disrupting-compound removal technologies in water and wastewater treatment plants: an EU perspective. Ind Eng Chem Res 50(14):8389–8401. doi:10.1021/ie101919v

    Article  CAS  Google Scholar 

  • Becher D, Specht M, Hammer E, Francke W, Schauer F (2000) Cometabolic degradation of dibenzofuran by biphenyl-cultivated Ralstonia sp strain SBUG 290. Appl Environ Microbiol 66(10):4528–4531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertanza G, Pedrazzani R, Dal Grande M, Papa M, Zambarda V, Montani C, Steimberg N, Mazzoleni G, Di Lorenzo D (2011) Effect of biological and chemical oxidation on the removal of estrogenic compounds (NP and BPA) from wastewater: an integrated assessment procedure. Water Res 45(8):2473–2484. doi:10.1016/j.watres.2011.01.026

    Article  CAS  PubMed  Google Scholar 

  • Boukouvala S, Fakis G (2005) Arylamine N-acetyltransferases: what we learn from genes and genomes. Drug Metab Rev 37(3):511–564. doi:10.1080/03602530500251204

    Article  CAS  PubMed  Google Scholar 

  • Chai W, Handa Y, Suzuki M, Saito M, Kato N, Horiuchi CA (2005) Biodegradation of bisphenol A by fungi. Appl Biochem Biotech 120(3):175–182. doi:10.1385/abab:120:3:175

    Article  CAS  Google Scholar 

  • Chang HS, Choo KH, Lee B, Choi SJ (2009) The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water. J Hazard Mater 172(1):1–12. doi:10.1016/j.jhazmat.2009.06.135

    Article  CAS  PubMed  Google Scholar 

  • Cogliano VJ (1998) Assessing the cancer risk from environmental PCBs. Environ Health Perspect 106(6):317–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cserháti M, Kriszt B, Szoboszlay S, Tóth A, Szabó I, Táncsics A, Nagy I, Horváth B, Kukolya J (2012) De Novo genome project of Cupriavidus basilensis OR16. J Bacteriol 194(8):2109–2110. doi:10.1128/jb.06752-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Deloménie C, Fouix S, Longuemaux S, Brahimi N, Bizet C, Picard B, Denamur E, Dupret JM (2001) Identification and functional characterization of arylamine N-acetyltransferases in eubacteria: evidence for highly selective acetylation of 5-aminosalicylic acid. J Bacteriol 183(11):3417–3427. doi:10.1128/jb.183.11.3417-3427.2001

    Article  PubMed  PubMed Central  Google Scholar 

  • EPA (2014) Bisphenol A alternatives in thermal paper—final report. www2epagov/sites/production/files/2014-05/documents/bpa_finalpdf

  • Erler C, Novak J (2010) Bisphenol A exposure: human risk and health policy. J Pediatr Nurs 25(5):400–407. doi:10.1016/j.pedn.2009.05.006

    Article  PubMed  Google Scholar 

  • Fischer LJ, Seegal RF, Ganey PE, Pessah IN, Kodavanti PRS (1998) Symposium overview: toxicity of non-coplanar PCBs. Toxicol Sci 41(1):49–61

    CAS  PubMed  Google Scholar 

  • Fischer J, Kappelmeyer U, Kastner M, Schauer F, Heipieper HJ (2010) The degradation of bisphenol A by the newly isolated bacterium Cupriavidus basilensis JF1 can be enhanced by biostimulation with phenol. Int Biodeterior Biodegrad 64(4):324–330. doi:10.1016/j.ibiod.2010.03.007

    Article  CAS  Google Scholar 

  • Gao XQ, Wang HS (2014) Impact of bisphenol A on the cardiovascular system—epidemiological and experimental evidence and molecular mechanisms. Int J Environ Res Public Health 11(8):8399–8413. doi:10.3390/ijerph110808399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groff T (2010) Bisphenol A: invisible pollution. Curr Opin Pediatr 22(4):524–529. doi:10.1097/MOP.0b013e32833b03f8

