Skip to main content

Advertisement

Log in

Impaired cell functions of hepatocytes incubated with plasma of septic patients

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

The development of liver failure is a major problem in septic patients. In this prospective clinical experimental study the hepatotoxicity of plasma from septic and non-septic patients was tested.

Methods and subjects

The basic test components consist of human liver cells (HepG2/C3A) used in a standardized microtiter plate assay. After incubation with patient’s plasma viability of cells (XTT-test), the cytochrome 1A2 activity and synthesis of micro albumin were measured. Subjects (28) enrolled comprise the septic shock group (SSG, n = 10), the non-septic group (NSG, n = 5) and the healthy volunteers group (HVG, n = 13).

Results

The 28-day mortality was 30% in the SSG. The APACHE II-, SOFA-, and SAPS-scores and the values of bilirubin and prothrombin time as INR were significantly higher in the SSG than in the NSG. The cytochrome 1A2 activity and the release of albumin were significantly reduced in HepG2/C3A cells incubated with plasma of the SSG (p < 0.05). The cytochrome 1A2 activities were higher in survivors compared to non-survivors at the time point 0 and were increasing in survivors and decreasing in non-survivors within 54 h in the SSG. In the SSG there was a significant decrease in IL-10 and IL-8 between inclusion and 54 h. Values of IL-6, TNF alpha and IL-10 were significantly lower in the NSG compared with the values of the SSG at inclusion and after 54 h.

Conclusion

The plasma of patients with septic shock impaired cellular functions of HepG2/C3A cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ALAT:

Alanineaminotransferase

APACHE:

Acute physiology and chronic health evaluation (score)

aPTT:

Activated partial thromboplastin time

ASAT:

Asparagineaminotransferase

ATCC:

American type culture collection

CRP:

C-reactive protein

ICG:

Indocyanine green

ICU:

Intensive care unit

IL:

Interleukin

INR:

International normalized ratio

LDH:

Lactatedehydrogenase

PCT:

Procalcitonin

SIRS:

Systemic inflammatory response syndrom

SAPS:

Simplified acute physiology score

SEM:

Standard error of mean

SOFA:

Sepsis-related organ failure assessment (score)

TNF:

Tumor necrosis factor

References

  1. Harbrecht BG, Zenati MS, Doyle HR, et al. Hepatic dysfunction increases length of stay and risk of death after injury. J Trauma. 2002;53:517–23.

    Article  PubMed  CAS  Google Scholar 

  2. Brienza N, Dalfino L, Cinnella G, Diele C, Bruno F, Fiore T. Jaundice in critical illness: promoting factors of a concealed reality. Intensive Care Med. 2006;32:267–74.

    Article  PubMed  Google Scholar 

  3. Kramer L, Jordan B, Druml W, Bauer P, Metnitz PGH. Incidence and prognosis of early hepatic dysfunction in critically ill patients––a prospective multicenter study. Crit Care Med. 2007;35:1099–104.

    Article  PubMed  Google Scholar 

  4. Bakker J, Grover R, McLuckie A, et al. Administration of the nitric oxide synthase inhibitor NG-methyl-l-arginine hydrochloride by intravenous infusion for up to 72 hours can promote the resolution of shock in patients with severe sepsis: results of a randomized, double-blind, placebo-controlled multicenter study. Crit Care Med. 2004;32:1–12.

    Article  PubMed  CAS  Google Scholar 

  5. Pastor CM, Suter PM. Hepatic hemodynamics and cell functions in human and experimental sepsis. Anesth Analg. 1999;89:344–52.

    PubMed  CAS  Google Scholar 

  6. Moreno R, Vincent JL, Matos R, et al. The uses of maximum SOFA score to quantify organ dysfunction/failure in intensive care. Intensive Care Med. 1999;25:686–96.

    Article  PubMed  CAS  Google Scholar 

  7. Le Gall JR, Klar J, Lemeshow S, Saulnier F, Alberti C, Artigas A. The logistic organ dysfunction system. A new way to assess organ dysfunction in the intensive care unit. JAMA. 1996;276:802–10.

    Article  PubMed  Google Scholar 

  8. Bolder U, Ton-Nu HT, Schteingart CD, Frick E, Hofmann AF. Hepatocyte transport of bile acids and organic anions in endotoxemic rats: impaired uptake and secretion. Gastroenterology. 1997;112:214–25.

    Article  PubMed  CAS  Google Scholar 

  9. Moseley RH. Sepsis and cholestasis. Clin Liver Dis. 2004;8:83–94.

    Article  PubMed  Google Scholar 

  10. Szabo G, Romics L Jr, Frendl G. Liver in sepsis and systemic inflammatory response syndrome. Clin Liver Dis. 2002;6:1045–66.