    Article  PubMed  Google Scholar 

  • Grube M, Cernava T, Soh J, Fuchs S, Aschenbrenner I, Lassek C, Wegner U, Becher D, Riedel K, Sensen CW, Berg G (2015) Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J 9(2):412–424. doi:10.1038/ismej.2014.138

    Article  CAS  PubMed  Google Scholar 

  • Gültekin I, Ince NH (2007) Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes. J Environ Manag 85(4):816–832. doi:10.1016/j.jenvman.2007.07.020

    Article  Google Scholar 

  • Haft DH, Selengut JD, Richter RA, Harkins D, Basu MK, Beck E (2013) TIGRFAMs and genome properties in 2013. Nucleic Acids Res 41(D1):D387–D395. doi:10.1093/nar/gks1234

    Article  CAS  PubMed  Google Scholar 

  • Hahn V, Mikolasch A, Kuhlisch C, Schauer F (2015) Laccase-mediated multi-step homo- and heteromolecular reactions of ortho-dihydroxylated aromatic compounds and mono- or diaminated substances resulting in C-C, C-O and C-N bonds. J Mol Catal B-Enzym 122:56–63. doi:10.1016/j.molcatb.2015.08.011

    Article  CAS  Google Scholar 

  • Herter S, Mikolasch A, Michalik D, Hammer E, Schauer F, Bornscheuer U, Schmidt M (2011) C-N coupling of 3-methylcatechol with primary amines using native and recombinant laccases from Trametes versicolor and Pycnoporus cinnabarinus. Tetrahedron 67(48):9311–9321. doi:10.1016/j.tet.2011.09.123

    Article  CAS  Google Scholar 

  • Hutson S (2001) Structure and function of branched chain aminotransferases. Prog Nucleic Acid Re 70:175–206. doi:10.1016/s0079-6603(01)70017-7

    Article  CAS  Google Scholar 

  • Ike M, Jin C-S, Fujita M (1995) Isolation and characterization of a novel bisphenol A-degrading bacterium Pseudomonas paucimobilis strain FJ-4. Japanese J Wat Treat Biol 31(3):203–212

    Article  Google Scholar 

  • Johnson BF, Stanier RY (1971) Dissimilation of aromatic compounds by Alcaligenes eutrophus. J Bacteriol 107(2):468–475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaddar N, Harthé C, Déchaud H, Mappus E, Pugeat M (2008) Cutaneous penetration of bisphenol A in pig skin. J Toxicol Env Heal A 71(8):471–473. doi:10.1080/15287390801906824

    Article  CAS  Google Scholar 

  • Kang JH, Kondo F, Katayama Y (2006) Human exposure to bisphenol A. Toxicology 226(2–3):79–89. doi:10.1016/j.tox.2006.06.009

    Article  CAS  PubMed  Google Scholar 

  • Keri RA, Ho SM, Hunt PA, Knudsen KE, Soto AM, Prins GS (2007) An evaluation of evidence for the carcinogenic activity of bisphenol A. Reprod Toxicol 24(2):240–252. doi:10.1016/j.reprotox.2007.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolvenbach B, Schlaich N, Raoui Z, Prell J, Zühlke S, Schäffer A, Guengerich FP, Corvini PFX (2007) Degradation pathway of bisphenol A: does ipso substitution apply to phenols containing a quaternary alpha-carbon structure in the para position? Appl Environ Microbiol 73(15):4776–4784. doi:10.1128/aem.00329-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobos JH, Leib TK, TM S (1992) Biodegradation of bisphenol-A and other bisphenols by a gram-negative aerobic bacterium. Appl Environ Microbiol 58(6):1823–1831

    CAS  PubMed  PubMed Central  Google Scholar 

  • López-Mondéjar R, Zühlke D, Větrovský T, Becher D, Riedel K, Baldrian P (2016) Decoding the complete arsenal for cellulose and hemicellulose deconstruction in the highly efficient cellulose decomposer Paenibacillus O199. Biotechnol Biofuels 9. doi:10.1186/s13068-016-0518-x