    Article  PubMed  Google Scholar 

  11. Dhainaut JF, Marin N, Mignon A, Vinsonneau C. Hepatic response to sepsis: interaction between coagulation and inflammatory processes. Crit Care Med. 2001;29:42–7.

    Article  Google Scholar 

  12. Tu W, Satoi S, Zhang Z, et al. Hepatocellular dysfunction induced by nitric oxide production in hepatocytes isolated from rats with sepsis. Shock. 2003;19:373–7.

    Article  PubMed  CAS  Google Scholar 

  13. Wiersinga WJ. Current insights in sepsis: from pathogenesis to new treatment targets. Curr Opin Crit Care. 2011;17(5):480–6.

    Article  PubMed  Google Scholar 

  14. Hillenbrand A, Knippschild U, Weiss M, et al. Sepsis induced changes of adipokines and cytokines––septic patients compared to morbidly obese patients. BMC Surg. 2010;10:26.

    Article  PubMed  Google Scholar 

  15. Assenat E, Gerbal-Chaloin S, Larrey D, et al. Interleukin 1beta inhibits CAR-induced expression of hepatic genes involved in drug and bilirubin clearance. Hepatology. 2004;40(4):951–60.

    PubMed  CAS  Google Scholar 

  16. Sauer M. The use of human hepatocytes to determine liver function and liver regeneration. PCT/EP 2007/001047; DE/2006 102006005526.

  17. Members of the American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference Committee. Definitions of sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20:864–874.

    Google Scholar 

  18. Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344:699–709.

    Article  PubMed  CAS  Google Scholar 

  19. Scudiero DA, Shoemarker RH, Paull KD, et al. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 1988;48:4827–33.

    PubMed  CAS  Google Scholar 

  20. Kelly JH, Sussman NL. A fluorescent cell-based assay for cytochrome P-450 isozyme 1A2 induction and inhibition. J Biomol Screen. 2000;5:249–53.

    Article  PubMed  CAS  Google Scholar 

  21. Regueira T, Lepper PM, Brandt S, et al. Hypoxia inducible factor-1 alpha induction by tumour necrosis factor-alpha, but not by toll-like receptor agonists, modulates cellular respiration in cultured human hepatocytes. Liver Int. 2009;29:1582–92.

    Article  PubMed  CAS  Google Scholar 

  22. el-Saadany MA, Rawel HM, Raila J, el-Dashloty, Schweigert FJ. Antioxidants modulate the IL-6 induced inhibition of negative acute-phase protein secretion in HepG2 cells. Cell Biochem Funct. 2008;26:95–101.

    Article  PubMed  CAS  Google Scholar 

  23. Nakai K, Tanaka H, Hanada K, et al. Decreased expression of cytochromes P450 1A2, 2E1, and 3A4 and drug transporters Na+-taurocholate-cotransporting polypeptide, organic cation transporter 1, and organic anion-transporting peptide-C correlates with the progression of liver fibrosis in chronic hepatitis C patients. Drug Metab Dispos. 2008;36:1786–93.

    Article  PubMed  CAS  Google Scholar 

  24. Li T, Jahan A, Chiang JY. Bile acids and cytokines inhibit the human cholesterol 7 alpha-hydroxylase gene via the JNK/c-jun pathway in human liver cells. Hepatology. 2007;43:1202–10.

    Article  Google Scholar 

  25. Mogilenko DA, Dizhe EB, Shavva VS, Lapikov IA, Orlov SV, Perevozchikov AP. Role of the nuclear receptors HNF4 alpha, PPAR alpha, and LXRs in the TNF alpha-mediated inhibition of human apolipoprotein A-I gene expression in HepG2 cells. Biochemistry. 2009;48:11950–60.

    Article  PubMed  CAS  Google Scholar 

  26. Kwakkel J, Wiersinga WM, Boelen A. Interleukin-1beta modulates endogenous thyroid hormone receptor alpha gene transcription in liver cells. J Endocrinol. 2007;194:257–65.

    Article  PubMed  CAS  Google Scholar 

  27. Jakobs TC, Mentrup B, Schmutzler C, Dreher I, Köhrle J. Proinflammatory cytokines inhibit the expression and function of human type I 5′-deiodinase in HepG2 hepatocarcinoma cells. Eur J Endocrinol. 2002;146:559–66.

    Article  PubMed  CAS  Google Scholar 

  28. Wang C, Qi R, Li N, et al. Notch1 signaling sensitizes tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human hepatocellular carcinoma cells by inhibiting Akt/Hdm2-mediated p53 degradation and up-regulating p53-dependent DR5 expression. J Biol Chem. 2009;284:16183–90.

    Article  PubMed  CAS  Google Scholar 

  29. Yang L, Shi W, Wang J, Jiang X, Feng W, Li Z. Comparison of cell deaths induced by transmembrane and secretory TNF-alpha. J Huazhong Univ Sci Technolog Med Sci. 2007;27:117–9.