  • Mikolasch A, Manda K, Schlüter R, Lalk M, Witt S, Seefeldt S, Hammer E, Schauer F, Jülich W-D, Lindequist U (2012) Comparative analyses of laccase-catalyzed amination reactions for production of novel beta-lactam antibiotics. Biotechnol Appl Bioc 59(4):295–306. doi:10.1002/bab.1026

    Article  CAS  Google Scholar 

  • Nadejde C, Neamtu M, Hodoroaba VD, Schneider RJ, Ababei G, Panne U (2016) Hybrid iron-based core-shell magnetic catalysts for fast degradation of bisphenol A in aqueous systems. Chem Eng J 302:587–594. doi:10.1016/j.cej.2016.05.090

    Article  CAS  Google Scholar 

  • Ogata Y, Goda S, Toyama T, Sei K, Ike M (2013) The 4-tert-butylphenol-utilizing bacterium Sphingobium fuliginis OMI can degrade bisphenols via phenolic ring hydroxylation and meta-cleavage pathway. Environ Sci Technol 47(2):1017–1023. doi:10.1021/es303726h

    Article  CAS  PubMed  Google Scholar 

  • Ohtsubo Y, Delawary M, Kimbara K, Takagi M, Ohta A, Nagata Y (2001) BphS, a key transcriptional regulator of bph genes involved in polychlorinated biphenyl/biphenyl degradation in Pseudomonas sp KKS102. J Biol Chem 276(39):36146–36154. doi:10.1074/jbc.M100302200

    Article  CAS  PubMed  Google Scholar 

  • Rogers JA, Metz L, Yong VW (2013) Review: Endocrine disrupting chemicals and immune responses: a focus on bisphenol-A and its potential mechanisms. Mol Immunol 53(4):421–430. doi:10.1016/j.molimm.2012.09.013

    Article  CAS  PubMed  Google Scholar 

  • Sakai K, Yamanaka H, Moriyoshi K, Ohmoto T, Ohe T (2007) Biodegradation of bisphenol A and related compounds by Sphingomonas sp strain BP-7 isolated from seawater. Biosci Biotech Bioch 71(1):51–57. doi:10.1271/bbb.60351

    Article  CAS  Google Scholar 

  • Schlueter R, Röder A, Czekalski N, Gliesche D, Mikolasch A, Schauer F (2014) Novel mechanisms of biotransformation of p-tert-amylphenol by bacteria and fungi with special degradation abilities and simultaneous detoxification of the disinfectant. Appl Microbiol Biotechnol 98:373–384. doi:10.1007/s00253-013-5312-0

    Article  CAS  PubMed  Google Scholar 

  • Schneider T, Schmid E, de Castro JV Jr, Cardinale M, Eberl L, Grube M, Berg G, Riedel K (2011) Structure and function of the symbiosis partners of the lung lichen (Lobaria pulmonaria L. Hoffm.) analyzed by metaproteomics. Proteomics 11(13):2752–2756. doi:10.1002/pmic.201000679

    Article  CAS  PubMed  Google Scholar 

  • Seachrist DD, Bonk KW, Ho SM, Prins GS, Soto AM, Keri RA (2016) A review of the carcinogenic potential of bisphenol A. Reprod Toxicol 59:167–182. doi:10.1016/j.reprotox.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  • Spivack J, Leib TK, Lobos JH (1994) Novel pathway for bacterial metabolism of bisphenol A—rearrangements and stilbene cleavage in bisphenol A metabolism. J Biol Chem 269(10):7323–7329

    CAS  PubMed  Google Scholar 

  • Steffen-Munsberg F, Vickers C, Kohls H, Land H, Mallin H, Nobili A, Skalden L, van den Bergh T, Joosten HJ, Berglund P, Höhne M, Bornscheuer UT (2015) Bioinformatic analysis of a PLP-dependent enzyme superfamily suitable for biocatalytic applications. Biotechnol Adv 33(5):566–604. doi:10.1016/j.biotechadv.2014.12.012

    Article  CAS  PubMed  Google Scholar 

  • Stope MB, Becher D, Hammer E, Schauer F (2002) Cometabolic ring fission of dibenzofuran by gram-negative and gram-positive biphenyl-utilizing bacteria. Appl Microbiol Biotechnol 59(1):62–67. doi:10.1007/s00253-0002-0979-7

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Ohnishi Y, Horinouchi S (2007) Arylamine N-acetyltransferase responsible for acetylation of 2-aminophenols in Streptomyces griseus. J Bacteriol 189(5):2155–2159. doi:10.1128/jb.01708-06

    Article  CAS  PubMed  Google Scholar 

  • Vandamme P, Coenye T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289. doi:10.1099/ijs.0.63247-0

    Article  PubMed  Google Scholar 

  • Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol 24(2):139–177. doi:10.1016/j.reprotox.2007.07.010

    Article  CAS  PubMed  Google Scholar 

  • Vizcaíno JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T, Xu QW, Wang R, Hermjakob H (2016) 2016 update of the PRIDE database and its related tools. Nucleic Acids Res 44(D1):D447–D456. doi:10.1093/nar/gkv1145

    Article  PubMed  Google Scholar 

  • Wesche J, Hammer E, Becher D, Burchhardt G, Schauer F (2005) The bphC gene-encoded 2,3-dihydroxybiphenyl-1,2-dioxygenase is involved in complete degradation of dibenzofuran by the biphenyl-degrading bacterium Ralstonia sp. SBUG 290. J Appl Microbiol 98(3):635–645. doi:10.1111/j.1365-2672.2004.02489.x

    Article  CAS  PubMed  Google Scholar 

  • Wiacek C, Müller S, Benndorf D (2006) A cytomic approach reveals population heterogeneity of Cupriavidus necator in response to harmful phenol concentrations. Proteomics 6(22):5983–5994. doi:10.1002/pmic.200600244

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Zeng G, Yuan L, Yu J, Li J, Huang G, Xi B, Liu H (2007) Aerobic degradation of bisphenol A by Achromobacter xylosoxidans strain B-16 isolated from compost leachate of municipal solid waste. Chemosphere 68(1):181–190. doi:10.1016/j.chemosphere.2006.12.012

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Yin K, Chen L (2013) Bacteria-mediated bisphenol A degradation. Appl Microbiol Biotechnol 97(13):5681–5689. doi:10.1007/s00253-013-4949-z

    Article  CAS  PubMed  Google Scholar 

  • Zühlke M-K, Schlüter R, Henning A-K, Lipka M, Mikolasch A, Schumann P, Giersberg M, Kunze G, Schauer F (2016) A novel mechanism of conjugate formation of bisphenol A and its analogues by Bacillus amyloliquefaciens: detoxification and reduction of estrogenicity of bisphenols. Int Biodeterior Biodegrad 109:165–173. doi:10.1016/j.ibiod.2016.01.019

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ute Lechner from the Martin-Luther-University of Halle-Wittenberg and the German Collection of Microorganisms and Cell Cultures Braunschweig (Leibniz Institute DSMZ) for the identification of the bacterial strain. We also thank Dirk Albrecht for supporting the mass spectrometry analysis of cytosolic proteins of C. basilensis. Furthermore, we are grateful to Gerhard Burchhardt for evaluation of sequence data of the bacterial strain. Furthermore, we would like to thank Jan Wesche for determination of DNA sequences coding the biphenyl degrading enzymes of the bacterial strain and Robert Jack for reviewing the manuscript. MKZ thanks the European Social Fund for financial support (Landesgraduiertenstipendium; Mecklenburg-Vorpommern, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabea Schlüter.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 923 kb)

ESM 2

(XLSX 290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zühlke, MK., Schlüter, R., Mikolasch, A. et al. Biotransformation and reduction of estrogenicity of bisphenol A by the biphenyl-degrading Cupriavidus basilensis . Appl Microbiol Biotechnol 101, 3743–3758 (2017). https://doi.org/10.1007/s00253-016-8061-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-8061-z

Keywords

Navigation