    Article  PubMed  CAS  Google Scholar 

  30. Kassardjian A, Kreydiyyeh SI. JNK modulates the effect of caspases and NF-kappaB in the TNF-alpha-induced down-regulation of Na+/K+ATPase in HepG2 cells. J Cell Physiol. 2008;216:615–20.

    Article  PubMed  CAS  Google Scholar 

  31. Senn JJ, Klover PJ, Nowak IA, et al. Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem. 2003;278:13740–6.

    Article  PubMed  CAS  Google Scholar 

  32. Rosado JA, Rosenzweig I, Harding S, Sage SO. Tumor necrosis factor-alpha inhibits store-mediated Ca2+ entry in the human hepatocellular carcinoma cell line HepG2. Am J Physiol Cell Physiol. 2001;280:1636–44.

    Google Scholar 

  33. Modrianski M, Ulrichova J, Bachleda P, et al. Human hepatocyte––a model for toxicological studies. functional and biochemical characterization. Gen Physiol Biophys. 2000;19:223–35.

    Google Scholar 

  34. Dehn PF, White CM, Conners DE, Shipkey G, Cumbo TA. Characterization of the human hepatocellular carcinoma [HEPG2] cell line as an in vitro model for cadmium toxicity studies. In Vitro Cell Dev Biol Anim. 2004;40:172–82.

    Article  PubMed  CAS  Google Scholar 

  35. Kelly JH, Darlington GJ. Modulation of the liver specific phenotype in the human hepatoblastoma line HEP G2. In Vitro Cell Dev Biol. 1989;25:217–22.

    Article  PubMed  CAS  Google Scholar 

  36. Babich H, Sardana MK, Borenfreund E. Acute cytotoxicities of polynuclear aromatic hydrocarbons determined in vitro with the human liver tumor cell line HepG2. Cell Biol Toxicol. 1988;4:295–309.

    Article  PubMed  CAS  Google Scholar 

  37. Roe AL, Snawder JE, Benson RW, Roberts DW, Casciano DA. HepG2 cells: an in vitro model for P450-dependent metabolism of acetaminophen. Biochem Biophys Res Commun. 1993;190:15–9.

    Article  PubMed  CAS  Google Scholar 

  38. Peppard JV, Knap AK. Effect of selective and non-selective cysteine protease inhibitors on the intracellular processing of interleukin 6 by HepG2 cells. In Vitro Cell Dev Biol. 1999;35A:459–64.

    Article  Google Scholar 

  39. Dufresne M, Jane D, Theriault A, Adeli K. Expression of cathepsin B and aryl hydrocarbon hydrolase activities, and of apolipoprotein B in human hepatoma cells maintained long-term in a serum-free medium. In Vitro Cell Dev Biol. 1993;29A:873–8.

    Article  CAS  Google Scholar 

  40. Hahn SE, Parkes JG, Goldberg DM. Enzyme linked immunosorbent assay to measure apolipoproteins A1 und B secreted by a human hepatic carcinoma cell line [HepG2]. J Clin Lab Anal. 1992;6:182–9.

    Article  PubMed  CAS  Google Scholar 

  41. Krasteva N, Groth TH, Fey-Lambrecht F, Altankow G. The role of surface wettability on hepatocyte adhesive interactions and function. J Biomater. 2001;12:613–27.

    Article  CAS  Google Scholar 

  42. Rodriguez-Antonia C, Donato MT, Boobis A, et al. Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: molecular mechanisms that determine lower expression in cultured cells. Xenobiotika. 2002;32:505–20.

    Article  Google Scholar 

  43. Grant MH, Duthie SJ, Gray AG, Burke MD. Mixed function oxidase and UDP-glucuronyltransferase activities in the human HepG2 hepatoma cell line. Biochem Pharmacol. 1988;37:4111–6.

    Article  PubMed  CAS  Google Scholar 

  44. Ellis AJ, Hughes RD, Wendon JA. Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure. Hepatology. 1996;24:1446–51.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to thank Mrs Heike Potschka and Mrs Helga Weiss-Reining for valuable technical support. A special thank to Mrs Maren Siekmöller for her help for creating the test and to Mr Hans-Peter Deigner for the critical reviewing of the paper. The study was supported by research grants of the University of Rostock.

Conflict of interest

None of the authors has any conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Sauer.

Additional information

Responsible Editor: Artur Bauhofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauer, M., Haubner, C., Mencke, T. et al. Impaired cell functions of hepatocytes incubated with plasma of septic patients. Inflamm. Res. 61, 609–616 (2012). https://doi.org/10.1007/s00011-012-0451-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-012-0451-9

Keywords

Navigation